Detection of Group Invariance or Total
Symmetry of a Boolean Function®

By E. J. McCLUSKEY, Jr.
(Manuscript received June 26, 1956)

A method s presented for determining whether a Boolean function pos-
sesses any group invariance; that is, whether there are any permutalions or
primings of the independent variables which leave the function unchanged.
T'his method is then extended to the detection of functions which are totally
symmetric.

1 GROUP INVARIANCE

For some Boolean transmission functions (transmissions, for short) it
is possible to permute the variables, or prime some of the variables, or
both permute and prime variables without changing the transmission.
The following material presents a method for determining, for any given
transmission, which of these operations (if any) can be carried out with-
out changing the transmission.

The permutation operations will be represented symbolically as fol-
lows:

Sis3....T will represent the transmission 7" with no variables permuted

Saz....T will represent the transmission 7' with the 2; and x» variables

interchanged, etc.

Thus SlmT(SL‘l y L2, T3, JU.;) = T(.’Ul y Ly, T3, It,"z)

The symbolic notation for the priming operation will be as follows:

Noooo...oT" will represent the transmission 7' with no variables primed

Nono...oT" will represent the transmission T with the a; and x; variables

primed, ete.

Thus Ny (x1, 22, 23, v1) = T(x, 22, x5, 74).

The notation for the priming operator can be shortened by replacing
the binary subseript on N by its decimal equivalent. Thus Ny7 is equiv-

* This paper is derived from a thesis submitted to the Massachusetts Institute
of Technology in partial fulfillment of the requirements for the degree of Doctor
of Science on April 30, 1956.
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TaBLE I — TrRANSMISSION MATRICES SHOWING HEFFECT OF
INTERCHANGING OR PRIMING VARIABLES

(a) Transmission Matrix ~ (b) Transmission Matrix (¢) Transmission Ma-

with 3 and 24 columns trix with entries of the
interchanged 23 and x4 columns
primed
Ty T2 T3 Ty T1 T2 Ty T3 Ty Ta .'153' :t;'
0 0000 0 0000 3 001

1 0001 2 0010 2 0010

2 0010 1 0001 1 0001

9 1001 10 1010 10 1 010

10 1 010 9 1001 9 1001
11 1011 11 1011 8 1000

alent to NyonT. The permutation and priming operators can be combined.
For example,

S2l34AT8T(3-71 y L2, T3, 234) = T(xz y L1, 11»‘3', xd')

The symbols S;N; form a mathematical group,' hence the term group
invariance.

The problem considered here is that of determining which N; and S;
satisfy the relation N;S;T = T for a given transmission 7'. Since there
are only a finite number of different NV; and S; operators it is possible in
principle to compute N;S;T" for all possible N:S; and then select, those
N:S; for which N:S;T = T. If 7' is a function of n variables, there are
n! possible S; operators and 2" N; operators so that there are n!12" pos-
sible combinations of N:S;. Actually, if N;S;T = T then N.T must
equal S;T® so that it is only necessary to compute all N.T' and all S;7T.
Forn = 4, n! = 24 and 2" = 16 so that the number of possibilities to
be considered is quite large even for functions of only four variables. It
is possible to avoid enumerating all N;T" and S,T by taking into account
certain characteristics of the transmission being considered.

The first step in determining the group invariances of a transmission
is the same as that for finding the prime implicants.* The binary equiva-
lents of the decimal numbers which speeify the transmission are listed
as in Table I(a). This list of binary numbers will be called the iransmas-
sion matriz. When two variables are interchanged, the corresponding
columns of the transmission matrix are also interchanged, Table I(b).
When a variable is primed, the entries in the corresponding column of
the transmission matrix are also primed, 0 replaced by 1 and 1 replaced
by 0, Table I(c).

If an NS, operation leaves a transmission unchanged then the cor-

* Minimization of Boolean Functions, see page 1417 of this issue.
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responding matrix operations will not change the transmission matrix
aside from possibly reordering the rows. In other words, it should be
possible to reorder the rows of the modified transmission matrix to re-
gain the original transmission matrix. The matrices of Table I(a) and
(b) are identical except for the interchange of the 1 and 2 and the 9
and 10 rows. It is not possible to make the matrix of Table I(c) identical
with that of Table I(a) by reordering rows; therefore the operation of
priming the a3 and x4 variables does not leave the transmission 7' =
>°(0,1,2,9, 10, 11) unchanged.

If interchanging two columns of a matrix does not change the matrix
aside from rearranging the rows, then the columns which were inter-
changed must both contain the same number of 1’s (and 0’s). This must

TaBLE II — PARTITIONING OF THE STANDARD MATRIX FOR
T =75 (4571,89,11, 30, 33, 49)

(a) Transmission Matrix (b) Standard Matrix for (a) Matrix
Ty T2 Ty Ty Tp Te Ty T2 Ty T4 Ts ¢ Weight
4 000100 4 0 0|0 1|00 1
8 001000 8 00|11 0f0 O 1
32 1 0({0 0|0 O 1
5 000101
9 001001 5 000 1f0 1 2
33 100001 6 000 11 0 2
9 001 0|0 1 2
7 000111 10 0 0|1 0|1 0 2
11 001011 48 1 1{0 0|0 0 2
49 110001
31 0 1]1 1|11 5
30 011110
Number of 0’s 77 5 5 6 3 7715 5|6 6
Number of 1's 2 24 4 36 2 214 4(3 3
(¢) Second Partitioning of (d) Final Partitioning
rows for (b) matrix for (b) matrix
Ty XTp Ty Ty Tp Tg' Ty Ta Ty Ty T Te
0 0|0 110 0 0j]0j0 1|0 O
0 01 0|0 O 0(0|1 0|0 O
1 0{]0 0]0 O 1(0({0 0|0 O
0 0|0 1|01 0({0|j0 1|0 1
0 0(0 1|1 O 0j0(0 1]1 0O
001 0|0 1 0|01 00 1
0O 0(1 0|1 O 0|01 0|1 0
1 110000 11|10 0|0 O
0 1|1 1)1 1 0|j]1|1 1)1 1
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be true since rearranging the rows of a matrix does not change the total
number of 1’s in each column. Similarly, if priming some columns of a
matrix leaves the rows unchanged, either each column must have an
equal number of 1’s and 0’s or else for each primed column which has an
unequal number of 0’s and 1’s there must be a second primed column
which has as many 1’s as the first primed column has 0’s and vice versa.
Such pairs of columns must also be interchanged to keep the total num-
ber of 1’s in each column invariant. For the matrix of Table II(a) the
only operations that need be considered are either interchanging 2, and
x5 or 23 and , or priming and interchanging x5 and s .

For the present it will be assumed that no columns of the matrix have
an equal number of 0’s and 1’s. It is possible to determine all permuting
and priming operations which leave such a matrix unchanged by con-
sidering only permutation operations on a related matrix. This related
matrix, called the standard matriz, is formed by priming all the columns
of the original matrix which have more 1’s than 0’s, the x5 column in the
matrix of Table II(a). Each column of a standard matrix must contain
more 0’s than 1’s, Table II(b). The N.S; operations which leave the
original matrix unchanged can be determined directly from the oper-
ations that leave the corresponding standard matrix unchanged. It is
therefore only necessary to consider standard matrices.

Since no columns of a standard matrix have an equal number of 1's
and 0’s and no columns have more 1’s than 0’s it is only necessary to
consider permuting operations. The number of 1’s in a column (or row)
will be called the weight of the column (or row). Only columns or rows
which have the same weights can be interchanged. The matrix should
be partitioned so that all columns (or rows) in the same partition have
the same weight, Table II(b). It is now possible to interchange columns
in the same column partition and check whether pairs of rows from the
same row partition can then be interchanged to regain the original
matrix. This can usually be done by inspection. For example, in Table
IL(b) if columns x; and x; are interchanged, then interchanging rows 4
and 8, 5 and 9, and 6 and 10 will regain the original matrix.

The process of inspection can be simplified by carrying the partition-
ing further. In the matrix of Table II(b), row 32 cannot be interchanged
with either row 8 or row 4. This is because it is not possible to make
row 32 identical with either row 8 or row 4 by interchanging columns
and z . Row 32 has weight 1 in these columns while rows 8 and 14 both
have weight 0. In general, only rows which have the same weight in each
submatrix can be interchanged. Permuting columns of the same partition
does not change the weight of the rows in the corresponding submatrices.
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The matrix can therefore be further partitioned by separating the rows
into groups of rows which have the same weight in every column parti-
tion, Table II(c). Similar remarks hold for the columns so that it may
then be necessary to partition the columns again so that each column in
a partition has the same weight in each submatrix, Table II(d). Par-
titioning the columns may make it necessary to again partition the
rows, which in turn may make more column partitioning necessary. This
process should be carried out until a matrix results in which each row
(column) of each submatrix has the same weight. Inspection is then
used to determine which row and column permutations will leave the
matrix unchanged. Only permutations among rows or columns in the
same partition need be considered.

From the matrix of Table II(d) it can be seen that permuting either
columns w3 and x4 or columns x5 and a’ will not change the matrix aside
from reordering certain rows. This means that interchanging x; and x4
or priming and interchanging x5 and x; in the original transmission will
leave the transmission unchanged. Interchanging zs’ and z; means re-
placing x5 by x5’ and x5 by 5" which is the same as interchanging x5 and
2 and then priming both x5 and x; . Thus for the transmission of Table
II Siouss6T = T and NowonSizsesT = NaSuamesT = T

A procedure has been presented for determining the group invariance
of any transmission matrix which does not have an equal number of 1’s
and 0’s in any column. This must now be extended to matrices which do
have equal numbers of 0’s and 1’s in some columns, Table III(a). For
such matrices the procedure is to prime appropriate columns so that
there are either more 0’s than 1’s or the same number of 0’s and 1’s in
each column, Table ITI(a). This matrix is then partitioned as described
above and the permutations which leave the matrix unchanged are de-
termined. The matrix of Table I1I(a) is so partitioned. Interchanging

Tasre ITI — TrangmissioN MATRICES FOR 1 = E (0, 6,9, 12)

(a) Transmission Matrix (b) Transmission Matrix
with ; and 2. primed
!

Ty Tz | Ty T4 Ty Iz’ Ty Ty

0 0 0j0 0 0 00|00

6 01110 10 1 0|1 0

9 1 0/0 1 5 0 1|01

12 1 1(0 0 12 1 1/00

Number of 0’s 2 213 3 2 2|3 3
Number of 1's 2 2|11 2 2|11
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both 2; and @, and 23 and 2 leave this matrix unchanged so that
Sugs? = T. The possibility of priming different combinations of the
columns which have an equal number of 0’s and 1’s must now be con-
sidered. Certain of the possible combinations can be excluded before-
hand. In Table 11I(a) the only possibility which must be considered is
that of priming both 2, and ;. If only 2, or x, is primed, there will be
no row which has all zeros. No permutation of the columns of this
matrix (with 2; or a2 primed) can produce a row with all zeros. Therefore
this matrix cannot possibly be made equal to the original matrix by re-
arranging rows and columns. Priming both x; and x» must be considered
since the 12-row will be converted into a row with all zeros. The opera-
tion of priming 2 and x. is written symbolically as Nuypw = Nu2. In
general, if the matrix has a row consisting of all zeros, only those N;
operations for which ¢ is the number of some row in the matrix, need be
considered. If the row does not have an all-zero row, only those N; for
which 7 is not the number of some row need be considered. Similarly, if
the matrix has a row consisting of all 1’s, only those N; for which there
is some row of the matrix which will be converted into an all-one row,
need be considered. This is equivalent to considering only those N; for
which some row has a number k = 2" — 1 — ¢* where n is the number
of columns. If the matrix does not have an all-one row, only those N; for
which no row has a number k = 2" — 1 — ¢ should be considered.

Each priming operation which is not excluded by these rules is applied
to the transmission matrix. The matrices so formed are then partitioned
as described previously. Any of these matrices that have the same par-
titioning as the original matrix are then inspected to see if any row and
column permutations will convert them to the original matrix. For the
matrix of Table IIL(a) the operation of priming both x; and x» was not
excluded. The matrix which results when these columns are primed is
shown in Table IT1I(b). Inspection of this figure shows that interchange
of either x; and z; or 2 and " will convert the matrix back to the
matrix of Table III(a). Therefore, for the transmission of this table
SulNuaT = T and SauNuwT = T.

2 TOTAL SYMMETRY
There are certain transmissions whose value depends not on which
relays are operated but only on how many relays are operated. For

* The number of the row which has all ones is 2" — 1. If N; operating on some
row, k, is to produce the all-one row, ¢ must have 1's wherever & has 0’s and vice

versa. This means that
i+ k=2"—1 or k=2"—-1-—1.
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TABLE IV — TrANsMISSION MATRIX FOR
T = Z (3,5,6,7) = Sea(wr, 2, 23)

Ty T2 T
011

e
e
-
=

~ example, the transmission of Table IV equals 1 whenever two or
three relays are operated. For such transmissions any permutation of
the variables leaves the transmission unchanged. These transmissions
are called folally symmetric.® They are usually written in the form,
T = Sa,asan(®, 2, =-+ x,), where the transmission is to equal
1 only when exactly a; or as or - -+ or a, of the variables ;, @3 - - - 2,
are equal to one. The transmission of Table IV can be written as
Saa(21, 22, @3). This definition of symmetric transmissions can be gen-
eralized by allowing some of the variables (z;, 22, - -+ x,) to be primed.
Thus the transmission S;(z;, @, 3) will equal 1 only when 2, = 2’ =
3 = loray = a3 = 1and a2 = 0. It is useful to know when a trans-
mission is totally symmetric since special design techniques exist for
such functions.*

It is possible to determine whether a transmission is totally symmetric
from its matrix. Unless all columns of the standard matrix derived from
the transmission matrix have the same weight, the transmission cannot
possibly be totally symmetric. If all columns do have equal weights, the
rows should be partitioned into groups of rows which all have the same
weight. Whether the transmission is totally symmetric can now be de-
termined by inspection. If there is a row of weight k; that is, a row which
contains & 1’s, then every possible row of weight & must also be included
in the matrix. This means that there must be ,Ci rows of weight & where
n is the number of columns (variables).* If any possible row of weight %
was not included then the corresponding £ literals could be set equal to
1 without the transmission being equal to 1. This contradicts the defi-
nition of a totally symmetric transmission. In Table V(b) there are 4
rows of weight 1 and 1 row of weight 4. Since 41 = 4 and 4Cy = 1 this
transmission is totally symmetric and can be written as Sy (21, 2, 23,
24"). The number of rows of weight 1 in Table V(d) is 2 and since 4€; = 4
this transmission is not totally symmetric.

A difficulty arises if all columns of a transmission matrix contain equal

n!

* .Cy is the binomial coefficient W= B
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TABLE V — DETERMINATION OF TOTALLY SYMMETRIC TRANSMISSION

(a) Transmission Matrix for (b) Standard Matrix for
T=12.(0,4,7,10,13) T=73(1,4,710,13)
showing that
T = 51_4 (171 ’ .'Ez’ , T3, I4')

Iy Tas Ty T4 I :rg':cax 4
1 0001 1 0 01
4 0100 2 0 10
4 0100
10 1 010 8 1 000
7 0111 15 1111
13 11 01
Number of 0’s 3 23 2 33 3 3
Number of 1’s 2 3 2 3 2 2 2 2
(¢) Transmission Matrix for (d) Standard Matrix for
T =3 (3,5,10,12,13) T=73(,510,12,13)
showing that it is not
totally symmetric
Tl T2 Ty Ta o’ 20’ x5 T
3 0011 0 0
5 0101

10 1010 1 00 01
12 1 100 8 1000
13 1101 7 0111
14 1110
Number of 0’s 2 2 3 2 3 3 3 3
Number of 1’s 3 3 2 3 2 2 2 2

TaBLE VI — DETERMINATION OF TOTAL SYMMETRY FOR
T =3 (0, 3, 5, 10, 12, 15)

(a) Transmission Matrix (b) Standard Matrix
for T'(x1 , &2 , T3, Ta) for T'(1, 22 , T3, T4)
T) Ty Ty Ty Ty’ T3 T4
0 0000 100
3 0011 010
5 0101 001
10 1010
12 1100 Number of 0’s 222
15 1111 Number of 1’s 111
Number of 0’s 3 3 3 3 T(1, xa, T3, Ts) = Si(z2', 7', z4)
Number of 1’s 3333
(c) Standard Matrix for T'(0, 22 , s , 4)
Za Ty T4
001
010
100
Number of 0’s 2 2 2
Number of 1’s 111
T, 2, 3, 2q) = Si(@2, 73, ) = Sa(zs’, zs', T4)
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numbers of zeros and ones as in Table VI(a). For such a matrix it is not
clear which variables should be primed. It is possible to avoid considering
all possible primings by “‘expanding” the transmission about one of the
variables by means of the theorem

T(xl y Loy =t fﬂn) = xlT(11 Ta, * o xﬂ) + xliT(Or Lo, * xﬂ)2'3
and then making use of the relation:

Sﬂl:ﬂar"'“m(zls"l?ﬂ:"'xn)

= xlSﬂl_l y @ar—1jy aa=1, * " " n,,ﬁl(-";z; e xm)
+ 21'Sa; 5 ars 0 ap (@2, 00 @)

This technique is illustrated in Table VI. The standard matrix for
T(1, xs, a3, x5) has three rows each containing a single one so that

T(l, L2, T3, ZU4) = Sl(l‘zr, 1'-3’, 2,'.;)

The transmission 7'(0, a2, a3, x4) has an identical standard matrix so
that

T, za, x5, 24) = Si(xs, 23, )
This can be written in terms of ', zy’, and x4 :
Sl(ﬂiz , T3, 134') = Sz(fﬂzf, 50.1', -'134) 5,
Finally
T(xy, 22, 23, %) = ©T(1, 22, 2, xs) + 2/ T(0, 22, 23, 24)
= 2812y, a8, x) + 2/'Selzy’, adf, 1) = Salwr, 2, ', ). *

The method just presented for detecting total symmetry is more sys-
tematic than the only other available method® and applies for transmis-
sions of any number of variables.
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