Conversion of Maxwell’s Equations into
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In this paper it is cxplained how Maxwell’s field equations together with
the appropriate boundary conditions may be converted into equations analo-
gous to those for coupled transmission lines. This makes it possible to use
the well-known techniques of dealing with transmission lines to solve certain
JSield problems in those cases in which either the method of separating the
variables fails or the boundary conditions are too complicaled for the con-
ventional method. For example, this method may be applied to studying
waveguide to horn junctions, bending of waveguides, propagation of waves
over an imperfect earth in the vicinity of the source, etc. Other applications
are suggested in the course of the paper.

On the theoretical side, this conversion of field equations into transmission
line equations brings together two heretofore independent theories of wave
propagation on wires, namely, Lord Kelvin’s theory based on circuit con-
cepts and Kirchhoff’s laws and Mie’s theory based on field concepts and
Mazwell’s equations.

The “Generalized Telegraphist's Equations” derived in this paper differ
from Kelvin’s classical Telegraphist’s Equations in two respects. Firstly, for
a pair of conductors Kelvin oblained one pair of differential equations im-
plying the exislence of only one mode of propagation. For the same pair of
conduclors we obtain an infinite set of equations implying an infinite number
of modes, from which Kelvin’s equations are obtained by meglecting the
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Electrical I'ngineers in New York. This paper was also presented at the University
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coupling between the principal mode and the higher order modes. Secondly,
our equations for some transmission structures contain additional “circust
paramelers” which do not appear in the classical equations. These parame-
ters are of the same nature as those in the corresponding equations for wave-
guides of uniform cross-section with perfectly conducting walls and Jilled
with heterogenecous dielectric medium. In the present case they arise from
the boundaries of conductors rather from lack of homogeneity.

The mathematics of converting Maxwell’s Equations into Generalized
Telegraphist’s Equations is straighiforward, although in the most general
cases rather lengthy. The essential point is that a function, which for prac-
tical purposes is sufficiently arbitrary, may be represented in numerous ways
by a series of orthogonal functions; and that when some such series are non-
differentiable, the required relations between the coefficients of series repre-
senting the various field components may be obtained from Maxwell’s equa-
tions by inlegration rather than by conventional substitution followed by
differentiation.
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1. INTRODUCTION

For certain structures Maxwell’s equations together with boundary
conditions can be converted into exact or nearly exact equations similar
to telegraphist’s equations for coupled transmission lines. These struc-
tures include conventional dissipative wire transmission lines, dissipative
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coaxial conductors, dissipative waveguides of either constant or variable
cross-section, bent waveguides, plane and curved earth, ete. The coeffi-
cients in these equations play the role of “distributed circuit parame-
ters;” but they are obtained from Maxwell’s equations and boundary
conditions rather than from consideration of static electric and magnetic
fields. The distributed circuit parameters of some structures may be
interpreted as distributed self and mutual series impedances and shunt
admittances. But, in general, there are other distributed parameters
which may be called “voltage and current transfer coefficients.” The
general equations are thus of the same form as the equations previously
obtained by the author for waveguides of constant cross-section with
perfectly conducting walls and filled with nonhomogeneous dielectric
and magnetic media.

The possibility of converting Maxwell’s equations into generalized
telegraphist’s is important from theoretical and practical points of view.
This possibility removes a nagging feeling that the classical telegraphist’s
equations, useful as they are in practice, are fundamentally inconsistent
with Maxwell’s field theory. We shall find that they are consistent al-
though approximate. We shall find that for conventional transmission
lines, such as coaxial pairs, the generalized telegraphist’s equations re-
duce to classical telegraphist’s equations when the distributed coupling -
of the principal mode to the higher order modes is neglected. We also
find that the classical equations can be used at much higher frequencies
than one would expect from their conventional derivation based on the
assumption of quasi-stationary fields. On the practical side, the general-
ized telegraphist’s equations represent a method for solving boundary
value problems using the well-known transmission line concepts and tech-
niques. In a gentle waveguide to horn junction, for instance, we can
obtain in the first approximation the transmission equations for the
dominant mode and then calculate the higher order modes, generated by
the expanding boundaries, as ‘“‘crosstalk” between the dominant and
higher order modes in the same way we calculate the crosstalk between
adjacent conventional transmission lines in a cable. Thus we can look at
three dimensional wave propagation from another angle, from the point
of view of one dimensional propagation. We can also treat problems in
curvilinear coordinates when the variables are not separable.

The conversion of Maxwell’s equations into generalized telegraphist’s
equations brings together two independent theories of wave propagation,
based on quite different concepts, which have merely “coexisted” for
more than three quarters of a century. Lord Kelvin obtained his tele-
graphist’s equations for cables' (transmission lines) ten years before
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Maxwell formulated his field equations. In modern notation the tele-
graphist’s or transmission line equations for two conductors, Fig. 1, are
av' ; ol’ ar' ; v’

= = RI L‘a?’ % GV CW (1)
where R, L, G, C are respectively the resistance, inductance, conductance
and capacitance per unit length along the line. The dependent variables
I', V' are the instantaneous values of the current in one conductor and
the transverse voltage from it to the other conductor. The distributed
circuit parameters R, L, G, C' are computed from static considerations.
In computing R it is assumed that direct current is flowing in one con-
ductor and returning via the other. The same assumption is made in
computing the magnetic flux linkage per unit length and hence in com-
puting L. In computing ¢ a constant voltage is assumed to exist be-
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Fig. 1 — Parallel wires.

tween two conductors. The ratio of the resulting transverse direct cur-
rent per unit length to this voltage is G. Finally, in computing the capaci-
tance per unit length, C, it is assumed that G = 0 and that there is a
constant voltage between the conductors. The ratio of the charge to this
voltage is C.

On solving these equations for a sinusoidally varying applied voltage
we find that the current and voltage are propagated with a finite velocity
and that their amplitudes diminish exponentially with the distance
from the generator. But in deriving these equations it has been assumed
that these amplitudes are independent of the distance from the generator.
Hence one would expect the equations to deteriorate steadily as the
frequency increases. One derives the same impression from the point of
view of Maxwell’s theory. And yet experiments have shown that in
many practical situations the errors are too small for detection even at
very high frequencies. Since the “‘engineering theory,” based on Kelvin’s
equations of Kirchhoff’s type, is much simpler in practical applications
than Maxwell’s theory, it had continued to play the dominant role in
electrical communication until the coming of radio and waveguides. To
appreciate the difference in the “orders of complexity’” of these two
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theories one should glance at the forty-nine pages of Mie’s paper on
wave propagation along parallel wires’ and compare them with the
engineering solution of the same problem. In Mie’s paper the reader is
confronted with an elaborate and difficult mathematical analysis while
the engineering solution is just a simple problem of elementary calculus.
Mie’s analysis is good only for an infinitely long pair of parallel metal
cylinders imbedded in a homogeneous medium. On the other hand, the
engineering solution applies to wires of variable cross-section, to twisted
pairs of wires, to wires which are not straight and parallel, to wires
insulated with layers of different media, to wires supported by insulators
on poles — that is, to a wide range of cases in which an analysis based on
Maxwell’s field equations seems hopeless. On the other hand, there are
problems of radiation whose solutions can readily be deduced from field
equations and which apparently are not amenable to treatment with the
aid of classical concepts of distributed circuit parameters.

Thus, the two theories have coexisted side by side but not on “speak-
ing terms with each other.” This situation has been one of contmued
challenge to students of electromagnetic theory. John R. Carson,’ for
instance, derived the classical telegraphist’s equations from the Lorentz
solution of Maxwell’s equations in terms of retarded potentials and
stated clearly the approximations he had to make. He then concluded
that the accuracy of telegraphist’s equations decreases with increasing
frequency. Recently the author had an occasion to discuss the subject
of this paper with A. Clavier. He informed me that many years ago when
he taught electromagnetic theory at Ecolé Superieure d’Electricité, he
became interested in the relation between Kirchhoff’s type of theory of
long lines and Maxwell’s field theory. At that time he found that, in the
case of simple geometry and no loss, the Lorentz solution of Maxwell’s
equations in terms of retarded potentials yielded a set of equations,
identieal in form with (1) but with a different meaning ascribed to V
The same result may be obtained directly from Maxwell’s equations® °
if in the case ® = 0 we restrict ourselves to TEM waves, in which case
7 has the meaning identical with that ascribed to it by Lord Kelvin.

For continuously coupled transmission lines, for several parallel wires
for instance, telegraphist’s equations are

an‘ = _E (RmnIni + Lmn a_I"') »

adz " at (2)
ol.' ; V'
'a‘ - ; (van + Cmn W‘)

where I,.! is the instantaneous current in the m-th line and V' the in-
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stantaneous transverse voltage associated with the m-th line. The co-
efficients corresponding to n = m are the distributed circuit parameters
for the m-th line, and those corresponding to unequal values of m and n
are the distributed coupling parameters for the m-th and n-th lines. For
steady state these equations reduce to a system of ordinary differential
equations. This reduction is accomplished by regarding the instantaneous
voltages and currents, V,," and I,.', as the real parts of complex voltages
and currents, V,, exp (jwt) and I,. exp (jet). Thus (2) is transformed into

de = _Z’ ZﬂlﬂIﬂ ’ dI_m = ""Z YmnVﬂ (3)
dz n dz n

where the distributed complex impedances per unit length, Z,,, and
complex admittances per unit length, Y., , are

Zm'n = Run + ijmn ) Youn = Gmﬂ + j‘-‘JCmn (4)

The usefulness of (1) and (2) is severely restricted because even for
relatively slowly varying currents the resistance R of a conduector is not
independent of time. The voltage drop across a section of a conductor
depends not only on the current but on the second and higher time de-
rivatives of the current. It is for this reason that (1) is properly named
“telegraphist’s” rather than ‘“telephonist’s” equations. However, (3)
may be used even at quite high frequencies provided we use ac re-
sistances R,.. , which include the skin effect, in place of de resistances.
A similar allowance should be made for the internal inductances of the
conductors.

It has been shown® that for each mode of propagation in a perfectly
conducting waveguide of uniform cross-section it is possible to obtain
equations analogous to telegraphist’s equations. Thus for TM waves the
steady state equations of propagation are

4 —(J'wu—l- X )I, i _G+iwV

dz - g + Juwe dz
and for TE waves
av _ . ar , X
qz = Jopl, dz (g + jee +.—7_";‘)V (6)

where the constant x depends on the shape and size of each conductor
and on the field distribution in a typical transverse plane. The “voltage”
¥V and the “current’”’ [ are related to the magnitudes of the transverse
components of electric and magnetic intensities.

In this paper we shall be concerned primarily with the steady-state
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equations. This entails no loss in generality because the Laplace trans-
form method would enable us to find the more general solutions from
the steady state solutions. It is possible, however, to convert such
equations as above into forms applicable to non-periodic time variations
in the dependent variables. Thus (6) would become

av' oI’ ar' ; v’ -1 2[” "
9 #Tﬁ: Fra qv +e—a—t-+ux mV(T)dT (7)
The first equation of the set (5) can be transformed either into

avi | dV aI’ I’

271
gaz'f'fm— g 6I+FE¥ x1 (8)
or into
i It _ t ; e iy
‘i[_—_- -.-_uq__xﬂelf I('r)e (g1€) (¢ )d‘r (9)
dz at I~

However, the steady state equations combined with Laplace transforms
are, as a rule, more convenient for dealing with general time varying
phenomena than the nonsteady state equations.

2. HEURISTIC DISCUSSION OF THE PROBLEM OF CONVERTING FIELD EQUA-
TIONS INTO GENERALIZED TELEGRAPHIST'S EQUATIONS

Consider two coaxial conductors. If they are perfectly conducting, the
field between them may be expressed in terms of TEM, TE, and TM
modes. Each of these modes can exist independently of the others.
Suppose now that we have excited a pure TEM mode. Let us then intro-
duce a small resistive spot on one of the cylinders. Some current will
flow across the spot and will give rise to a non-vanishing electric intensity
tangential to the spot. This intensity will act as an impressed longitudinal
intensity and will thus generate a large number of modes traveling in
opposite directions from the spot. Let us introduce another spot, and
then another and another until both cylinders are covered by resistive
films. At each step various modes will be generated and regenerated. The
argument suggests that we should be able to express the field between the
imperfectly conducting cylinders in terms of modes appropriate to per-
fectly conducting cylinders. However, none of the latter modes can now
exist independently of the others. The surface impedance of the cylinders
provides continuous coupling between various modes.

In the case of imperfectly conducting cylinders the longitudinal
electric intensity does not vanish at the surface of either conductor and
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yet the above physical argument leads us to believe that we can express
it in terms of functions which vanish there. Are we facing a contradic-
tion? The answer is, no. The functions representing the longitudinal
intensity over a given cross-section when the cylinders are perfectly
conducting form a complete orthogonal set. This set is sufficient for
representing arbitrary continuous functions, which do not vanish on the
boundary of the cross-section, at all points except on the boundary tself.
The situation is analogous to that existing in Fourier analysis. A function
which is bounded and continuous in the closed interval (0, ) may be
represented by a sine series in an open interval even when the function
does not vanish at the ends of the interval. However, the series will be
non-uniformly convergent and non-differentiable. For this reason such
series cannot be substituted in Maxwell’s equations when differentiation
is required. However, there is a way of overcoming this difficulty which
can best be illustrated by an example. As far as the representation of
the longitudinal electric intensity is concerned, we shall have one
series for points in the interior of the waveguide and another on its
boundary. The latter is obtained from the boundary condition, that is
from the produet of the surface impedance and the tangential magnetic
intensity.

A waveguide with continuously varying cross-section may be regarded
as the limit of a waveguide made up of a large number of very short wave-
guides with constant but different cross-sections. Consider only one
sudden change in the cross-section. The effect of this discontinuity on a
wave in one mode is to produce waves in many other modes traveling in
opposite directions from the discontinuity. Hence, the discontinuity
couples various modes and an expanding boundary represents continuous
coupling. Bending also represents continuous coupling.

In some structures the modes of propagation will be spherical or sys-
tems of spherical and plane modes. Take for instance a perfectly con-
ducting cone. There will be two systems of spherical modes of propaga-
tion, internal and external, completely independent of each other. If
the perfectly conducting cone is replaced by a sheet of finite thickness
and conductivity, there will exist a linear relation between electric
and magnetic intensities tangential to the internal and external surfaces
of the sheet; thus

Et.nne = ZeHin® + Zethrmi (10)
Etnni = Z'inlftnne + Zin'Htuni

where the Z’s are the surface and transfer impedances of the sheet. This
equation expresses the coupling between external and internal waves. If
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the conical conductor is deformed, further coupling arises from the de-
formation. The cone may be deformed into a cylinder, in which case
the external waves will still be spherical while the internal waves will
become plane.

We can make our calculations of fields step by step as suggested by
the heuristic argument. For example, we can calculate the scattering from
a typical resistive spot and integrate the scattered field over a continuous
distribution of spots. Since we would be neglecting the second order
scattering, our result would be approximately true only for a sufficiently
small perturbation of the original field. This is the method used by S. P.
Morgan® to obtain mode conversion losses in transmission of circular
electric waves through slightly non-eylindrical guides. If the first order
perturbation is not good enough, one presumably could calculate higher
order perturbations. However, this direct method, although very useful
in some situations, has its limitations. For instance, no matter how small
is the dissipation, the amplitude of the wave will be attenuated with
the inereasing distance from the source while the amplitude of the wave
“unperturbed”” by the resistance would have remained constant.

In the next section we shall state the generalized telegraphist’s equa-
tions. The remainder of the paper will be devoted to the mathematical
technique of obtaining them from Maxwell’s equations. This technique
is simple in principle but in general cases requires rather lengthy mathe-
matical manipulation which might obscur the main ideas. For this rea-
son the technique will be illustrated by a series of simple examples.

3. THE FORM OF GENERALIZED TELEGRAPHIST'S EQUATIONS

In a previous paper’ we obtained from Maxwell’s equations the follow-
ing equations for waveguides of uniform cross-section, bounded by per-
fectly conducting walls, and filled with nonhomogeneous dielectric and
magnetic media

7
dl) L JP —Z Z,,mIn - Z VT'""V'"

dz

(11)
dIm = _E Y'mnVn - E JrT’mrxlﬂ

dz
The equations which we shall obtain in this paper are of the same form.
They are more general than the classical telegraphist’s equations, given
in (3), for conventional transmission lines since, in addition to distributed
series impedances Z,,, and shunt admittances Y., , (11) contains ‘‘volt-
age transfer coefficients” Vo and “current transfer coefficients” /L
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Fig. 2 — Two parallel planes, perfectly conducting to the left of the Junctlon
AB und imperfectly conducting to the right of it.

"~ The voltages, V.., and currents, I, , are related to the amplitudes
of electric and magnetic intensities associated with each particular mode.
To each pair, V,, and I,, , there corresponds a certain field pattern in the
transverse plane. The choice of these field patterns is essentially arbi-
trary.* Often the most convenient choice is the one for which the mutual
coefficients are as small as possible so that the corresponding modes
are as independent as possible. But this is not always the case. For
example, take a junction between a pair of perfectly conducting parallel
planes and a pair of imperfectly conducting planes, Fig. 2. Consider what
happens near the junction AB when the TEM mode is traveling from
the left toward the junction. In this mode E is constant in the vertical
direction. Between the imperfectly conducting planes we can represent
the entire field in terms of certain independent modes by solving the
appropriate boundary value problem.? If the distance between the planes
is sufficiently large in comparison with wavelength, there is no mode in
which E is either constant in the vertical direction or nearly constant.
No matter how small is the surface resistance of the planes (as long as
it is different from zero), by spreading the planes we can reach a condition
in which the vertical electric intensity is distributed almost sinusoidally
with height, the maximum occurs half way between the planes, and the
minima near the planes. It is quite evident that these modes are not the
best for representing the field near the junction. From physical con-
siderations we expect that after the TEM wave enters the space between
the imperfectly conducting planes, it is still the same wave for consider-
able distance except near the planes. If we expand the field to the right
of AB in terms of modes appropriate to perfectly conducting planes, we
will havea mode with constant vertical electric intensity. This mode will
be feebly coupled to higher order modes. On account of this feeble
coupling the field near the junction is not much different from that
which would exist between perfectly conducting planes. However, under
the postulated conditions there are many higher order modes which
travel with almost the same velocity as the principal mode. For this
reason the conversion from the principal mode to these higher order

* Just as arbitrary as the choice of “‘meshes’’ in writing Kirchhoff’s equations.



GENERALIZED TELEGRAPHIST’'S EQUATIONS 1005

modes will be cumulative and eventually the transverse field pattern will
become totally unlike that near the junction. This final pattern is best
obtained by solving the conventional boundary value problem; but
there is a large region near the junction where the representation in
terms of modes appropriate to perfectly conducting planes is much more
practical.

In some instances, particularly when the mutual impedances and ad-
mittances are small and transfer coefficients vanish, it is possible to cal-
culate the mutual coefficients from the power flow along the guide and
the power absorbed by its wall. In the middle thirties this author ob-
tained in this way the coupling between TM and TE waves in dissipative
cylindrical waveguides. The result agreed with that obtained from the
appropriate characteristic equation for hybrid waves (unpublished work).
Much more important was the application of this idea by W. J. Alber-
sheim" to the propagation of circular electric waves round a bend. It
is equally possible to obtain small coupling coefficients due to small ir-
regularities in the dielectric medium from the unperturbed field which
would exist if these irregularities were removed by calculating the
response to the relative polarization currents.

In general, (11) is simpler to work with than the original Maxwell’s
equations. In particular, when the mutual coefficients (those correspond-
ing to the unequal subscripts) are small, we can solve the equations by
successive approximations as in problems of cross-talk between con-
ventional transmission lines in a cable. That is, we first neglect the
coupling between various modes and obtain the first approximate solu-
tion. Then we calculate the voltages and currents induced from each
mode into every other mode in a typical element of length dz (that is,
Zund ™ dz, YoV dz, ete. where T 22 and v, represent the first ap-
proximations). These induced voltages and currents we regard as im-
pressed voltages and currents exciting waves in the corresponding modes.
The effects of these impressed voltages and currents are then obtained
by integration. This process can be repeated indefinitely. But usually
the second approximation is sufficient for practical purposes.

However, if two or more modes have the same propagation con-
stant, we have a situation analogous to that existing in directional
couplers. No matter how small is the coupling, all power may pass from
one mode to the other. In this case, on account of the coupling the
common propagation constant will be split into several nearly equal
propagation constants.

In concluding this section we would like to call the reader’s attention
to a rather curious situation which existed before the present derivation
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of generalized telegraphist’s equations from Maxwell’s field equations.
The conventional derivation of classical telegraphist’s equations (3) led
one to expect that in general the mutual distributed parameters will
differ from zero. The independent modes of propagation are obtained
after these equations have been solved. On the other hand, in each case
in which telegraphist’s equations, such as (5) and (6), were obtained from
Maxwell’s equations, the modes were invariably independent. Obviously,
this independence of modes was due to the fact that selected situations
were rather trivial: Maxwell’s equations were separable in the chosen
coordinates and the boundary conditions were particularly simple. The
independence was purely accidental, inherent in the popular method of
solving Maxwell’s equations, and limited to the problems which could
be handled by that method.

4., UNIFORM STRIP TRANSMISSION LINES — THE PRINCIPAL MODE

The simplest mode of propagation between perfectly conducting
parallel plane sheets is the TEM mode in which the electric lines of force
are normal to the planes and the magnetic lines are parallel to them. Let
us assume that the x and y axes are parallel respectively to electric and
magnetic lines. The field of this mode will then be independent of the ¥
coordinate, and Maxwell’s equations reduce to

aE. _ . dE, oH, .
P JopH, + a3z’ 0z (g + jwe)Ex (12)
1 9H,
T T jee o (13)

For the mode under consideration E, vanishes identically and therefore
H, and K, are independent of the x coordinate as well. Essentially the
same situation will exist if we cut the planes as shown in Fig. 3 to form
a strip transmission line with ‘“guards” to keep the field from spreading
into the outer space.

If the sheets are not perfectly conducting, E. does not vanish on their
surface but is proportional to thelinear current densities, that is, to the
tangential magnetic intensities

EZ(O) Z) = Zl H(OJ z); Ez(d, Z) = _Z'ZHII(G: Z) (14)

The coefficients Z; and Z, are the surface impedances of the sheets.
Hence, k. will not vanish between the sheets. From the heuristic argu-
ment expounded in Section 2 we attribute this effect of finite conduc-
tivity to the production of higher modes of propagation. For good
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Fig. 3 — Uniform strip transmission line.

conductors Z; and Z, are extremely small so that while E, cannot vanish,
it can be very small. This “almost TEM”’ mode is often called the princi-
pal mode.

The transverse components of the field between and on the impedance
strips will now be expressed in the following form

k., = Y? 4+ > NTVa2) cos??
15
I (15)

H, = (=) + 2 N.'I(2) cos ﬂ%n-:

b
where the summation index assumes all integral values from 1 to .
The normalization factors

a b
N,? = f f cos’ ML dx dy = Lab (16)
b Jo a 2

are chosen to make the expression for the power flow identical with that
for a multiple-conductor conventional transmission line, that is,

a b
P = % fo fn BLH,* de dy = %Vo(z)Io*(z) + % S Va@ I ) (17)

When the strips are perfectly conducting the voltages and currents,
V.(2) and I,(z), are independent of each other; otherwise, they are not.
From the purely mathematical point of view we can regard expressions
(15) as representations of the solutions between the impedance strips
by cosine series. Such representations exist because K, and H, are con-
tinuous functions of x in the closed interval (0, a).
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Similarly, we represent the longitudinal electric intensity by a sine
series :

E, =Y e.(2) sin ”T’:'“ n=1,23 - (18)

When the boundaries are not perfectly conducting, such a representation
is possible only in the open interval 0 < x < @ since the sine terms
vanish at the ends of the interval while E, does not. On the boundaries
we use (14) and (15),

E.(0, z)

% In(z) + E Zan_lIu(z)
(19)

B2 = 2 L) + T (-)™ 2N, L)

In the closed interval the series (18) represents a discontinuous func-
tion and therefore does not converge uniformly. Moreover, its coefficients
diminish so slowly that after term by term differentiation, the series
will diverge. Hence, we may not substitute this series in the first equation
of the set (12) in order to obtain the relations between V,(z), I.(z), and
e,(2) in the usual way. There is another way, however.

To obtain the equations for the principal mode we merely integrate
(12) with respect to 2 from 0 to @ and note that

[ Bear =i, [ Hyde =2 1) (20)
] o b
Thus we find
Vo) _ 3w 1) 4+ Bula, 2) — B.(0, 2
dz b
dl(z) 1)
P = =g + jedVa(2)
‘We now substitute from (19) into (21),
dVe(z) _ _ (jupa | Z: +Zz> 2+ (=)"Z,
& (_b— p ) 1) - LTy L
b (22)
dI(;(z) _ (g + jwe) Volo),
2 a
where the summation extends over the sequence n = 1,2,3, --- . The

classical form of telegraphist’s equations is obtained if we neglect the
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summation, that is, the coupling of the principal mode to the higher
order modes.

It is worth noting that (18) for the longitudinal electric intensity has
not been used.

5. UNIFORM STRIP TRANSMISSION LINES — HIGHER ORDER MODES

Telegraphist’s equations for the typical higher order mode will be ob-

tained if we multiply equations (12) by N, ' cos (mwrz/a) drdy and in-

tegrate over the cross-section of the strip line. Thus, we have

a b ” . a b .
f f b, N, cos M g dy = —jou f f H,N,. " cos mrt
b Jo 9z a v Jo a

a b
w@+ffNﬁc’T”&d@
0 0

(23)

In the first and second terms of this equation we substitute from (15).
The last term we integrate by parts. Thus we find

dV,(2) _
dz

_jw#Im(z) - bNm_][Es(Oi Z) + (_')m+1Ez(a1 Z)]

+ff—E3 wad:cdy

To evaluate the last term we substitute from (13), integrate once more
by parts, and substitute from (15),

(24)

aH,r
ff—-BS]n—-—d.Tdy m[
sin ™72 e dy = W%T [bH,,(.r, e[ )

f f H, cos —_— da: d’y] (g + Jwe)ﬂ2 I,.(2)
In view of this and (19), (24) becomes

dV,.(z) ny mir (Z1 + Zg)b:l
dz D”+@+pmz N In(2)
=" 2 7 1 — mtn
IR AR RS M2 NN

m=123,
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where the prime after the summation sign indicates that the summation
is to be extended over the sequence n = 1,2,3, --- exceptn = m.
Similarly, we obtain from the second equation of the set (12)

g{#‘ = _(g + jwe)Vm(Z), m = 1,2, 3: te (27)

Again it should be noted that in the above derivation we have not used
the non-uniformly convergent series (18) for the longitudinal electric
intensity. We could have used it. In that case, however, we would have
been faced with the necessity of justifying certain steps. There is a
theorem' to the effect that a uniformly convergent series may be in-
tegrated term by term. But the series (18) is not uniformly convergent.
Hence, if we substitute from (18) in the last term of (24), we would
have to prove that in this special instance the term by term integration
is permissible. Actually the non-uniform convergence is only sufficient
condition for term by term integration and not a mecessary condition.
Even the examplesgiven in Reference 12 to show that some non-uniformly
convergent series may not be integrated term by term in certain closed
intervals are somewhat misleading without an explicit qualification; for
it so happens that these series may be integrated term by term in slightly
smaller intervals and correct results then obtained by passing to the
limit. Nevertheless in the present case there is no reason why we should
have complicated our derivation by using steps requiring special justi-
fication.

To obtain the longitudinal electric intensity we substitute from (15)
and (18) in (13) and differentiate term by term. This differentiation is
permissible if the series of derivatives is uniformly convergent. In the
present case this means that the differentiation should be restricted to an
open interval 0 < z < a. Thus

nmw
0 = 7 ¥ jedan, 8

and

nr . nwa
E.=—-Y, T I.(2) sin - (29)
For « = 0, a E, may be obtained from (19). Very near the boundaries
the series (29) converges very slowly. However, we know that k. is very
small there and normally we would not be interested in it. If we are, the
best way to find it is by interpolation from the boundary values (19) and
the interior values sufficiently far from the boundaries where the con-
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vergence of (29) is more satisfactory. The slow convergence of (29)
near the boundaries does not affect, of course, the validity of our teleg-
raphist’s equations.

6. STRIP TRANSMISSION LINE WITH VARIABLE CROSS-SECTION — THE
PRINCIPAL MODE

In this section we shall consider strip transmission lines with variable
cross-section, Fig. 4, which exemplify horns and waveguide to horn
junctions. Here we can use either cartesian coordinates or curvilinear
while in the parallel plane case the former seemed obviously the most

£

=
(P T—

Fig. 4 — Strip transmission line with variable cross-section.

appropriate. It appears that cartesian coordinates are still the most con-
venient when the shape of the boundaries is arbitrary; in a subsequent
section, however, we shall consider an example of curvilinear coordi-
nates.

For the sake of simplicity we shall confine ourselves to the symmetric
transmission line, both in geometry and in the impedance of the strips
(that is, we shall assume Z; = Z,). In the case of symmetric mode we
can then insert a perfectly conducting plane y0z in the middle of the
strip transmission line without disturbing the field.* Hence the boundary
conditions will be

E.0,2) =0, Ela,z) = —ZH,(a, 2) (30)

where Z is the surface impedance of the upper strip and E, is the com-

* In the case of antisymmetric modes we can introduce an infinite impedance
sheet.
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ponent of electric intensity tangential to the strip. Since
E, = E,cos ¢ + E,sin ¢ (31)

where ¢#(z) is the angle between the axial plane and the plane tangent to
the strip, the second boundary condition becomes

E.(a,z) = —E.tan & — Z sec 8H,(a, 2) (32)

In line with the heuristic argument propounded in Section 2, we shall
express the field in the present strip line with variable distance a(z)
between the strips in terms of modes appropriate to the case of constant a
and perfectly conducting boundaries. From the mathematical point of
view this amounts to expanding the field intensities in a typical trans-
verse plane in Fourier series in x. The coefficients of the series are to be
determined from Maxwell’s equations and boundary conditions. Thus
we shall express E, and H, by series (15) and E. by (18). The latter ex-
pression will hold only forz < a. When = a, wefind from (15) and (32)

Ba,9) = — B22 7o) ~T(=)'N. tan 8 Va(a)

(33)

~Zs0d ) —3(-)NG 2 sec 0 13

To obtain the equations for principal waves we proceed as in Section 4
and integrate (12) with respect to z, taking into consideration (15). Thus
we obtain (21). Then we substitute from (33) into (21),

dV(z) _ Joua 7 sec 0) () — tan & Vol2)
dz b b a

— S (=)"N. Z see ¢ Ta(z) —2(—)"No " tan @ Va(z)  (34)

dly(z) _ g+ Jwe)b Vol2)
dz a

Note the appearance of voltage transfer coefficients in addition to the
mutual series impedances.

7. STRIP TRANSMISSION LINE WITH VARIABLE CROSS-SECTION — HIGHER
ORDER MODES

The telegraphist’s equations for higher order modes are obtained in
much the same way as in Section 5. We must only remember that a is
a function of z. The variation of @ with z will introduce extra terms in our
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final equations. Thus if we multiply the first equation of the set (12) by

N.™' cos nwx/a and integrate over the cross-section of the line, we
find first

“rPAE, . mwx
‘/; " dz N cosdedy
2 (35)
m _\mar -1
m] Im(z) + b( )N o E.(a, z)

Differentiating the series for F, as given by (15), we obtain
0B, _1dVyz) d'(2)

= = l:jw.u +

e a a ®
dVa . o nrx N (2) nre
+ 2 [ 25 Nn cos —= N Va cos — (36)
nrzxa (z) nwre
-+ N.a Vasin T:’
Substituting from (36) in (35) and using (33), we have
%‘ = _meIu e E,ZmnIn - Z VTmnVn (37) -
where the prime denotes that the summation is extended over the se-
quence n = 1,2,3, --- except n = m, and
2 2
. mm -2
Lpn = —  — + bN, Zsecd
ot g ¥ jega T -

Zwn = (=)"""N N, '0Z sec ¢ if m = n,m #=0,n # 0
Pow = (=)" "N "N, 'b tan ¢

— _mra'(z) fufb 2 cog TF win nwr dx di
NnN,a? Jo Jo a a y (38)

m#=n m#*=0, n#0,

mma' (2)b [° 2 sin 2mwx
2N.2a® Jo

YTrim = N btan & + N N+ — dz

Zowo = (—)"ZN, " secd, m =0

v (=)"b tan ¢
m= Nna
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Similarly we find

dl .,
'd_z— = ‘—(Q' +JW€)V Z lenIn
where
p _ _ nma '(2) ff . nwx ‘
Tmu H,2Nm OS _— S *‘a— dz dy,
m#=n m#=0 n0
’
’Tmm = Nm’NmHl - ?;;’r:;‘\r(zz) f ‘[ x SII dde
! m0 = 0

8. BENT STRIP TRANSMISSION LINES — THE PRINCIPAL MODE

(39)

(40)

Let us now suppose that the strip transmission line (with the guard
strips) shown in Fig. 3 is bent uniformly in the xz plane. After bending,
the z lines will be radii emerging from the axis of bending, the y lines
will be straight and parallel to the axis, and the z lines will be circular
arcs coaxial with the axis. The section of this structure by the plane
y = 01is shown in Fig. 5. The curved z axis of the bent coordinate system

Fig. 5 — Uniformly bent strip transmission line.
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will be chosen half way between the strips. The “distance’ z between the
radial z planes will be measured along this curved z axis. The coordinate
x is the shortest distance between the given point and the 30z coordinate
surface. The differential distance between two points will then be

2
ds* = di* + dyf + (1 + %) dzt (41)

where R is the radius of curvature of the z axis and is, in general, a func-
tion of z. The last term is obtained from the fact that the distances along
the z lines between radial planes are proportional to the radii of curva-
ture. Hence, if ds; is the differential distance along a typical z line, the
ratio ds./dz should equal the ratio (R + z)/R, or ds. = (R + z) dz/R.

In this bent cartesian coordinate system Maxwell’s equations take the
following form

oF, . x i) x
52 = e (1 + E) B+ [(1 + ‘R‘) E]

Il

2 s g [13)0]
SO
a;i, =jwe(1 +%) E, +%|:(1 +%)H.]

There is no loss of generality in the apparent assumption that g = 0
since the general results may be obtained if we replace e by € + (g/jw).
When the field is independent of the y coordinate, the equations become

ok, . T ] Ay
9z —Jwu (] +R) H, +£|:(1 +E) E;]

oH, . x _ 1 éH,
Y Jwe(1+R>E=, E'_j'_we Py

(43)

Il

We shall now express the field in terms of modes appropriate to per-
fectly conducting plane strips. To do this we can use (15) provided we
replace z by » 4+ (a/2), the transformation being needed because x is
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now measured from a different reference surface. Thus we obtain

E:_-= Vﬂ(Z)—i_ENn—an(Z) COSTE($+E)1 n = 112:3: g
a a 2
(44)
H, = I"bﬁ + > N.'IL(2) cos %r (:r + g)

where the normalization factors are still given by (16). The boundary
conditions are

5(=22) = 200 + £ 28710
(45)
a Z2 n -1
E, Q’Z = —3 In(z) - Zzz(_) N. I'n(z)

Telegraphist’s equations for the principal mode are obtained once
more merely by integrating the first two equations of the set (43) with
respect to x and using (44) and the boundary conditions (45). Thus we
find :

dVo(z) _  |jwwa | Zy + Z» (Z, — Zl)ﬂ] _
- l: ; + ; + SEb Io(2) — 2 Zoula(2)

. (46)
dlo(2) — _-Z‘ﬂ) Vo(z) — Z Yo Val(2)

dz a

where

Zop = (=)"Z, + Z, + [(=)"Z: — Z\]a

N. 2RN,
. af2
Jop nr a
— —]d
+ RN _alzxcos . (x +2) x  (47)
_ dwd [T e E)
Yo = RaN. _m:ccos a (1:—!-2 dx

These equations are valid even if the strips are bent non-uniformly so
that R is a function of 2.
9. BENT STRIP TRANSMISSION LINES — HIGHER ORDER MODES

To obtain telegraphist’s equations for the higher order modes we mul-
tiply the first two equations of the set (43) by

N, cos (a: + g)

a
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and integrate over the cross-section of the strip line. As in previous
examples the last term in the first equation should be integrated by parts.
Then we should substitute for £, under the integral sign the third equa-
tion of the set (43) and once more integrate by parts. Finally, we should
substitute for H, its series representation. Thus we shall find

dVa _ [ 22+ 2y —zl:| R

(48)

dl, '
d_z— _JNEV Z YmnVn

where the summations are extended over the sequence n = 0,1,2,
excepting n = m and

7 2[Zl+( "2 (= )'"*"zz ~ Z

)
)

DO —

1 :
+ %4 (J wp +3wea2) T cos [(m — n)w (g +
- (dom — ) xcos[(m+ ) (i"+
+ Jwu mez Lore n)mw a

. al2
Ymn=2i“ff wcos?ﬂ—(x—l— )cos ( + )
Ra J—ap a

for n # 0, m. For n = 0 the mutual parameters are given by (47).

In the open interval —a/2 < z < a/2 the series for H, may be dif-
ferentiated term by term. Hence, the longitudinal electric intensity may
be obtained from the last equation of the set (43). Thus, between the
boundaries we have

E.(x,2) = —2, (nr/a)N, 'I,(z) sin 1% (x + %) ,

(49)

b =

(50)
—a/2 <z < a/2
On the boundaries we have (45).
The above equations are still valid when R is a function of z; but a and
b must be constants.

10. EXPANDING STRIP TRANSMISSION LINES IN CURVILINEAR COORDI-
NATES — A CASE IN WHICH MAXWELL’S EQUATIONS ARE NOT SEPA-
RABLE

The separate sets of terms in the series representing various field
components in all preceding problems satisfied Maxwell’s equations. The
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entire series were required to satisfy the boundary conditions. In the
present section we shall express the field in terms of sets of functions
which individually do not satisfy Maxwell’s equations and which may
or may not satisfy the boundary conditions. The example we are about
to consider will illustrate a method for solving Maxwell’s equations,
when the variables are not separable, by reducing them to generalized
telegraphist’s equations.

Let us assume that the boundaries of the expanding portion of the
strip transmission line in Fig. 4 are circular cylinders tangential to the
plane boundaries to the left of the 20y plane. This is, of course, a special
case of the problem treated in Sections 6 and 7. In the present section,
however, we shall use curvilinear coordinates. In such coordinates Max-
well’s equations are

a(?ﬁu) — _jw#(gsel/ez)(ezHu) + a(‘j;fw)
a(?—H‘J) = —jwe(ees/er)(erBy) + o (esHo) -
w av

a(e5,) — jwp(t?g%/el)(elHu) + ;3% (esEw)

ow
i) 5 (51)
W) _ juc(ese/e) (el + o (i)
1 [a(egHﬂ) a(elHu)]
Ew = = -
Jweees ou av
7o ] [a(elEu) _ a(eaE,,)]
Y jepees | 0w u

These equations have been arranged in a form convenient for problems
in which wave propagation takes place along the w lines. In some cases
it is convenient to treat the products e,E, , e:E, , e1H. , e2H, rather than
the field components themselves as dependent variables and the paren-
theses around these products in the preceding equations are intended to
call attention to this fact.

The choice of a particular coordinate system for solving a physical
problem depends on various factors. The cartesian system chosen in
Sections 6 and 7 is good for several reasons: Maxwell’s equations have a
particularly simple form, boundary conditions are easy to express for
almost arbitrary boundaries, the basic transverse field patterns con-
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Fig. 6 — Biaxial coordinates.

form to those in waveguides of uniform cross-section. For this last
reason, the cartesian system is particularly convenient for the analysis of
junction sections between two waveguides of rectangular cross-section.
Biaxial coordinates'™ are more convenient in some respects for the
analysis of junctions between two-dimensional waveguides and two-
dimensional horns, Fig. 6, although we are not prepared to say that they
are more convenient than cartesian coordinates when all factors are
taken into consideration. Here we shall use biaxial coordinates solely to
illustrate the conversion of Maxwell’s equations in curvilinear coordi-
nates into generalized telegraphist’s equations.

Biaxial coordinate system consists of two orthogonal systems of
circular eylinders perpendicular to a system of parallel planes. A section
by one of these planes is shown in Fig. 6. Circles of one system are non-
intersecting and their centers lie on the horizontal axis. Circles of the
other system intersect at the foci F, and F,; their centers lie on the
vertical axis. The non-intersecting circles will be called the w-lines (lines
of constant u and varying w), and the intersecting circles the u-lines. The
coordinate u is the shortest distance between the w-circle and the vertical
axis; w is the intercept of the w-circular arc on the vertical axis (each



1020 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1955

u-cirele will be split for our purposes into two arcs, one above and the
other below the focal line F1F).
The radius of a typical w-circle is

1 ' u
éf(a‘z)

and the distance between the center and the vertical axis

1,(¢ u
5‘(a+z)

1, {w B £
éf(ﬂa)

and the distance of its center from the horizontal axis

e
2\{ w

Depending on whether this distance is positive or negative, the center
is above or below the horizontal axis. In this coordinate system

o = Lt @/ _ 1= (e’
VU1 F (uw/ )2 1+ (uw/£2)

A section of a waveguide to horn junction is characterized by the
following parameters: the length h, the width of the narrow aperture
2a, the width of the wide aperture 2¢, and the horn angle 2¢ at the wide
aperture. If h/a and ¢ are given, then

¢/a = 1+ (h/a) tan 2gp,  {/a = [L + (2h/asin )] (53)

From the last equation we determine the semi-focal distance ¢ for the
coordinate system. The coordinate wy of the ‘“‘wave-front” at the wide
aperture may be obtained from

awo/L* = tan 15y (54)

The radius of a wu-circle is

(52)

€y = 1, €3

As in Sections 6 and 7 we shall consider those modes for which the
field is independent of » and for which (51) becomes

a(elEu) —

ow

—joperest, + a%, (esw)
(55)

o 1 @H,
= Jwe(es/el)(elEu)’ B = Jwee, u
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We have already examined several cases with imperfectly conducting
houndaries and in the present example we shall assume that the bound-
aries are perfectly conducting. We shall confine ourselves to symmetric
modes for which K, is perpendicular to the »w plane. We shall express
our field in the form analogous to (15); thus

Vo(w)

el, = 4+ > N.7'V.(w) cos Tz“

I, (‘w) (56)

H, = + 2 N Iw)c(JS—

Nn2i!= a‘b/Q, n=1,2,3,"-
where b is the width of the strips. Substituting in the last equation of
the set (55) we find

waE']Ew = -—Z a’,’;;:

U

(57)

The boundary conditions are thus satisfied automatically. If we integrate
the first series in the set (56) along a typical u-line, we obtain

j (*1]57,‘ du = f Eu dsu = Vﬂ(w) (58)
0 0

Hence, Vy(w) is the transverse voltage from the middle plane of the
strip line to the upper strip, measured along a w-line. It should be noted
that in the narrow aperture w = 0, u = x, ¢; = 1 and series (56) are
identical with (15).

To obtain telegraphist’s equations for the principal mode we integrate
the first two equations of the set (55) along a w-line and substitute from
(56); thus we have

WO = Ty = Zuls = Zuls — -+
i (59)
f&an = —YuVo— YuVi — YV — .-
where
Zoo = Jidbﬁf erey du, Yoo JwEbf = du
0
Z[ln — Jw“f €103 COST‘Lﬂdu! JwEbf COS— du (60)
N,. 0 [

n>0
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The integrals for Zo, Y, and Yo, may be expressed in terms of ele-
mentary functions, and the integrals for Zo, by power series since

ees = [1 + (w/0°)[1 — (w/€¢))[1 + (ww/ € (61)
1+ /00 — @/0M1 — 2w/ + 3uw/€)" — -]

In practical cases u/€ and uw/¢* are relatively small and a few terms of
the series will suffice.

To obtain the corresponding equations for the higher order modes
we should multiply the first two equations of the set (55) by Nm
(mru/a) and integrate over the cross-section of the strip line by the uy
surface. Thus, we find

. a
Jwub mmu nwru
Dn = ~—r €163 c08 — €0S — du
™ NuN. Jo a a
mnwb “e mmri
B sm MU in "™ du (62)
Jjwea? NuNy Jo a a
jweb e mm nru
Ymn = J f 2 cos —— cos — du
NuN. Jo el a a

for all m, n not equal to zero.

11. TRANSVERSE ELECTRIC WAVES BETWEEN PARALLEL PLANES

Let us now see what happens in the case of TE modes. Again we shall
consider the simplest case, the case of parallel planes, Fig. 3, and assume
that the field is independent of the y coordinates. The only non-vanishing
field components are E, , H, and H, , and Maxwell’s equations become

OE, o, _ . dH.,
0z = JjouH:, 0z T oz
(63)
_ 1 9K,
* T T jep 0z

For perfectly conducting planes the general solution is of the following
form

E, = SN, 'W.(2)sin(nwx/a), H.= —2 N T.(2)sin(nrz/a) (64)

where the normalizing factors are given by (16). We now assume that
between (0 < x < a), the imperfectly conducting planes the general solu-
tion has still the same form. Putting it differently we expand the new
solution in a sine series. Since the sine terms vanish on the boundaries,
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the series will represent the new solution only between the boundaries.
Since these series represent discontinuous functions, their coefficients
will ultimately vary as 1/n; therefore the derivative series will diverge.
Hence, we cannot obtain H. by substituting from (64) into the third
equation of the set (63). For this reason, we assume an independent series
for H.,

H. = Y N. '.(2) cos (nwx/a) (65)

On the boundaries the ratios of the tangential electric and magnetic
intensities equal surface impedances of the boundaries, with appropriate
signs,

E,0,2) = —ZH.(0,2) = —2 ZiN ".(2)
E!r(aJ Z) = ZQH:(as' z) = Z (_)nZ‘an_l?:n(z)

The cosine series (65) represents a continuous function and its coeffi-
cients will decrease fast enough to make the derivative series conver-
gent. So we substitute from (64) and (65) in (63), combine the terms
containing similar sine terms, and equate the coefficients of the resulting
sine series to zero, Thus we obtain

dV.(2) dl,.(2)
dz dz

We now multiply the third equation in the set (63) by N, " cos
(mmz/a) and integrate,

(66)

_.7 I ( ) _(g + JmE)Vﬂ(z) + - zn(z) (67)

b aa
f f H.N,™ cos ™™ qe dy
0 Jo a
dF (68)
0Ly -1 mmx
Jw,u f f N.. cos o dx dy

On the left we substitute from (65), and on the right we integrate by
parts,

a
mr

m
cos —= Wz, 2) )

quff E,, mr sin—drd

In the first term on the right we substitute from (66). In the second term
we substitute the series for £, . Since this series is not uniformly conver-
gent in the closed interval 0 £ @ = a, we cannot be sure that we shall

(69)
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get the right answer by integrating the series term by term. What we can
do is to integrate in a slightly smaller interval in which the series con-
verges uniformly, and then pass to the limit. In the present case the
answer turns out to be the same as that obtained when we integrate
term by term in the closed interval. Thus we find

. _ Z1 + (—)m+"Z2 . _ mm
i) = —b Lo (@) — L Va@ (10)

If we solve this set of equations for 7,(z) and substitute in (67), we shall
obtain telegraphist’s equations.
Rearranging the terms in (70}, we have

[1 + Z(Z% + ZE)] in(2) + 3 22, + (—)"""Z in(2)

wua jwoua
J Jup (71)
= '—.Tn_’r Vm(z)
Jwpa
Neglecting the summation, we obtain an approximate solution
7 —1
in(2) = — ot [1 Ml 42)] V() (72)
Jupa Jwpa
and approximate telegraphist’s equations,
d;:n = —jopln,
dl nr =
i . ™
U= o tise+ i 7i)

Instead of solving (70) for i,(z) we can obtain V,(z) from (70) and
substitute it in (67), after replacing n in (73) by m.

12. WAVES ON INFINITE CONDUCTORS

In this section we shall consider waves on two semi-infinite conductors
tapering to a point, Fig. 7(a), and waves outside a certain sphere (8),
Fig. 7(b), which encloses the terminals of conductors which are not
tapered to a point. In the latter case the sphere (S) will enclose a source
of power; in the former case we assume an idealized point source of
power at the origin O. For simplicity we shall assume that the structure
possesses circular symmetry about OA and plane symmetry about the
plane perpendicular to OA at O. In this case there will be waves in which
the magnetic lines are circles coaxial with the axis of the structure. In
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Fig. 7 — Infinite conductors excited by a point source (a) and by a source of
finite size (b).

spherical coordinates the appropriate field equations are

a . oK, d .
ar (rEy) = —jwn(rH,) + %6 o (rH,) = —(g 4 jwe)(rEy)

, 1 1 74

d , .
" m 550 (sin 0 rH,)

Let P be a typical point on the upper half of the structure and ¢ be
the angle between the radius 0P and the axis 0A. Let ¢ be the angle from

the radius to the tangent plane PQ. Then the boundary conditions are
E.(r,¢) cosd — Eg(r,¢) sind = ZH,(r,¢) 75)
5
B (r,m —¢)cosd + Eo(r,m — ) sind = —ZH, (r, 7 — )

where Z is the surface impedance. Thus, at the surface of each conductor
the radial electric intensity may be expressed in terms of the meridian
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electric intensity and the magnetic intensity
E(r,¢) = Eel(r, ¢) tan & + Z sec 9H(r, §)
Er(r1 ™ — \b) = _Er(ra “’)

Let us further confine ourselves to the symmetric modes in which the
currents passing through the cross-sections of the upper and the lower
conductors equidistant from 0 are equal and similarly directed. Then we
shall represent the field by the following series

oM ,.(cos 6)

a7 Vi(r) -1
'TEB—W+ZV()N ()———':

(76)

iy = 105 N, st (77)

2 sin 0 3

<
IIA
£
IIA
3
|
<=

7o nin + 1) 3
B, = -2 @ T 70 Nu(r) L.(r)M ,(cos 6), y<i<m—19

where
M., (cos 8) = 14[P, (cos 8) — P, (—cos 0)] (78)

and the P-functions are Legendre functions. The summations are ex-
tended over the roots n of the following equation:

M, (cosy) =0 (79)

The normalizing factors are

—y
_ dide ¥
No-—j; Sma—Qlogcot—z-

N2

T—y F:) 2
27 f [— M ,(cos 8)] sin 6 df (80)
v a0

T—y
= 2rn(n + 1) f M .(cos 6)]* sin 0 d6
v

Each individual term in (77) will satisfy Maxwell’s equations and the
boundary conditions if the conductors happen to be perfectly conducting
cones. Otherwise we need the entire series. The function V(r) is the trans-
verse voltage between the conductors along a typical meridian; o(r)
is the current in the upper conductor associated with the principal
wave. The remaining functions, V,(r) and I,,(r), are proportional to the
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electric and magnetic intensities of various modes. In view of (77) the
boundary conditions become

Br¥) = ot Vi) + 2 5

tan & oM ,(cos ¥)
ay
Z sec ¢ Z sec & oM, (cos ¥)
+ 22t 1 + 3 L0 Al V)

Equations for the principal mode are obtained as in previous examples
by integrating the first two field equations (74). Thus, we find

Valr)

(81)

dI;“(T) — log cot v Io(r) + E(r, 7 — ¢) — E/(r,¥)
r vr 2
_ (82)
() _ _ (g +jee 0
dr log cot (¢/2) °

Substituting from (81), we obtain the final result.

To obtain the equations for the higher mode we shall multiply the
field equations by the normalized characteristic functions and integrate.
It is important to remember that ¢, ¢ and therefore » and N, are fune-
tions of r. On one occasion we shall have to integrate by parts as follows

- OM m(cos 6) 6‘L’,
f f Nu sin db de

aMm(cos 6)
T

4 [[ N7, )m

(m 4+ 1)M.(cos 6) sin 8 d de
m(m + 1) - M (cos ) . |7
I e m m T G =  as
(0 F Jaor I.(r) + 2«N,, E.(r, 6) ) sin 6 .
On another occasion we have to take into consideration the above-
mentioned dependence of n and N, on r,

ffN—laM,,.(cosﬂ) 9_|:V()N_1()M]ded¢

= 2N, 'E,(r, ) né
"

(83)

a0
e f [ N aMm(cos 0) ;T [Nﬂ“ " aM,.gc;os a)]

. . (84)
sin 6 df de, if n % m,

AV n(r) —1 OM ,(cos 6) a9 1,y OM (cos 6)
= Tar +V"‘(r)ffN"‘! a8 E-[N’" ") —%5 ]

sin 6 df dyp

ifn = m.
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In the end we shall obtain (11) with the following values of the trans-
mission line parameters,

_ _1_% Z sec ¢
Zyp = - log cot (¥/2) + ~2/sn Y
_ wlg + jw) _
Yoo = log cot (¥/2)’ Iy = 0
vip tan &

© = I sin ¢ log cot (¥/2)
2 tan ¢ oM. (cos ¢)

Yy _

To = 5N, sy 0 70
7 27 sec ¢ oM ,(cos ¢)

_"“ rNa Y

Y0n=ITm=0, n #0
2
m(m + 1) 477 sec ¢ [aM,,(cos k\'f)] sin ¢,

Zom = Jo F (3 jage T TN W
m # 0
_ 4nZ sec 9 M (cos ¢) dM ,(cos ¢) .
Zmn = TN,”N“ oy 81[; s \L, n #= m,
m#0 (85)
v _ 4m tan & M (cos V) aM (cosy) .
Tmn - TN N a‘P Byb Sin w
1 OM (cos g) a I: 1, M (cos ) | .
+ ij o N, (r) —r sin 6 df de

m#0, n*0;

Zm(] = Zﬂm: ann = me
27 tan ¢ AM ,(cos )
N log cot (¢/2) ay ’ m 7 0

Ymm=9'+jw5, Ymn':Ymn.‘_—-Og n #m
o ff N, aM,,,(cos 6) 9 [ N aM, (cros ¢):| sin 6 db de.

m ar

VTmn =

m # 0, n#0
r =10

m0



GENERALIZED TELEGRAPHIST'S EQUATIONS 1029

13. WAVES ON SEMI-INFINITE CONDUCTORS

The telegraphist’s equations for a single conductor, the upper con-
duetor let us say, may be obtained by a few modifications of the equa-
tions in the preceding section. There will be no terms outside the sum-
mation signs in (77). The function M, (cos 6) should be replaced by
P, (—cos 0). The integrals with respect to @ should be evaluated from
§ = ¢ to § = = rather than from 6 = ¢ tor — ¢.

14. WAVES OVER A PLANE IMPEDANCE SHEET

Under some conditions a plane earth may be approximated by an im-
pedance sheet. Such a sheet is a cone of angle ¢ = 7/2 and the teleg-
raphist’s equations for it will be obtained if we replace M, (cos 8) by
Pani1 (cos 6) where n = 0,1,2, --- . The integrals should be caleulated
over the upper hemisphere. Of course, # = 0, and hence all the voltage
and current transfer coefficients vanish.

The normalization factor becomes

N — V2r AVl + 1)

N, 86
Van + 1 (86)

If the distributed self-impedance of a typical mode is expressed as
me = meo + me’ (87)

where Z,,,. is the distributed self-impedance for a perfectly conducting
sheet and Z,,,. is due to the finite surface impedance, then

Zo? = jou + MM+ 1)
" ' (g + jwe)r? -
Z. = (_)m+1 2m 4+ 1)(1.3.5-- -m)QZ

m(m 4 1)[2.4.6---(m — 1)
The distributed mutual impedances are given by
Zimn = N Z' Lo’ (89)

The distributed admittances are independent of the surface impedance
of the sheet; hence

Ymm =4q -]—jwe, Ymn =0 if m#Zn (90)

In all these equations m and » are odd integers.
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15. DERIVATION OF APPROXIMATE TELEGRAPHIST'S EQUATIONS FOR THE
TE;; MODE IN A CIRCULAR WAVEGUIDE-TO-HORN JUNCTION

It is probably safer not to make approximations sooner than abso-
lutely necessary provided we are willing to tolerate a mass of detail which
later turns out to be unnecessary. Still, if the technique of conversion of
Maxwell’s equations into telegraphist’s equations is thoroughly under-
stood, it may be possible to make ab initio approximations without undue
risk of omitting something more important than we are willing to neglect.
To illustrate such ab initio approximations we shall obtain telegraphist’s
equations for the dominant mode in a gentle waveguide-to-horn circular
junction. At the start we shall neglect all the coupling coefficients except
those between TEy; and TMy modes. Even these will be retained only
part of the way in order to explain what we should do if we neglect them
from the beginning. In the next section we shall discuss cases in which
we should not neglect all the coupling coefficients.

First of all we shall exhibit azymuthal variation of the field.

E, = = B sin ¢

—1/2

H, = #*H, sin ¢
K, = w'ln.ﬁ"p cos ¢
—1/2 7y (91)
H,=a "H,cos¢
E. = [, sin @

H, = 7 "*H, cos ¢

The factor = has been introduced to normalize the sine and cosine.
If we retain only the first radial TE and TM modes, we have

B, = NV (xp) Wilxe) + NV ()i (xp)

H, = N 1) (xp) " ilxe) + N71(2)J1 (xe) ©92)
B, = NV(2)J/ (xp) + NV (2)(xp) J1(xp) '
H, = N71()Jy (xp) — N 'I(2)(zp) " J1(%p)

where

xa = 1.841--- xa = 3.83--- (93)
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and

- [ WG + ()W) do

= fo ’ [J1(xp)I*p dp = % a* [1 - ] [7:(1.84)]=(0.345a)*

1
(1.84) o0

F= [ WGP + G oo do

= fo ' [J1(ze)’p dp = Y4a’[J0(3.83)]* = (0.285a)".

Maxwell’s transmission equations for transverse field components in
cylindrical coordinates are

oK,

dz

He _ _ o, 4 O

daz pde

oF, oF, (95)
—2 = 7 —

9z JopH, + O

0H, _ . 0H,

9z e

In addition we have the following equations for the longitudinal field
components

O oy — e _ 3 oy — e _
% (pE,) e JwppH, , 9% (pH,) o = JwepE,  (96)
In view of (91), (95) becomes
aE E
% = _jWEEn - P_IHz
ok o7)
v _ —1
E - Jw“ﬁﬁ + P Ez
o, aH,
i)

0
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while from (92) and (96) we obtain
H. = V(2)(juuN)"xJ1(xp)
E. = —I(2)(joeN)"%J1(%0)

The expression for ., even when completed by inclusion of the higher
order radial modes, is valid only in the interior (p < a) of the junction.
On the boundary we have

E.a, 2) = —E,(a,z) tan 9(z) (99)

To obtain the telegraphist’s equations we multiply the first column of
(97) by

(98)

N (xp) " J1(xp)p dp
and
N7'Ja(xp)p dp

respectively, add and integrate from p = 0 to p = a. The second column
is similarly treated. The following are auxiliary calculations. In view of
(92)

j; [E N (xp) Ti(xp) + H.NJ (xp)lodp = —I(z)  (100)
The terms involving I(z) have disappeared after integration. To obtain

j‘“ %% N (xp) " Jil(xp)p dp + fﬂ E.NT'TY (xp) dp (101)
0 P 0

we integrate the first term by parts

BN a(xp) - [ " BN (xp) dp (102)

The last term of this expression cancels the last term in (101); thus the
total is

Ea(a ;Z)XMLN—IJl(xﬂ) - Ep(a,z) tan 0(z)x—1N‘1J1(xa)
(xN) *a [ J1(xa))* tan 9V (2)

— (xNN)'Ji(xa)J ' (3a) tan 8V(z) (103)

I

At this point let us note that if we had decided to neglect the TMy
mode at the beginning, we would have set E. = 0in equations (98). But
in obtaining the telegraphist’s equations from (97) it would still have
been necessary to retain &, until after the integration has been per-
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formed and the boundary condition utilized. To obtain

j; ’ [—Pulﬂzf\'ﬂ(xp)_lJ 1(xp) — o8, N7 1'(xp):| pdp  (104)

dp

we also integrate by parts. This time expression (104) is found to equal

a 2
—-f H.N'xpJs(xp) dp = — X V(2) (105)
0 Jwp
In the calculation of
‘TR _ aE
[ 122 56 a0) + 22 N [ oo 100

and a similar integral involving A, and A, we must remember that
a, x, and N are functions of z. Thus, this integral will be equal to

% + V() foa ((pr)_lJn(xp) aﬂz [(GNo) " Tr(xp)]

N e) 2 N o)
a 3 (107)
+ V(2) fu ((pr)_lJ 1(xe) 7 [N” U1 (xp)]

+ N ) & [GNiGio)]) o dp

At this point we should point out another reason why we temporarily
retained V(z). Each equation in a complete set of telegraphist’s equations
contains only one derivative of either a voltage function or a current
function. To derive such a set of equations we must perform a weighted
integration of Maxwell’s equations with appropriate weighting factors
as in (106). When V(2) is retained and wrong weighting factors are used,
the derivative of V(z) with respect to z will not be eliminated and, hence,
we shall be warned of our error. But when we neglect V(z) ab initio, we
lose this self-checking feature. However, after we acquire some experi-
ence with this technique, we should not need the self-checking inherent
in the retention of other modes.

The final equations for the dominant mode in a wave-guide-to-horn
junction are
dl

A L=y =1
7 ZI TV, FR Y7 TI (108)
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where
. . (1.841)*
Z=do X =t GG
Im _ Vo _ [J1(xa)]’ tan #(2) (109)
T=T, T=T+ 2N

T + 0.837a~" tan ¢(2),
with 7' given by the integral assoicated with V(z) in (107).

16. EFFECT OF COUPLING ON DEGENERATE OR NEARLY DEGENERATE
MODES

Degenerate modes are the modes which have the same velocity of
propagation when the coupling is absent. With such modes the coupling
may be very important even when its magnitude is small. The reason is:
the transfer of wave motion from one such mode to the other will be
cumulative in the direction of propagation. This effect is illustrated by
directional couplers or by beats in two coupled pendulums having the
same resonant frequencies. In such cases the resistance of the waveguide
wall should not be neglected for it may have an important effect aside
from introducing attenuation. Thus, no matter how small is the coupling,
the degenerate modes should be considered as a group even though their
coupling to other modes may be neglected.

The same is true of nearly degenerate modes as in the case of waves
over a plane impedance sheet at large distances from the source, such as
the current element in Fig. 8.

17. COAXIAL CONDUCTORS-CIRCULARLY SYMMETRIC MODES

Heretofore, we have considered waves in waveguides completely
shielded from the external space. A complete shielding implies a coating
of that surface of a waveguide which is exposed to the external space
with a substance which is either a perfect electric conductor or a perfect
magnetic conductor. In practice such a perfect shielding is impossible.
The foregoing equations are thus approximate, even through the effect
of approximations on waves in the guide may be negligible for all prac-
tical purposes. On the other hand, the effect of imperfect shielding on
the “cross-talk” or interference between two waveguides may be im-

[I

T 7500, 70,

Tig. 8 — A vertical current element above an impedance sheet.
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portant, especially at relatively low frequencies, even though the mag-
nitude of cross-talk is small. The most practical way to calculate this
cross-talk between two parallel waveguides, let us say, is to solve the
above approximate telegraphist’s equations for one waveguide. Then, we
can obtain the tangential electric intensity on the outer surface of this
waveguide from that on the inner surface. This electric intensity will be
impressed on the ‘“two-wire line” formed by the two waveguides. Re-
sulting currents can be calculated, and from them one can obtain the
tangential electric intensity on the inner surface of the second wave-
guide. Finally, we can obtain the waves in the second waveguide which
are stirred up by the tangential electric intensity. This method is illus-
trated elsewhere.'*

The same method can be used for a single waveguide in empty space —
an impractical situation — if we wish to calculate the first approxima-
tion to the feeble external field. The rest of this section is of theoretical
interest only. Our object is to show that it is possible to obtain a set of
telegraphist’s equations for a waveguide whlch includes external waves
as well as internal.

As a concrete example we shall take a pair of coaxial cylinders and
consider circularly symmetric modes. First, we shall derive the equations
for the internal waves only — as we did in the preceding sections — and
then point out the modifications which must be introduced in order to
include the external waves. As usual we start with Maxwell’s equations

aE, oH,

E = —jupH, + —5; = —(g + jwe)E,

1 a(PH w)
(9 + jwe)p  dp

(110)

E, =

and the boundary conditions
E.a,2) = Z:H(a,2),  Ei(b,2) = —ZaH (b, 2) (111)

It is the boundary conditions that we shall have to modify when we wish
to include the external modes. The rest of the derivation follows along
the lines already discussed. We have the expansions for the transverse
field components in terms of modes appropriate to perfectly conducting
coaxial eylinders
E, = Vo(2)
p log (b/a)

H, = I"(Z) + Y N @R )

+ 2 N 'Val(2)R,' (p)
(112)
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The radial functions are defined by

2
p Ll g W o =0, Rula) = Rulh) =0 (113)
p* dp

Hence,
Ru(p) = Jolxmp)No(xmb) — No(xmp)Jo(xnb) (114)

where x., is a root of
Jo(xma)No(xnb) — No(xma)Jo(xnb) = 0 (115)

The normalizing factors are obtained from
b b
N, = 21rf (R, (0)]’p dp = 27erEf [Ru(@)pdp  (116)

The longitudinal electric intensity may be obtained (in the present in-
stance) from the third equation of the set (110) and from (112),
2

_ Xm
Ez - Z(g "*’J.C'-"E)Nm IWI(Z)Rm(p)s 0 = P <a (117)

However, we should remind the reader that the telegraphist’s equations
may be obtained without this equation since we can eliminate £, from
(110) before embarking on their derivation.

Multiplying the first equation of the set (110) by N, 'R, (p)p dp de
and integrating, we find

= bBE, i ! 1 ! ’
fo j 5 N 'Ry (o do do = 22E.(p, N, Ry (o)o

2r Wb d
- f f Np_'Eaa,— [pR, (p)] dp de
0 a P
= ZWEz(b;z)N:p_lep'(b) - 2WEZ(G,Z)NPFIGRP’(G) . (118)

271 b
+ xp Ny fo f E.R,(p)p dp de

2

— 22 E.(b,2)N,'0R, (b) — 2 E.(a,2)N, "aR, (@) — —2—— I,(2)
q -I- Juwe

Using the boundary conditions (111) and treating the second equation
of the set (110) in the already familiar manner we obtain the distributed
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parameters for the internal modes

2

Zyp = jou + - jf" + 22N, (ZalR, (a)* + Z:b(R,' (D)), p =0

Jwe

Zy = Ny 7R, (2) + Z:R,' ()], ~ p # 0

Zy v - 2m(g + jue)
2rb’ 7 Tlog (b/a)

(119)

_ Jou Zy
Zn =5 - log (b/a) + 5ra T

Yom = ¢ + jwe

To include the external modes we shall pick a center for their origin.
For a semi-infinite coaxial pair this center may be chosen on the axis
near the end of the pair. For coaxial cylinders extending to infinity in
both directions the center may be chosen arbitrarily on the axis but
preferably near the source of internal waves. The external modes are
then defined as in Sections 12 and 13 and the coupling between the ex-
ternal and internal modes is given by

E. = —(q, coth e.h)H," + (9 esch o.h)H,"
E. = — (. csch O'L-h)H,',i ~+ (7. coth a.h)H,"

(120)

where E," and H,' are taken at the inner surface of the outer cylinder
and E.° and H," at the outer surface. In these equations », and o, are
respectively the intrinsic impedance and propagation constant of the
substance from which the outer cylinder is made. The thickness h of
this outer eylinder is assumed to be small compared with its radius.
Otherwise, the self and mutual impedances in (120) should be expressed
in terms of the modified Bessel functions. Another assumption is that
o, is very large compared with the propagation constants of various
modes under consideration. For metal walls this assumption is highly
satisfactory for all modes except those of exceedingly high order. In
(118) we must substitute E.' for E,(b,z). In a corresponding equation
for external mode we should use E.° as given by (120).

18. VANE ATTENUATORS

Our last example will be the “vane attenuator’” in a rectangular wave-
guide, Fig. 9. The dotted line passing through AB represents a thin
resistive sheet, so thin that the vertical current under the influence of a
vertical field is distributed uniformly through the thickness of the sheet.
Hence, the vertical electric intensity is continuous across the sheet. It is
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Fig. 9 — A rectangular waveguide with a thin resistive sheet.

not difficult to solve an appropriate boundary value problem. If we
assume for simplicity that the guide walls are perfectly conducting and
confine our attention to waves whose intensities are independent of the
y-coordinate, Maxwell’s equations separate in two sets, one involving
E,, H.,and H. and the other H,, E., and E.. We shall consider the
first set [see (63)]. The resistive sheet implies a discontinuity in H. ,

H.(d —0,z) — H.(d + 0,2) = YE,(d, 2) (121)

where Y is the admittance of a unit area of the sheet. This will include
not only the conductance of a thin metallic film but also the capacitance
of a thin plastic film on which the metal may be deposited. The usual
solution of the boundary problem will be obtained by assuming two
separate fields, one for the region to the left of the sheet and one for the
region to the right of it. Taking into consideration the continuity of E,
and the discontinuity in H, , we shall find a transcendental equation for
the propagation constants of the various modes appropriate to the wave-
guide with a thin resistive sheet.

Here, however, we shall express the field in the waveguide with the
sheet in terms of modes appropriate to the same waveguide without the
sheet. Thus we assume expansions (64) for E, and H, and (65) for H, .
Since E, and H, are continuous functions, their sine series are uniformly
convergent as well as differentiable. On the other hand, H. is discontinu-
ous and neither differentiable nor uniformly convergent. This non-
differentiability affects the calculation of the following integral

Yre9|, . . mwx
P, = j;fo P N.. sdexdy (122)

needed in the conversion of Maxwell’s equations into telegraphist’s
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equations, First we have to split it into two integrals

- [+ [ L (129

Then we have to integra.te it by parts,

P, = bH.N, " sin mag | + bH,N, " sin 2L
a o a |d+o
(124)
- f — H cos 2 gz dy Y

And finally we have to substitute H. from the third equation of the set
(63) into the integrand of (124) and integrate by parts once more before
substituting the series for £, from (64). In this way we find

P, = bN, '[H.(d — 0,2) —

Valz) (125)

The bracketed term may be expressed in terms of V,’s if we use (64) and
(121). In this way, we obtain the following telegraphist’s equations

Ve .

ol Foopud

dl m'r® | 2Y d

e (g + jwe + + a nﬂm%) Vo (126)

1 2Y . mmd gin ™7 d
- 22 sin ——sin— V,
n a a
where the prime after the summation signs signifies the omission of the

term corresponding to n = m.

19. ARBITRARINESS OF MODAL TRANSVERSE FIELD PATTERNS

In almost all examples considered by us the variations of transverse
field components in transverse planes were expressed in terms of func-
tions associated with orthogonal modes in waveguides of uniform cross-
section and with perfectly conducting walls. An exception was made in
Section 10 where we used curvilinear coordinates. The guiding principle
in selecting the basiec set of transverse field patterns for general field rep-
resentation should be in most cases, but not in all eases, the minimization
of coupling coefficients. That there are exceptions was made clear in
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connection with the junction between two waveguides, one with per-
fectly conducting and the other imperfectly conducting walls, Fig. 2 (see
remarks toward the end of Section 3). Aside from convenience the choice
of transverse modal patterns is rather arbitrary. A set must be complete,
that is, adequate for representing any field which can exist inside the
guide. It should be an orthogonal set; this will enable us to obtain a set
of telegraphist’s equations in which each equation contains only one
derivative with respect to the direction of propagation. But, as we have
already seen, the sets of terms representing the individual “modes” do
not have to satisfy either Maxwell’s equations or the boundary condi-
tions. The situation is similar to that which confronts us when we choose
a set of meshes in a network in order to write Kirchhoff’s equations in
terms of mesh currents.

In the case of circular waveguides, for instance, we can express E, and
H, in terms of the “sawtooth” functions in which case E. will be ex-
pressed in terms of “square sine” functions. It is not a convenient set;
but, certainly, it is a permissible zet.

20. CONCLUDING REMARKS

In the preceding sections we have illustrated the technique of conver-
sion of Maxwell’s equations into generalized telegraphist’s equations by
several typical examples. In many instances this technique is a practical
method for solving field problems. This method may be valuable even
when the more conventional methods can be used. Consider a slightly
deformed rectangular waveguide in which two faces are arcs of coaxial
eylinders and the other two faces are radial planes, Fig. 10. If we use
cylindrical coordinates, we can separate the variables and obtain a set
of orthogonal modes in which fields are expressed in terms of Bessel
functions. As the curvature decreases these modes become more and more
like the corresponding modes in a strictly rectangular waveguide. Never-
theless the mathematical machinery remains different. No matter how

Fig. 10 — A deformed rectangular waveguide.
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small is the curvature we still have to deal with Bessel functions rather
than with sines and cosines. We can and will, of course, replace Bessel
functions by their asymptotic expansions. This will simplify mathe-
matics. But we still would be left with a ‘“discontinuity in thinking”
about the zero and non-zero curvature cases. At any rate it seems that
we can gain something in understanding the effect of the gradual defor-
mation on the field, particularly if this deformation is varying along the
guide, by formulating the problem in terms of “deformed cartesian”
coordinates. Then the effect of deformation will be thought of as coupling
between various modes in a strictly rectangular waveguide. The coupling
coefficients can be evaluated and numerical results thus obtained for
more general conditions than is possible by the conventional method.
In other cases, numerical calculations, although possible in theory,
would perhaps be prohibitive in practice. Even then this technique may
contribute toward the qualitative understanding of physical phenomena.
Consider two wires diverging from the terminals A, B of a generator,
Fig. 11. Let us imagine a family of spheres concentric with the midpoint
of the segment AB. Let us consider the sections of wires intercepted by a
typical sphere as sections of two cones with their apices at the center of
the spheres. For such cones we can obtain a set of orthogonal modes.
The transverse field distributions associated with these modes we now
take for representing the field distribution in the actual case, just as we
did in previous examples. One of the infinite system of such modes will
be the principal mode which at sufficiently large distances from A,B will
be the usual “transmission line” mode for two parallel wires (that is,
when the wires actually do become parallel). It would not be difficult
as a matter of fact to obtain telegraphist’s equations for this mode to-
gether with coupling coefficients to the higher order modes. For perfectly
conducting wires these coupling coefficients become progressively smaller

Fig. 11 — Wires diverging from the terminals of a generator.
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Fig. 12 — Parallel wires with a generator at A.

as the distance from the generator increases. Thus the higher order modes
will be generated largely in the vicinity of the generator if we define the
“vicinity” as the interior of a sphere whose radius is a reasonably large
multiple of the final distance between the wires. These are the modes
which will carry off to infinity what we usually call the “‘radiated energy.”
There will be very little radiation if the distance between the wires never
exceeds a small fraction of the quarter-wavelength. This is because the
higher order modes are substantially non-propagating at distances close
to the center of their origin.

For thin wires the calculation of transverse patterns needed for teleg-
raphist’s equations requires the solution of a transcendental equation.”
To use this equation in the present case we should replace the oval
traces of the wires on a typical “wavefront” sphere by equivalent circles,
that is, circles giving the same shunt capacitance in the principal mode.
A more accurate analysis would be possible but hardly worth the effort.
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Fig. 13 — Parallel wires and a succession of primary and secondary waves.
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An analysis of waves on two parallel wires, such as Mie’s,” is not realis-
tic since he assumed that his generator is at infinity. Sometimes such an
assumption is not objectionable; but at other times one is better off
without it. If two parallel wires are infinite in both directions and a
generator is connected to one wire, Fig. 12(a), and if the distance between
the wires is small, one can conveniently replace the impressed voltage by
the sum of push-push and push-pull voltages, Fig. 12(b), to take ad-
vantage of the symmetry. Then outside some sphere concentric with the
mid-point 0, we have four wires “diverging” from 0 and the analysis may
proceed along the lines suggested for two wires. If, however, the distance
between the wires is large, we shall find it more expedient to consider
waves on a single wire generated at point A, Fig. 13, which in their turn
generate waves on the second wire at points where the spherical wave-
fronts intersect it. Those waves impinge on the first wire and generate
tertiary waves.

Many other examples will occur to the reader in which the telegra-
phist’s equations will be useful to a greater or lesser extent.
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