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A magnetized gyromagnetic medium is birefringent. The effect of bire-
Jringence 7s studied in rectangular and circular waveguides with special
. altention paid to propagation characteristics in guides of arbitrarily small
cross-section. Propagating, small-size structures are found in certain ranges
of magnetization for both types of guide.

I. INTRODUCTION

A gyromagnetic medium, isotropic in the absence of a magnetizing
field, becomes axially symmetric with respect to that field when mag-
netized. A tensor susceptibility! is thus produced which reflects the
resulting anisotropy. Two essentially different types of rays appear in
the medium in much the same manner in which the ordinary and extra-
ordinary optical rays form in a caleite crystal. These rays may combine
to produce results in a ferrite loaded waveguide quite alien in character
to those of a conventional isotropic guide. Since the ferrite is, to first
order, characteristic of general gyromagnetic media we shall discuss all
gyromagnetic phenomena in terms of ferrites alone,

One very startling phenomenon observed in ferrite loaded waveguides
is the occurrence of propagation in a waveguide of arbitrarily small
transverse dimensions.* We shall show that this type of wave guide
behavior is a consequence of the particular form of the birefringent
character of the medium.

In order to understand the nature of the ferrite loaded case let us first
consider the conventional isotropic small wave guide. Fig. 1 shows,
schematically, the field distribution encountered in a small rectangular
waveguide operating in a (1,1) mode. The x axis is shown along the
wide transverse dimension and z is along the narrow height dimension.
The y axis is chosen to coincide with the guide axis.

The field solutions of such a waveguide may be obtained as a super-
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Fig. 1 — Rectangular waveguide mode in isotropic medium for cutoff guide.

position of plane waves of dependence e~ If we represent & in a
cartesian frame, the wave equation is satisfied for the condition

F=k+k +k =doue

where u and e are the permeability and permittivity respectively of
the medium. Satisfaction of wall boundary condition requires that k.
and k. be real and that each be of the order of the reciprocal of the
transverse guide dimensions. Small transverse dimensions thus cause k,”
to be negative, driving the waveguide into a cutoff condition.

We shall now find that birefringence permits another class of modes
in the small size ferrite loaded waveguide. Letting the magnetic axis be in
the z direction, it will be shown in the text that corresponding to any
mode of the guide k, and k, are unique. Birefringence generally requires
that two different magnitudes of & occur simultaneously, causing two
different values of %, to appear. In particular, let us postulate that both
these values of k, are imaginary. Given two exponentials, it is possible
now to satisfy the requirements of electric field nulls at either side wall,
as shown in Fig. 2. At the other side wall we shall show that the ex-
ponentials decay so fast as to effectively cause the field to vanish there.
Since k%, » are now negative quantities, there is no contradiction in pre-
suming that k,’ may now be positive, thus permitting propagation in an
arbitrarily small size waveguide.

The effect of birefringence may then be that of transforming a class
of longitudinally cutoff modes into another class that propagates longitu-
dinally but cuts off transversely. The condition of this occurrence w ill
be shown to be that for which the diagonal term of the Polder tensor, p,
is positive and is lessin magnitude than the magnitude of the off diagonal
term . In the case of a small rectangular guide, propagation occurs
anomalously for negative values of , as well but in a manner not as
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substantially dependent on the birefringent character of the medium for
large width to height aspect ratios of the waveguide. We shall find,
further, that propagation occurs with entirely real values of k. and . .

It will be shown that the proper wave equation for one of the two
birefringent rays is satisfied in the small waveguide limit by the rela-
tionship

ke 4 k) 4+ ki /u = 0.

In the region of ¢ > 0, and k. real, we confirm somewhat more rigorously
the requirement stated earlier that either k. or k, be imaginary. However,
k, and k, may both be real over a range of negative values of u, permitting
boundary conditions to be satisfied, approximately, in waveguides
having aspect ratios of the type discussed earlier, by just one class of
rays in the small size waveguide.

Propagation in small size circular guide employing the essential charac-
ter of birefringence, occurs over the entire range of | u| < |«|[. This
range is divided into that of p > 0 and that of 4 < 0. Transmission
oceurs in one sense of circular polarization in each of these regions and
for both senses for u < 0. Thompson® has suggested that propagation in
a small circular waveguide might be attributed to the negative permea-
hility of one preferred polarization; it appears, however, that propaga-
tion is possible over a considerably wider range of conditions and
for somewhat different reasons.

In the case shown in Fig. 2, higher propagating modes occur in a
rectangular waveguide when one half or more sinusoids of field varia-
tion oceurs in the z direction. These simply produce the result of stronger
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Fig. 2 — Mode in ferrite filled rectangular guide.
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transverse cutoff. Therefore, by demonstrating the existence of the
lowest order mode we show that an infinite number of these anomalous
modes may propagate simultaneously. These modes are, however,
bound very tightly as surface waves to the side walls of the guide because
of their strong transverse cutoff. The medium is therefore used in a
very inefficient manner and high loss results, the loss increasing with
mode number.

The higher propagating rectangular waveguide modes have an ana-
logue in the higher propagating modes in a ferrite filled circular wave-
guide. This analogue occurs in terms of the integral number of peripheral
variations. We find, similarly, an infinite number of such propagating
modes each one corresponding to a given polarization sense and having
a given number of peripheral variations. The reservations on practical
transmission still hold in the same manner as in the rectangular case.

In the course of preparing this publication it was brought to the
author’s attention that Mikaelyan' employed an analysis similar, in part,
to that developed here. It is felt, in the present analysis, that the physical
results are made more readily evident by a consideration of the limiting
case of small guides, with large ratios of width to height in the case of
rectangular waveguides. The choice of such large ratios is made to
simplify analyses involving imaginary values of k., and k.., wherein
the wave is considered to be bound to one wall of the guide and reflec-
tions from the opposite wall are of negligible amplitudes.

II. ANALYSIS OF TRANSVERSELY MAGNETIZED FERRITE IN RECTANGULAR
GUIDE

The character of the ferrite medium is introduced through the Polder
permeability tensor:

woix 0
T=|—ik u 0 1)
0 0 1

The quantities u and « relate to the self and inductive permeabilities
transverse to the z axis. The relative permeability along the z axis is
given as unity. These permeabilities may be expressed as follows in
gaussian units.'

47 M yywo
0! — o

p=1+ (2a)
47 M yw
= —-

LIJ02 ‘—(.dg

(2b)
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v = 2.80 Mec/sec/oersted
wy = vH,

H, = Internal dc magnetic field

47M, = Saturation magnetization
Maxwell’s equations are given as:
Curl H = iweE (3a)
Curl E = —dwpu,T-H (3b)

Assuming a plane wave of dependence & *—*R) and appropriately
combining (3a) and (3b), we have,

(kk — KT + o’euT]-H = 0 @)

The operator in square brackets is a dyadic which may be repre-
sented in matrix form. The quantity 7 is the idemfactor, having a unit
diagonal representation. If we are to require that a non-trivial field H
exist, the determinant of the operator in (4) must vanish. Since all rays
traveling perpendicularly to the magnetizing axis are equivalent the
medium is degenerate in the transverse plane, and some simplification
is achieved in causing k to lie in the yz plane and letting &k, = 0. Some
further simplification is achieved in normalizing the Polder tensor such
that

fig O
7= (=i f o0 (5)
W E Lo
0 0 h
The following secular equation is then formed.
- +f g 0
—ig  —k'4+f kk | =0 (6)
0 kk. —k'+h

Introducing the substitution p = k.°/k*, and recognizing that

]‘:2 — kz(l - p)
u z p
we have upon expanding (6),
P = ¢ A B = fh = )]
+ 2l — k' = 15+ fh = @] + kS = 0.

(@)
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We note, in general, two solutions in p corresponding to each value of
k. , indicating birefringence of the medium. In particular k. must be
non-vanishing for birefringence to occur or, stated alternatively, rf
field gradients must exist parallel to the applied magnetic field to obtain
birefringence.

The characteristic vector solutions of (4) may be expressed for each
solution of (7); they are the magnetic fields,

1
i( _mj
g P
H-_—'Hz k,z
$E'kf(l—p)% ( _-”_)
g » (

ho— k2 (l_—_P))
P
and the corresponding F fields,

'h ( _fﬁ)

1 -

gh_ﬁz( p)
E— k. . P g iCytha) )
we _1

H

= (57)
L 4 J
The sign indeterminacy above is defined with respect to the ratio
k,/k. , the upper sign being given by the positive value of this ratio.

We shall analyze the rectangular waveguide by first seeking parallel
plane solutions and then utilizing these solutions to form those of the
rectangular guide. We choose as parallel planes those perpendicular to
the applied magnetic field, or z direction and having a separation b.
Because of the absolute uniformity of this type of structure, the field
configurations as a function of the coordinates transverse to the magnetic
field, z and %, may change only by a uniform phase factor. Again, the
choice of transverse axes is made such that these phase variations oceur
only along y.

Trom (7) we would find that a specification of &, leads to a quadratlc
equation in p, with an appropriate consequent multiplicity in k.. Let
us define as a partial wave any standing wave in the z direction corre-

e—i(kuv-Hs,z) (8)

\
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sponding to some linear combination of the positive and negative values
of k. for one of the values of k.. Examination of (9) reveals that the
ratio of E, to ., the field components tangent to the bounding walls,
to be independent of the sign of k.. Hence, each partial wave has an
individual value of this ratio irrespective of its standing wave distri-
bution in the z direction. It is thus impossible, in general, to provide
a mutual cancellation of two or more partial waves at the electric
walls by combinations of such partial waves, with the consequence that
each partial wave must individually satisfy the boundary requirement.
We find, then, that each partial wave takes on the familiar condition
Ik, = mx/b.

The parallel plane waves now will be appropriately oriented and
superposed to satisfy the side wall boundary conditions in the rectangular
guide. Since, as shown in I'ig. 2, mutual cancellation is required on the
side walls of the rectangular guide, the rate of vertical variation must
be identical for all the component parallel plane waves; thus m is a
constant of the waveguide mode and k. is uniquely specified.

Two essential characteristics thus define a rectangular waveguide mode
in a transversely magnetized, ferrite filled, medium.

1. The modes are ordered by integral values of m in the relationship
k., = mxn/b.

2. The propagation constant k, is uniquely specified.

Standing waves may now be formed in the z direction satisfying electric
boundary conditions at the parallel planes. Each partial wave of the
electric field may then be expressed as follows corresponding to its
appropriate value of p:

f— l mw : sin T ,
h b b
(5 ()
_mmw £-:'(mrfmu-p.'p)iu

— H,
bwe L. Tz

b

(1 — p)* cos 2T,
P b
Let us now specialize our analysis to the small guide case. The require-
ment of birefringence to produce small guide propagation demands
that k. be non-vanishing and that m take on an integral value of unity
or greater. We have, from (7), the two limiting values of p corresponding

(10)
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to a small value of b,

f—h k' w—1
fP=fh—¢ Pmep—p—«

=k (11b)

Discarding the z dependence in equation (10) and dropping a constant
multiplier, the two characteristic electric field solutions become:

(1 — 4
K
E(l) — z S(fmrl'b)#_!y (12)
W)
0
E(2) = |1 E(m:r.fb)zr (13)
7

Equations (12) and (13) are parallel plane solutions obtained for
some arbitrary direction, y, transverse to the magnetic field. This direc-
tion need not be intrinsically real; mathematically, it simply satisfies
Maxwell’s equations. We may transform to a desired waveguide frame
of reference by rotations ¢; and ¢s , corresponding to pr and p:, about
the z axis, where these rotations may possibly be made through complex
angles. We then have for the electric fields in the new space:

H cos ¢1 + 7 sin ¢

K

E(U — (1 _ (mx/b)u~Hycoseg +zsing;) (14)

”) sin ¢ + 2 cos ¢
K

i

7 Sin ¢
E(2) N 1 oS @2 s(mrlb)(ycnaqu+zuinwg) (15)
7
The new # axis of the transformed coordinates is now considered the
longitudinal axis of the waveguide.
The partial wave fields of (14) and (15) may be joined to form a single
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mode by equating the propagation constant. Therefore,
COS @ = p_s COS ¢ (16)

where cos ¢, is imaginary for propagation. Propagation may therefore
oceur for ¢ > 0 and cos ¢ imaginary and/or, p < 0 and cos ¢ real.

Boundary conditions require £, and k. to vanish at both guide side
walls. Four equations result which may be satisfied, in turn, by a super-
position of four transverse waves involving kz, , —kz,, bz, and —k.,
corresponding to values ==¢; 2. For u > 0 both of the birefringent rays
have transverse decay. Since the magnitudes of k,,, are large in small
size guide (see Introduction) boundary conditions need be satisfied for
practical purposes at only a single wall. We are then left with the sim-
plification of only two equations in two unknowns.

Setting = 0 in (14) and (15) and taking equation (16) into account,
we have the boundary conditions

A l:— (—1;”2 sin ¢ + 1 cos ¢1:l + B[i,u“E cos ¢ =0 1n
K

A1+ B=0 (8

With the result that

cobg = —i 2 = (k—”> (19)
K k 2,
Choosing k, positive real, k., is positive imaginary for « positive and
negative imaginary for x negative. The rf field therefore hugs the right
wall for « > 0 and the left for « < 0, or, alternatively, switches sides in
the change from a forward to backward direction of propagation.
Equation (19) may be written equivalently as

2

cos” ¢ = - # (20)
u

]
P

Propagation, oceurring for imaginary values of cos ¢ and ¢ > 0, is ob-
tained for | u | < |x|.

Let us now analyze, the possibility of small guide propagation for
g < 0. We find, from (16), that cos ¢ is real for this case. Two cases
arise; the first for which | cos ¢ < 1 and the second for the reverse
situation.

Let us first consider the case of | cos ¢ | < 1. From (14), k., is real
whereas from (15) k., is imaginary. Let us associate wave amplitudes
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with z dependences as follows:
Ag %"

B Ei’k: 1=
Ce %"
D sﬂ:gz(i-—a)
where @ is the guide width. Let us assume that %, is a sufficiently large
imaginary quantity of such sign that
gt L]

This assumption will be seen to be consistent with the solution. [(26b)

for small size guide.]
Setting up the boundary conditions for E, and E, at x = 0, we have

from (14), (15), and (16),

m-m@

1) sin ¢ + (4 + B) cos g1 + iCutcospr =0  (21a)

K
A+ But+0C=0 (21b)

let r = B/A. Combining these last two equations we have

i—_—‘._—: = i cot ¢ (22)
Satisfying the boundary conditions at = = a produces an equation
similar to (22) with the substitution
r— re W = g
Thus
1—r 1-— re” ™ (23)

T4+r 1+re®
Equation (23) is satisfied by the condition N = nmr. Since k., =
i(mar/b)u ! sin @1 , we have
. . b
sin g1 = it = > (24)
ma

The assumption that cos ¢, is real and less, in magnitude, than unity is
realized by the condition

(—,u)*%% <1 (25)
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Only in the limiting condition of @ infinitely greater than b do all modes
(m, n) propagate in the negative region of p. In this particular case,
sin ¢ = 0 and we find from (21a) and (21b) that ¢' = D = 0. Thus we
find a situation in which the guide boundary conditions are satisfied by
but a single class rays of the two classes available.

This result is entirely comprehensible if we observe the wave number
relationship obeyed by & and %k, . Employing the definition of p which
states that &* = k.°/p, and using (11a) and (11b), we have

kel + k)’ + kS /u =0 (26a)
Fry + hyy + k5 =0 (26b)

As stated in the Introduction, it is an entirely consistent procedure to
satisfy boundary requirements with real wave numbers over the negative
range of p using the elass of rays indicated for (26a) above.

More generally, (25) shows a complex relationship of the ordering
of propagation modes by n and m, for finite a, for a given negative value
of u. In contrast to the p > 0 case, propagation may possibly not occur
for a range of lower order integral values of m. As u becomes increasingly
large in magnitude, m must likewise take on increasingly higher values
for transmission to occur.

The case of cos ¢; real and greater, in magnitude, than unity, leads
to trivial result. Both partial waves have imaginary values of k., for
this case, and the far wall receives essentially no coupling. Analysis
simply repeats the result of (20) and we find that | p | > | x| and p < 0.
If the Polder tensor components given in (2a) and (2b) are plotted (see
Fig. 5). We find that this last set of inequalities form an impossible
combination.

Summarizing we find that a rectangular waveguide of any dimension
(and, in particular a guide of arbitrarily small dimensions), filled with a
lossless transversely magnetized ferrite medium, will support an infinite
number of freely propagating modes at any frequency for which | x| <
| ¥ |. The character of these modes differs considerably in the two regions
of p < 0 and p > 0 and somewhat different viewpoints of propagation
must be taken. We shall find similar results relating to the longitudinally
magnetized ferrite filled circular waveguide in the following section.

TII. ANALYSIS OF LONGITUDINALLY MAGNETIZED FERRITE IN CIRCULAR
GUIDE

We now proceed to a second structural geometry in which an anoma-
lous behavior occurs attributable to the birefringence of the medium.
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This is the circular guide which has been the subject of considerable
analysis by Suhl and Walker. It is instructive, however, to repeat the
analysis of this case, in the small guide limit, showing more pointedly its
behavior from the viewpoint of combinations of the two types of waves
in the medium.

The character of transmission in undersized circular waveguide is
very similar to that of the undersized rectangular case. We may demon-
strate the physical significance of this statement by the following argu-
ment. The excitation in a rectangular waveguide, for |p| < |«| and
p > 0, is essentially that of a surface wave bound very tightly to a
single wall. Considering this wall alone, which may now be extended to
arbitrary dimensions but with k. kept large, it may be wrapped upon
itself either about the magnetic field as an axis or containing the mag-
netic field peripherally. In either event, the wrapped guide must start
and terminate at the same phase, requiring a multiplicity of 2= around
the circumference, and the wave must thus continue to have a large
k. value. Considering the large value of %, and the state of excitation of
the ferrite, the small circular guide may propagate.

Analysis will demonstrate that propagation also takes place in the
region u < 0. The quantity k., is real and k., imaginary, see (26), leading
to a case essentially similar to that of the rectangular waveguide. The
analogy is appropriate to the case of b/a of finite value for which the
rectangular guide requires the appearance of both refractions. We now
proceed to obtain the field solutions for the circular guide.

Referring to (9) for the plane wave solution of the electric field, let
us define to within a constant multiplier.

1B,
E = |E, | githwrth? (27)
E,
where, for the case of large k. (9, 12, 13)
g =L1=F  go_g
EY = Eé’K’ = -1
E® =4 EP =i
kk_": =iy ’;c_” =i

We shall consider here, of the two possible wrapped-wall structures,
that case in which the magnetic field is applied axially as shown in Fig. 3.
Referring to Fig. 4, the cylindrical drical electric wave satisfying Max-
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well’s equations and the boundary conditions for this structure is ob-
tained by integrating plane waves of the form of (27) traveling at all
possible angles ¢, the integration being subject to a weighting factor
G(¢) to obtain the most general field. The coordinates (7, @) refer to the
physical system and the coordinate ¢ identifies a plane wave traveling
along a particular y axis. We have thus in an (r, ¢, 2) coordinate frame:

cos{ sin{ 0] [iE:
2r
E = 2i f GW) | —sing cos¢ 0| B,| e @ (28)
T v

0 0 1) E. &
Recognizing that
dy = df
y = rsin {
and GY) =G — o)

an integration results over the variable {. Because of the uniqueness of
the field as a function of ¢, the only term containing ¢, G({ — ), must
be a periodic function in its argument. A typical mode is formed by
clgczgsi?g one of the terms of the Fourier series of G(¢ — ), namely
gt

We find from (28) that
) [Ez E,Jn(P) + Ean’(P)]

—i(kzztne)
n = ’ : 29
B msie + B 56| (29)

E.J.(p) J

where E, is that partial expansion of the total field E, corresponding to
the number of angular variation n, and p = k,r. There are two values of
p corresponding to the two values of k, , and each leads to a partial wave.
Let A and B be the respective partial wave amplitude; satisfying the
boundary conditions on ¥, and E. , we have from (29):

A (1 - “) I (o) — ”;—‘:1 Tule) — Julpd) = 0 (308)

Ap~ () + BJu(p) =0 (30b)

where py and ps are defined for r = R, the radius of the cylinder. Recog-
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nizing that py = u ’p2, we have from (30)
Jan (Pl)

'uJ (p) + n =22 = * (31)

where p, = 'ifcz,u_aR .
Equation (21) may be modified by a recurrence relationship to become

K pi Jap (P)
fr1=n 32

I n Jn(Pl) ( )
For p > 0 the quantity p, is a pure imaginary for large real values of
k. . Since the n*" order Bessel function is monotonic in imaginary argu-
ments and possesses the multiplier (7)", the right-hand side is negative
for n positive. For n > 0, propagation occurs for

|k > | ul
Sgn k = —sgn p

Inspection of (31) reveals that a reversal of the sign of n is equivalent
to reversing the sign of «. This conforms to the physical situation in
which reversal of the sense of circular polarization is equivalent to the
reversal of magnetic field. Thus forn < 0 and u > 0,

x| > |ul
Sgn k = Sgn u

We find, from the above arguments, that just one sense of circular
polarization propagates in an undersized circular guide for 4 > 0 and for
a given direction of the magnetic field. It will be demonstrated shortly
that propagation occurs for p < 0, but with an entirely different struc-
ture of modes. The right-hand side of (32) is monotonic as a function of
p for p > 0, leading to only one solution for each value of n. This will
not be the case for p < 0.

It is of interest first, however, to observe the limiting approach to

= 0 in the region of p > 0. The right-hand side of (32) is finite for
finite imaginary values of p; , so that the only solution as u approaches
zero is that for which the magnitude of p; becomes infinitely great. The
Bessel function is asymptotically expansible as a cosine divided by a
square root of its argument. Thus

1 i(p1(2 —i
Jn(Pl) I Vizr (8‘(p.+[ n+1](x/4)) + ¢ -(p1+[2n+11(m))) (33)
1

* Equation (31) may likewise be obtained from the small radius limit in (34)
of Reference 2.
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Considering p; to be positive imaginary, as p — 19, (32) becomes

K _ _7:91
Piadar (34)
Substituting for p; , we have
Nk
k. = — 35
. (35)

Thus, as u approaches zero from values greater than zero, the propaga-
tion constant tends to become singular. Physically, however, u does not
vanish but approaches a small imaginary value caused by ferrite losses.
The propagation constant k. becomes complex and takes on a large
imaginary component, signifying large guide attenuation. Since these
losses occur in the limited neighborhood of u = 0, we may construe this
waveguide behavior as corresponding to a system resonance.

In the region ¢ < 0, p; becomes real while p, remains imaginary. The
right-hand side of (32) is now composed of only real arguments. Since the
zeros of different order Bessel functions alternate, the right side of (32)
contains a succession of poles and zeros, leading to an infinite number of
branches with each containing a solution p; to the equation. Thus there
are an infinite number of propagating modes corresponding to each value

Fig. 5 — Frequency characteristics of Polder tensor components.
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of n, in marked contrast to the case of u > 0. The solutions remain identi-
cal, as before, if both « and n are simultaneously reversed in sign, but
differ if only one of the two quantities is reversed.

Since p = 0 is a branch point, the limiting condition as u approaches
zero for values p < 0 differs from that for the reverse case. Equation (32)
is now satisfied in the limit of small u by the real zeros of J,(p;). Since
these roots are finite, k., equal to —(— ,u):‘p]/ R, tends towards zero for
all modes. Since the formulae developed in this paper always presume
large wave numbers, we may infer a vanishing value of k. to simply
represent a value which is small relative to the reciprocal of the wave-
guide radius. In any event, k. is no longer singular at 4 = 0, and there
is no resonance in the approach from negative values of u.

In sum, the features of the circular guide strongly resemble those of
the rectangular guide in the region of ¢ > 0. This was to be anticipated
by the “wrapped wall” construction where the wave is tightly bound
to the wall. The wrapped equivalences do not hold in the region p < 0
since, with harmonic transverse dependence, the wave is no longer
bound to the wall. This lack of equivalence is manifested in the matter
of ordering modes. For a rectangular waveguide of finite aspect ratio, we
find from (25) that there are but a finite number of modes corresponding
to each value of m for p < 0. The circular guide differs in providing an
infinite number of modes corresponding to each value of n. Further,
whereas the circular guide covers the entire range of | x| < |« [, (25) in-
dicates that the various modes of the rectangular guide covers a more
restricted range determined by the guide aspect ratio.

IV. CONCLUSIONS

The waveguide behavior analyzed in this paper has been experi-
mentally observed® and good correlation has been obtained. From the
viewpoint expressed of forming a guide cross-section by wrapping a wall
to which a surface wave is bound, we may anticipate that the unusual
behavior observed in the two types of guides examined is probably
characteristic of many other structures.

It is not clear, at this time, if the complete set of modes of either the
rectangular or circular guides have been exhausted. We already observe
that an infinite number of modes propagate simultaneously so that
scattering problems become considerably more complex than in the usual
cases. It is felt by the author that the field of waveguide analysis calls
for new methods and techniques of modal synthesis when ferrite loaded
structures are considered.
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