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The non-linear behavior of the traveling-wave amplifier is calculated in
this paper by numerically inlegraling the motion of the electrons in the
presence of the circuit and the space charge fields. The calculation extends
the earlier work by Nordsieck and the small-C theory by Tien, Walker and
Wolontis, to include the space charge repulsion belween the electrons and
the effect of a finite coupling between the circuit and the electron beam. It
however differs from Poulter’s and Rowe's works in the melhods of calcu-
lating the space charge and the effect of the backward wave.

The numerical work was done using 701-lype I.B.M. equipment. Re-
sults of calculation covering QC' from 0.1 to 0.4, b from 0.46 lo 2.56 and k
from 1.25 to 2.50, indicate that the saturation efficiency varies between
23 per cent and 37 per cent for C equal to 0.1 and between 33 per cent and
40 per cent for C equal to 0.15. The voltage and the phase of the circuit wave,
the velocity spread of the eleclrons and the fundamental component of the
charge-density modulation are either tabulated or presented in curves. A
method of calculating the backward wave is provided and its effect fully
discussed.

1. INTRODUCTION

Theoretical evaluation of the maximum efficiency attainable in a
traveling-wave amplifier requires an understanding of the non-linear
behavior of the device at various working conditions. The problem has
been approached in many ways. Pierce,' and later Hess,* and Birdsall®
and Caldwell' investigated the efficiency or the output power, using cer-
tain speaeific assumptions about the highly bunched electron beam. They
either assume a beam in the form of short pulses of electrons, or, specify
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an optimum ratio of the fundamental component of convection current
to the average or d-c current. The method, although an abstract one,
generally gives the right order of the magnitude. When the usual wave
concept fails for a beam in which overtaking of the electrons arises, we
may either overlook effects from overtaking, or, using the Boltzman’s
transport equation search for solutions in series form. This attack has
been pursued by Parzen® and Kiel," although their work is far from com-
plete. The most satisfying approach to date is Nordsieck’s analysis.”
Nordsieck followed a typical set of “electrons” and calculated their
velocities and positions by numerically integrating a set of equations of
motion. Poulter® has extended Nordsieck equations to include space
charge, finite ' and circuit loss, although he has not perfectly taken into
account the space charge and the backward wave. Recently Tien,
Walker, and Wolontis® have published a small C' theory in which “elec-
trons”’ are considered in the form of uniformly charged disecs and the
space charge field is calculated by computing the force exerted on one
dise by the others. Results extended to finite C, have been reported by
Rowe," and also by Tien and Walker."" Rowe, using a space charge
expression similar to Poulter’s, computed the space charge field based on
the electron distribution in time instead of the distribution in space. This
may lead to appreciable error in his space charge term, although its
influence on the final results cannot be easily evaluated.

In the present analysis, we shall adopt the model described by Tien,
Walker and Wolontis, but wish to add to it the effect of a finite beam to
circuit coupling. A space charge expression is derived taking into account
the fact that the a-c velocities of the electrons are no longer small com-
pared with the average velocity. Equations are rewritten to retain terms
involving C. As the backward wave becomes appreciable when C in-
creases, a method of calculating the backward wave is provided and the
effect of the backward wave is studied. Finally, results of the caleulation
covering useful ranges of design and operating parameters are presented
and analyzed.

2. ASSUMPTIONS

To recapitulate, the major assumptions which we have made are:

1. The problem is considered to be one dimensional, in the sense that
the transverse motions of the electrons are prohibited, and the current,
velocity, and fields, are functions only of the distance along the tube and
of the time.

2. Only the fundamental component of the current excites waves on
the circuit.
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3. The space charge field is computed from a model in which the
helix is replaced by a conducting eylinder, and electrons are uniformly
charged dises. The discs are infinitely thin, concentric with the helix and
have a radius equal to the beam radius.

4. The circuit is lossfree.

These are just the assumptions of the Tien-Walker-Wolontis model.
In addition, we shall assume a small signal applied at the input end of a
long tube, where the beam entered unmodulated. What we are looking
for are therefore the characteristics of the tube beyond the point at which
the device begins to act non-linearly. Let us imagine a flow of electron
dises. The motions of the dises are computed from the circuit and the
space charge fields by the familiar Newton's force equation. The elec-
trons, in turn, excite waves on the circuit according to the circuit equa-
tion'® derived either from Brillouin’s model® or from Pierce’s equivalent
circuit.”* The force equation, the circuit equation, and the equation of
conservation of charge in kinematics,”® are the three basic equations
from which the theory is derived.

3. FORWARD AND BACKWARD WAVES

In the traveling-wave amplifier, the beam excites forward and back-
ward waves on the cireuit. (We mean by ‘“forward” wave, the wave
which propagates in the direction of the electron flow, and by “‘back-
ward” wave, the wave which propagates in the opposite direction.)
Because of phase cancellation, the energy associated with the backward
wave is small, but increases with the beam to circuit coupling. It is there-
fore important to compute it accurately. In the first place, the waves on
the circuit must satisfy the circuit equation™

FV(z, 1) 2 V(1) pu(z, 1)
It W Wl ™

Here, V is the total voltage of the waves. vy, and Z, are respectively the
phase velocity and the impedance of the cold circuit. z is the distance
along the tube and ¢, the time. p, is the fundamental component of the
linear charge density. V and p. are functions of z and ¢. The complete
solution of (1) is in the form

V() = Cie™ ™" + Cpe™

—rge T f T
.-|—g T Mf' gropw(Z) dz

2 (2)

+ GI'Q: FDL'ZOZU f e—Puzpm(z) dz
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where the common factor ¢** is omitted. Ty = j(w/w),j = v/— 1 and w
is the angular frequency. C; and C. are arbitrary constants which will
be determined by the boundary conditions at the both ends of the beam.
The first two terms are the solutions of the homogeneous equation (or
the complementary functions) and are just the cold circuit waves. The
third and the fourth terms are functions of electron charge density and
are the particular solution of the equation.

Let us consider a long traveling-wave tube in which the beam starts
from z = 0 and ends at z = D. The motion of electrons observed at any
particular position is periodic in time, though it varies from point to
point along the beam. To simplify the picture, we may divide the beam
along the tube into small sections and consider each of them as a current
element uniform in z and periodic in time. Each section of beam, or each
current element excites on the circuit a pair of waves equal in ampli-
tudes, one propagating toward the right (i.e., forward) and the other,
toward the left. One may in fact imagine that these are trains of waves
supported by the periodic motion of the electrons in that section of the
beam. Obviously, a superposition of these waves excited by the whole
beam gives the actual electromagnetic field distribution on the circuit.
One may thus compute the forward traveling wave at z by summing all
the waves at z which come from the left. Stated more specifically, the
torward traveling energy at z is contributed by the waves excited by the
current elements at the left of the point z. Similarly the backward travel-
ing energy, (or the backward wave) at z is contributed by the waves
excited by the current elements at the right of the point z. It follows
obviously from this picture that there is no forward wave at z = 0
(except one corresponding to the input signal), and no backward wave
at z = D. (This implies that the output circuit is matched.) With these
boundary conditions, (1) is reduced to

V(Z) = Vinpub e—-rﬂz + e—rgz I‘DUTDZD f Bruzpw(Z) dz
0

(3)
D
+ ¢ —P"”z“z“ f ¢, (2) dz

Equations (2) and (3) have been obtained by Poulter.® The first term of
(3) is the wave induced by the input signal. It propagates as though the
beam were not present. The second term is the voltage at z contributed
by the charges between z = 0 and z = z. It is just the voltage of the
forward wave described earlier. Similarly the third term which is the
voltage at z contributed by the charges between z = z and z = D is the
voltage of the backward wave at the point z. Denote F and B respec-
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tively the voltages of the forward and the backward waves, we have

F(2) = Vinpue el + el I_E:’:_Z_E L elo po(2) dz . (4)
D
B(z) = ¢ Pﬂ—vz'y—”f ¢ "0%pa(2) dz (5)

It can be shown by direct substitution that F and B satisfy respectively
the differential equations

F(z,t) | 1 8F(z 1) _ Zodpulz 1)

dz U ot 2 ol ()
aB(z, 1) _ l 0B(z, t) _ _é dp.(z, 1) 1)
az Vo ol B 2 at

We put (4) and (5) in the form of (6) and (7) simply because the differ-
ential equations are easier to manipulate than the integral equations.
In fact, we should start the analysis from (6) and (7) if it were not for a
physical picture useful to the understanding of the problem. Equations
(6) and (7) have the advantage of not being restricted by the boundary
conditions at z = 0 and D, which we have just imposed to derive (4)
and (5). Actually, we can derive (6) and (7) directly from the Brillouin
model” in the following manner. Suppose V, I and Z, are respectively
the voltage, current and the characteristic impedance of a transmission
line system in the usual sense. (V + IZ,) must then be the forward wave
and (V — IZ;) must be the backward wave. If we substituted ¥ and B
in these forms into (1) of the Brillouin’s paper,” we should obtain exactly
(6) and (7).

Tt is obvious that the first and third terms of (2) are respectively the
complementary function and the particular solution of (6), and similarly
the second and the fourth terms of (2) are respectively the comple-
mentary function and the particular solution of (7). From now on, we
shall overlook the complementary functions which are far from syn-
chronism with the beam and are only useful in matching the boundary
conditions. It is the particular solutions which act directly on the elec-
tron motion. With these in mind, it is convenient to put FF and B in the
form

Fz, 1) = i"é“ [a1(y) cos ¢ — ax(y) sin ¢] (8)

Bz, ) = 290 [1i(y) cos ¢ — buly) sin o] ©)




354 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1956

where a:(y), a=(y), bi(y) and bs(y) are functions of y. ¥ and ¢ are inde-
pendent variables and have been used by Nordsieck to replace the vari-
ables, z and ¢, such as

w
y-—CEDz

;-

Here as defined earlier, v, is the phase velocity of the cold circuit and u,
the average velocity of the electrons. They are related by the parameter
b defined by Pierce as

I

@

Up 1

vw (1 — bC)
( is the gain parameter also defined by Pierce,

— Z(]Io
4V,

in which, Vy and I, are respectively the beam voltage and current.
Adding (6) to (7), we obtain an important relation between F and B,
that is,

03

it 1 F(z, 1) _ 9Bz t) n 1 aB(z, t)

10
a9z Vo al dz Vo ot ( )

Substituting (8) and (9) into (10) and carrying out some algebraic
manipulation, we obtain

bl(.’/) = '_2*(1—_?_—&’?) C—% [(12(?]) + bz(y)]
(11)
) = 30 o 100 + biw)
or
Zuly C
Bz, t) = =% s
’ 4C 2(1 + b
C 2(1 4 80C) (120)

i [d(ae(y)d;i— b)) o5 o + d(al(y)d;l— ) o (p}

For better understanding of the problem, we shall first solve (12a) ap-
proximately. Assuming for the moment that b;(y) and b.(y) are small
compared with ai(y) and ax(y) and may be neglected in the right-hand
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member of the equation, we obtain for the first order solution
~ Zoly _ C dal(y) . dﬂz(y) :I) p
Bz, 1) =~ a0 ( 50 F50) |: &y sin ¢ + &y cos @ (12h)

Of course, the solution (12b) is justified only when bi(y) and ba(y) thus
obtained are small compared with a;(y) and as(y). The exact solution'®
of B obtained by successive approximation reads

B(z, 0) = ann( C I:dal(y) sin o + das(y) cos ‘p]

20 \ 20 F b0 | dy dy
¢ da(y) das(y) (120
] _tay a\Y)
+ ey e + g sine ] +---)
It may be seen that the term involving
02
4(1 + bC)?

and the higher order terms are neglected in our approximate solution.
For € equal to few tenths, the difference between (12b) and (12¢) only
amounts to few per cent. We thus can calculate the backward wave by
(12b) or (12¢) from the derivatives of the forward wave. To obtain the
complete solution of the backward wave, we should add to (12b) or
(12¢) a solution of the homogeneous equation. We shall return to this
point later.

4. WORKING EQUATIONS

With this discussion of the backward wave, we are now in a position
to derive the working equations on which our calculations are based. In
Nordsieck’s notation, each electron is identified by its initial phase.
Thus, ¢(y, ¢o) and Cugw(y, ) are respectively the phase and the ac
velocity of the electron which has an initial phase ¢, . It should be remem-
bered that y is equal to

c2:
g
and is used by Nordsieck as an independent variable to replace the vari-
able z. Let us consider an electron which is at z; when { = 0 and is at
z (or y) when ¢ = {. Its initial phase is then
w2p

Yo = —
Up
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and its phase at y is

e(y, o) = @ (vi., - t)

4

The velocity of the electron is expressed as

%f = 1,(0[1 + CT.U(H, 900)]

where 1, is the average velocity of the electrons, and, Cugw(y, ¢¢) as men-
tioned earlier, is the ac velocity of the electron when it is at the position
y. The electron charge density near an electron which has an initial phase
@o and which is now at y, can be computed by the equation of conserva-
tion of charge,” it is

deo 1
de(y, eo) [ 1 + Cw(y, ¢o)

One should recall here that I, is the de beam current and has been de-
fined as a positive quantity. When several electrons with different initial
phases are present at y simultaneously, a summation of

(13)

= 29
P(y, ?U) = o

deo
d(y: 'PU)

of these electrons should be used in (13). From (13), the fundamental
component of the electron charge density is

P (2 t) = —l{g (Sin(p f21r dpnw
o T Uo 0 1 + Cw(y, ¢o)

(14)
cos ¢(y, o) )
1 + C’H?(y, WU)

These are important relations given by Nordsieck and should be kept
in mind in connection with later work. In addition, we shall frequently
use the transformation

27
+ cowf deo
0

d
=T Cu(l + Cuw(y, ¢o) 7

which is written following the motion of the electron. Let us start from
the forward wave. It is computed by means of (6). After substituting
(8) and (14) into (6), we obtain by equating the sin ¢ and the cos ¢
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terms
day(y) _ 2 sin ¢(y, ¢o)
'1 f T+ Culy, O‘Pu) (15)
dao(J) 2 _cos ¢(y, ¢o)
f 1 + C'w(J: ) (16)

Next we shall calculate the electron motion. We express the acceleration
of an electron in the form

d’z dw(y, ¢o)
&? = Coue(l + C’w(y, ‘PD)) Ty

and calculate the circuit field by differentiating ¥ in (8) and B in (12¢)
with respect to z. One thus obtains from Newton’s law

201 + Culy, ¢ 9% — (1 4 bO)[as(y) sin ¢ + ax(y) cos ¢]

_C da,(y) __daz(y) )
2[ a0y Cos @ a sine 17

C* daiy) . d as(y) :| e
@ any/ - E,
T iy bC)[ qp e T g OS¢ | T e

Here E, is the space charge field, which will be discussed in detail later.
Finally a relation between w(y, ¢o) and ¢(y, ) is obtained by means of
(13)

de(y, o) w(y, @o)
’ —_h = H TV 18
dy 1 + Cw(y, ¢o) (18)
Equations (15), (16), (17) and (18) are the four working equations
which we have derived for finite €' and including space charge.

Instead of writing the equations in the above form, Rowe," ignoring
the backward wave, derives (15) and (16) directly from the circuit
equation (1). He obtains an additional term

¢ de

2 dy?
for (15) and another term

¢

2 diy?
for (16). It is apparent that the backward wave, though generally a
small quantity, does influence the terms involving C.
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5. THE SPACE CHARGE EXPRESSION

We have mentioned earlier that the space charge field is computed
from the dise-model suggested by Tien, Walker and Wolontis. In their
calculation, the force excited on one dise by the other is approximated
by an exponential function

2
F,, - q . e-ﬂia(a"-z)ll‘o]
27r’f'o €p

Here 7, is the radius of the disc or the beam, ¢ is the charge carried by
each disc, and ¢ is the dielectric constant of the medium. The discs are
supposed to be respectively at z and 2. « is a constant and is taken
equal to 2.

Consider two electrons which have their initial phases ¢, and ¢, and
which reach the position y (or z) at times { and t’ respectively. The time
difference,

’ ]. w / w 1 ’
t—1t = —[wt ——z— (wt - Hz):| = — [e(y, e0) — (¥, vl
w o o w
multiplied by the velocity of the electron uo[l + Cw(y, ¢')] is obviously
the distance between the two electrons at the time ¢. Thus

¢ = s = - lot, ) — oly, el + Culy o)) (199)

In this equation, we are actually taking the first term of the Taylor’s
expansion,
y _ de(y, @) ' 1 d%(y, o) 2
(2 2t = —a | (t r) + 3T dE —t (¢ t) (19b)
+ ...

It is clear that the electrons at y may have widely different velocities
after having traveled a long distance from the input end, but changes in
their velocities, in the vicinity of ¥ and in a time-period of around 2 ,
are relatively small. This is why we must keep the first term of (19b)
and may negleet the higher order terms. From (19a) the space charge
field K, in (17) is

2
2e _ [ @ f Z _klel.eotd)—o(y 00 | 1+ Culypotd)]
— e = | =5 e

maw(" Uy wC —0

d¢ sgn (plpo + ) — ¢y, @)

Here, e¢/m is the ratio of electron charge to mass, w, is the electron
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angular plasma frequency for a beam of infinite extent, and £ is

w w (20)
W W
In the small C theory, the distribution of electrons in time or in time-
phase at z is approximately the same as the distribution in z (also ex-
pressed in the unit of time-phase) at the vicinity of z. This is, however,
not true when € becomes finite. The difference between the time and
space distributions is the difference between unity and the factor
(1 + Cw(y, ¢o)). We can show later that the error involved in con-
sidering the time phase as the space phase can easily reach 50 per cent
or more, depending on the velocity spread of the electrons.

6. NUMERICAL CALCULATIONS

Although the process of carrying out numerical computations has
been discussed in Nordsieck’s paper, it is desirable to recapitulate here
a few essential points including the new feature added. Using the work-
ing equations (15), (16), (17) and (18),

day das, dw de
gth o0 -7 d ve
dy ’dy ' dy an dy
are caleulable from a, as, w and ¢. The distance is divided into equal

intervals of Ay, and the forward integrations of a., a;, w and ¢ are per-
formed by a central difference formula

da
aly + Aay) = aly) + di‘ <Ay
Y lwryzay
In addition,
da 4 o
dy? dy?
in (17) are computed from the second difference formula such that
d'a, [da.l day ] .
diy? =y dy | vrizaw Ay |y—17280

We thus calculate the behavior along the tube by forward integration
made in steps of Ay, starting from y = 0. At y = 0 the initial condi-
tions are determined from Pierce’s linearized theory. Because of its
complications in notation, this will be discussed in detail in Appendix I.

Numerical calculations were ecarried out using the 701-type I.B.M.
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Case No.

[

2

10

11

12

13

14

16

17

18

19

20

21

g

8

Qc k c b H1 2] Y(8AT.) 2 ;‘:

g | 1

) A

< | =

0.1 (2.5 [0.05|0.455 | g max. —0.748052 | 5.6 | 1.26 | 0.415
0.795662

0.1(25 |0.1 0.541 | p; max. —0.787624 | 5.2 | 1.24 | 0.482
0.827175

0.1125 (0.1 1.145 | 0.941y, max. | —1.05370 5.6 | 1.31 | 0.820
0.778535

0.1(2.5 0.1 1.851 | 0.66p; max. —1.37968 7.01.36 |1.05
0.550736

0.1 /2.5 |0.2 [0.720 | g1 max. —0.873606 | 4.8 | 1.02 | 0.726
0.900312

0.21.25)0.1 0.875 | w1 max. —1.04078 5.911.22 | 0.570
. 0.769795

0.2(1.25]0.1 1.422 | 0.951p; max. | —1.29469 6.0 1.30 | 0.803
0.724527

0.21.25]0.1 2.072 | 0.666p) max. | —1.60435 7.611.35(1.08
0.512528

0.2 2.5 [0.05|0.765 | py max. —0.973376 | 6.2 | 1.30 | 0.412
0.731493

0.2125 |0.1 0.875 | g1 max. —1.04078 5.8 1.22|0.490
0.769795

0.2(25 |0.1 |1.422 | 0.941y max. | —1.29469 6.0 1.26 | 0.720
0.724527

0.2]2.5 (0.1 2.072 | 0.666p, max, | —1.60435 7.211.25 | 0.92
0.512528

0.2]25 (0.1 2.401 | 0.300g; max. | —1.76243 12.4 | 1.24 | 1.36
0.230930

0.2 (2.5 |0.15|0.976 | uy max, —1.10656 5.4 1.11 | 0.572
0.812900

0.2 2.5 |0.15| 1.549 | 0.941y; max. | —1.37540 5.8 (1.14 ] 1.03
0.765101

il

0.2]2.5 [0.15] 2.2311] 0.666x; max. | —1.70180 7.0|1.12 | 1.22
0.541234

0.2 2.5 |0.15| 2.575 | 0.300u; max. | —1.86844 10.8 | 1.04 | 1.34
0.243864

0.4 (25 |0.05)1.25 | g max. —1.36746 7.611.26 | 0.315
0.653014

0.4125 |0.1 1.38 | p1 max. —1.47477 6.6 | 1.11 | 0.674
0.701470

0.42.5 |0.1 1.874 | 0.941y4; max. | —1.71341 7.81.19 | 1.05
0.660223

0425 (0.1 2.458 | 0.666y; max. | —1.99840 8.6 |1.09(1.25
0.467038

360
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equipment. The problem was programmed by Miss D. C. Legaus. The
cases computed are listed in Table I in which p; and p» are respectively
Pierce’s x; and 3, , and A, (6 — psy) and y at saturation will be discussed
later. All the cases were computed with Ay = 0.2 using a model based
on 24 electron dises per electronic wavelength. To estimate the error
involved in the numerical work, Case (10) has been repeated for 48 elec-
trons and Cases (10) and (19) for Ay = 0.1. The results obtained by
using different numbers of electrons are almost identical and those ob-
tained by varying the interval Ay indicate a difference in A (y) less than
1 per cent for Case (10) and about 6 per cent for Case (19). As error
generally increases with QC' and C the cases listed in this paper are
limited to QC = 0.4 and C = 0.15. For larger QC or C, a model of more
electrons or a smaller interval of integration, or both should be used.

7. POWER OUTPUT AND EFFICIENCY

Define
A(y) = UvVa(y) + a(y)?
(21)
—6(y) = tan™ a(y) + by
2 ay(y) Y
We have then
Flz, ) = 2200 4(y) cos [“’i — ol — B(y):l (22)
C Uy
The power carried by the forward wave is therefore
F? 5
B = 20471V, (23)
Zﬂ average
and the efficiency is
_ 204°,V, _ 2 . Eff. — 042 )
Bl = S75mt = 2047 or =204 (24)

In Table I, the values of A(y), 6(y) and y at the saturation level are
listed for every case computed. We mean by the saturation level, the
distance along the tube or the value of y at which the voltage of the
forward wave or the forward traveling power reaches its first peak.
The Eff./C at the saturation level is plotted in Fig. 1 versus QC, for
k = 2.5, b for maximum small-signal gain and ¢’ = small, 0.05, 0.1, 0.15
and 2. It is also plotted versus b in Fig. 2 for QC = 0.2, k = 2.5 and
C' = small, 0.1 and0.15, and in Fig. 3for QC = 0.2,C =0.1and k = 1.25
and 2.50. In Fig. 2 the dotted curves indicate the values of b at which
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a.s
k=2.5
b FOR mMAx
4.0 I £
3.5 -~ [ -_-"\LSM(E\LL _
=~ C=0.05
3.0 1\
--,-.
EFFL [
c #® = [ C=o0.1
(SAT) C=0.15 =
2.0 =
C=o0.2

1.5
1.0
0.5

0

0 0.1 0.2 0.3 0.4 0.5

Qc

Fig. 1 — The saturation eff./C versus QC, for k¥ = 2.5, b for maximum small-
signal gain and ¢ = small, 0.1, 0.15 and 0.2.

pr = p(max), 0.94 pi(max), 0.67 p(max) and 0.3 p(max), respectively.
It is seen that IEff./C decreases as C increases particularly when b is
large. It is almost constant between & = 1.25 and 2.50 and decreases
slowly for large values of €' when QC increases.

The (Eff./C) at saturation is also plotted versus QC in Fig. 4(a) for
small C, and in Fig. 4(b) for C = 0.1. It should be noted that for ¢ = 0.1
the values of Eff./C fall inside a very narrow region say between 2.5 to
3.5, whereas for small C they vary widely.

8. VELOCITY SPREAD

In a traveling-wave amplifier, when electrons are decelerated by the
circuit field, they contribute power to the circuit, and when electrons
are accelerated, they gain kinetic energy at the expense of the circuit
power. It is therefore of interest to plot the actual velocities of the fastest
and the slowest electrons at the saturation level and find how they vary
with the parameters QC, C, b and k. This is done in Fig. 5. These veloci-
ties are also plotted versus % for Case 10 in Fig. 6, in which, the A(y)
curve is added for reference.

9. THE BACKWARD WAVE AND THE FUNDAMENTAL COMPONENT OF THE
ELECTRON CHARGE DENSITY

Our ecalculation of efficiency has been based on the power carried by
the forward wave only. One may, however, ask about the actual power
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Fig. 2 — The saturation eff./C versus b, for & = 2.5, QC = 0.2, and € = small,
0.1 zmd 0.16. The dotted curves indicate the values of b for p = 1 0.94, 0.67, and
0.3 of uy(max) respectively.

output in the presence of the backward wave. For simplicity, we shall
use the approximate solution (12b) which can be written in the form

B(z, t} = Real Component of

(_Zo_fn ¢ (dm(y))ﬁ L () ﬂ45> (12d)
4C 2(1 + bC) dy ( dy

- (52)/(42)

As mentioned earlier that the complete solution of (6) is obtained by
adding to (12b) a complementary function such that

Blz, 1) = Cyg T

+ Zolo Zoly /‘/ da1 d_ag)-’ @it Toz—turt st (25)
4C 2(1 4+ bC) + bC) dy

with
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Fig. 3 — The saturation eff./C versus b, for QC = 0.2 C = 0.1 and k = 1.25
and 2.50.

If the output circuit is matched by cold measurements, the backward
wave must be zero at the output end, z = D. This determines C , that is,

o1 = _Zoly /‘/ dfh(J) das(y) \? QLoD+t
! 4C 2(1 + bC) =D ( dy Juwn

or

JuttTor _ Zofn /‘/ dﬂl(J)) ﬁi"ﬂz(y'))2
Cie 40 2(1 + bC) ( D ( dy J-=p (26)

e]."g(2+b C)D+J'Ee jwt+ToZ

The backward wave therefore consists of two components. One compo-

[+ ]

(a) C = SMALL (b) C=o.

6 :“-‘I“'I = O'E?#I{MAX\
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(0 | A atean | N = 06744, (MAX)
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0 0.1 0.2 0.3 04 0 o1 0.2 03 0.4
Qc Qc

Fig. 4 — The saturation eff./C versus QC for b corresponding u1 = 1, 0.94 and
0.67 of pi(max), (a) for C = small, (b) for C = 0.1.
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nent is coupled to the beam and has an amplitude equal to

Zu[ ] C d(].l 2 dﬂ!g 2

vV (@) +(3)
which generally grows with the forward wave. It thus has a much larger
amplitude at the output end than at the input end. The other component
is a wave of constant amplitude, which travels in the direction opposite
to the electron flow with a phase velocity equal to that of the cold cir-
cuit. At the output end, z = D, both components have the same ampli-
tude but are opposite in sign. One thus realizes that there exists a re-
flected wave of noticeable amplitude, in the form of (26), even though
the output circuit is properly matched by cold measurements. Under
such circumstances, the voltage at the output end is the voltage of the
forward wave and the power output is the power carried by the forward
wave only. This is computed in (23).

Since (26) is a cold circuit wave it may be eliminated by properly ad-
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Fig. 5 — Cw(y, ¢o) of the fast and the slowest electrons at the saturation level.
(a) versus QC for k = 2.5, C' = 0.1 and b for maximum small-signal gain; (b) versus
b for k = 2.50, ¢ = 0.1 and QC = 0.2; and (¢) versus C for k = 2.50, QC = 0.2
and b for maximum small-signal gain.
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Fig. 6 — Cw(y, ¢o) of the fast and the slowest electrons versus y for Case
(10). A(y) is also plotted in dotted lines for reference.

justing the impedance of the output circuit. This may be necessary in
practice for the purpose of avoiding possible regenerative oscillation. In
doing so, the voltage at z = D is the sum of the voltage of the forward
wave and that of the particular solution of the backward wave. In every
case, the output power is always equal to the square of the net voltage
actually at the output end divided by the impedance of the output eir-
cuit.

We find from (14), (15) and (16) that the fundamental component of
electron charge density may be written as

_ 1L . da(y) daz(y))
pw(z, t) = §u-—o (Sln‘P d?] + cos g dy

_ , 1 dai(y)\* | (das(y) \*
= Real component of( S V(W + W) (26)

ejw-f‘oz-'by+jé)

where —I)/u, is the dec electron charge density, py .
If (26) is compared with (12d) or (12¢), it might seem surprising that
the particular solution of the backward wave is just equal to the funda-
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mental component of the electron charge density of the beam multiplied

by a constant
fgu[u (? Zlm
( 4C 2(1 + 6C) Io) &7

The ratio of the electron charge density to the average charge density,

Pw(z)
Po
2319.21 19
517//3)9 11 23121 17 13 15

10.0

10 -e -8 -7 -6 -5 -4

d+8

Fig. 8(a) — y versus ¢ — by for QC = 0.2,k = 2.5, b for y; = 0.67(max) and
C = small.
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is plotted in Fig. 7 versus y, using QC, b and C, as the parameters. They
are also the curves for the backward wave (the component which is
coupled to the beam) when multiplied by the proportional constant given
in (27). It is interesting to see that the maximum values of p./ps are
between 1.0 and 1.2 for QC = 0.2 and decrease as QC increases. The
peaks of the curves do not occur at the saturation values of y.

10. ¥ VERSUS (¢ — by) DIAGRAMS

To study the effect of C, b, and QC on efficiency y versus (¢ — by)
diagrams are plotted in Figs. 8(b), (¢), (d) and (e) for Cases (21), (16),
(10) and (21), respectively. (¢ — by) here is (® 4 0) in Nordsieck’s nota-
tion. In these diagrams, the curves numbered from 1 to 24 correspond to
the 24 electrons used in the calculation with each curve for one electron.
Only odd numbered electrons are presented to avoid possible confusion
arisen from too many lines. The reciprocal of the slope of the curve as

23
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Tig. 8(b) — y versus ¢ — by for QC = 0.2, k = 25, b for gy = 0.67u (max) and
C = 0.1(Case 12).
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given by (18) is proportional to the ac displacement of electron per unit
of y. (In small-C' theory it is proportional to the ac velocity of the elec-
tron.) Concentration of curves is obviously proportional to the charge-
density distribution of the beam. In the shaded regions, the axially di-
rected electric field of the circuit is negative and thus accelerates elec-
trons in the positive z direction. Electrons are decelerated in the un-
shaded regions where the circuit field is positive. The boundaries of these
regions are constant phase contours of the circuit wave. (They are con-
* stant ® contours in Nordsieck’s notation.)

These figures are actually the “space-time’” diagrams which unfold
the history of every electron from the input to the output ends. The
effect of (' can be clearly seen by comparing Figs. 8(a), (b) and (c).
These diagrams are plotted for QC = 02, k = 2.5, b for uy, = 0.67
wi(max) and for Fig. 8(a), ¢ = small, for Fig. 8(b), C = 0.1, and for
Fig. 8(c), C = .15. It may be seen that because of the velocity spread of
the electrons, the saturation level in Fig. 8(a) is 9.3 whereas in Figs. 8(b)
and (c¢), it is 7.2 and 7.0, respectively. It is therefore not surprising that
Eff./C decreases as (' increases.

The effects of b and QC may be observed by comparing Figs. 8(d) and
(b), and Iigs. 8(b) and (e), respectively. The details will not be de-
scribed here. It is however suggested to study these diagrams with those
given in the small-C' theory.
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Fig. 8(c) — y versus ¢ — by for QC = 0.2, k = 2.5, b for uy = 0.67p,(max) and
C = 0.15 (Case 16).
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1. A QUALITATIVE PICTURE AND CONCULSIONS

We have exhibited in the previous sections the most important non-
linear characteristics of the traveling wave amplifier. Numerical compu-
tations based on a model of 24 electrons have been carried out for more
than twenty cases covering useful ranges of design and operating parame-
ters. The results obtained for the saturation Eff./C' may be summarized
as follows:

(1) It decreases with C' particularly at large values of QC.

(2) For €' = 0.1, it varies roughly from 3.7 for QC = 0.1 to 2.3 for
QC = 0.4, and only varies slightly with b.

(3) For ¢ = 0.15, it varies from 2.7 to 2.5 for QC from 0.1 to 0.2 and
b corresponding to the maximum small-signal gain. It varies slightly
with b for QC' = 0.2.

(4) It is almost constant between & = 1.25 and 2.50.

In order to understand the traveling-wave tube better, it is important
to have a simplified qualitative picture of its operation. It is obvious that
to obtain higher amplification, more electrons must travel in the region
where the circuit field is positive, that is, in the region where electrons
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Fig. 8(d) — y versus ¢ — by for QC = 0.2, k = 2.5, b for uy = w(max) and
C = 0.1 (Case 10).
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Fig. 8(e) — y versus ¢ — by for QC = 04, k = 2.5, b for u; = 0.67y; (max) and
C = 0.1 (Case 21).
are decelerated by the circuit field. At the input end of the tube, elec-
trons are uniformly distributed both in the accelerating and decelerating
field regions. Bunching takes place when the accelerated electrons push
forward and the decelerated ones press backward. The center of a bunch
of electrons is located well inside the decelerating field region because
the circuit wave travels slower than the electrons on the average (b is
positive). The effectiveness of the amplification, or more specifically the
saturation efficiency, therefore depends on (1), how tight the bunching
is, and (2), how long a bunch travels inside the decelerating field region
before its center crosses the boundary between the accelerating and
decelerating fields.

For small-C, the ac velocities of the electrons are small compared with
the de¢ velocity. The electron bunch stays longer with the decelerating
circuit field before reaching the saturation level when b or QC is larger.
On the other hand, the space charge force, or large QC or k tends to dis-
tort the bunching. As the consequence, the saturation efficiency increases
with b, and decreases as & or QC increases. When C' becomes finite how-
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ever, the ac velocities of the electrons are no longer small as compared
with their average speed. The velocity spread of the electrons becomes
an important factor in determining the efficiency. Its effect is to loosen
the bunching, and consequently it lowers the saturation level and re-
duces the limiting efficiency. It is seen from Figs. 5 and 6 that the
velocity spread increases sharply with C and also steadily with b and QC.
This explains the fact that in the present calculation the saturation
Eff./C decreases with C' and is almost constant with b whereas in the
small-C' theory it is constant with C' and increases steadily with b.
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APPENDIX

The initial conditions at ¥ = 0 are computed from Pierce’s linearized
theory. For small-signal, we have

aly) = 44(y) cos (b + w)y (A-1)
asly) = —4A(y) sin (b + )y (A2)
Aly) = e’ (A-3)

Here eis taken equal to 0.03, a value which has been used in Tien-Walker-
Wolontis’ paper. Define

% = w(y,e0) (A4 X = pa ¥ 4 p*e™  (A-5)

where p* is the conjugate of p. After substituting (A-1) to (A-5) into the
working equations (15) to (18) and carrying out considerable algebraic
work, we obtain exactly Pierce’s equation.’

S = (1 4 jCu)(1 + bC)
(7 = 2Cu + j25bC)(n + jb)
provided that

2 +0
. ‘[ e—klp(u.wo+¢)—p(y.¢u) 14+ cwly ,po+d)]
wC 0

- d¢ sgn (S"(y: ®o + ¢) - ﬁa(?]; ‘PU)) = SEQC
- [ (1 + jCw)(u 4 7b) | & cos (arg [(1 + FCu)(u + jb)] + w2y — o)

—4QC(1 + jCu)*  (A-6)

(A-T)
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Here p = p + jue or Pierce’s z; 4+ jyi . From (A-7) the value of w, is
determined for a given QC. The ac velocities of the electrons are derived
from (A-4), such as,

w(y, eo)

; ; (A-8)
(A-1), (A-2), (A-7) and (A-8) are the expressions used to calculate the
initial conditions at y = 0, when u; and u» are solved from Pierce’s equa-
tion (A-6).

From (12¢), the particular solution of the backward wave at small-
signal is found to be

—2jC(1 + jCp)(u + jb)
27 — cu + b

N oo | ~ZICA + jCw) (u +J’b)} _ ]
cos [alg |: % = Cn + job + ey — o

’

= —2¢

el-'l!I

Bz, 1) = —2e

which agrees with Pierce’s analysis."”
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