Binary Block Coding
By S. P. LLOYD
(Manuseript received March 16, 1956)

From the work of Shannon one knows that it is possible to signal over an
error-making binary channel with arbitrarily small probability of error in
the delivered information. The effects of errors produced in the channel are
to be eliminated, according to Shannon, by using an error correcting code.
Shannon’s proof that such codes exist does not provide a practical scheme
for constructing them, however, and the explicit construction and study of
such codes 1s of considerable interest.

Particularly simple codes in concept are the ones called here close packed
strictly e-error-correcting (the terminology s explained laler). It is shown
that for such a code to exist, not only must a condition due to Hamming be
satisfied, but also another condition. The main result may be put as follows:
a close-packed strictly e-error-correcting code on n, n > ¢, places cannot
extst unless e of the coefficient vanish in (1 4+ x)°(1 — )"~ when this is
expanded as a polynomial in x.

1. INTRODUCTION

In this paper we investigate a certain problem in combinatorial
analysis which arises in the theory of error correcting coding. A develop-
ment of coding theory is to be found in the papers of Hamming' and
Shannon?; this section is intended primarily as a presentation of the
terminology used in subsequent sections.

We take (0, 1) as the range of binary variables. By an n-word we mean
a sequence of n symbols, each of which is 0 or 1. We call the individual
symbols of an n-word the letters of the n-word. We denote by B, the
set consisting of all the 2" possible distinct n-words. The set B, may be
mapped onto the vertices of an n-dimensional cube, in the usual way,
by regarding an n-word as an n-dimensional Cartesian coordinate ex-
pression. The distance d(u, v) between n-words « and ¢ is defined to be
the number of places in which the letters of w and » differ; on the n-cube,
this is seen to be the smallest number of edges in paths along edges be-
tween the vertices corresponding to w and v. The weight of an n-word u
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is the number of 1’s in the sequence u; it is the distance between u and
the n-word 00- - -0, all of whose letters are 0.*

A binary block code of size K on n places is a class of K nonempty dis-
joint subsets of B, where in each of the K sets a single n-word is chosen
as the code word of the set.t Each such set is the detection region of the
code word it contains, and we shall say that any n-word which falls in a
detection region belongs to the code word of the detection region. The
set consisting of those n-words which do not lie in any detection region
we call limbo.I A close packed code is one for which limbo is an empty
set; i.e., a code in which the detection regions constitute a partition
(disjoint covering) of B, .

A sphere of radius r centered at n-word u is the set [vid(u, v) = r] of
n-words » which differ from wu in 7 or fewer places. A binary block code is
e-error-correcting if each detection region includes the sphere of radius e
centered at the code word of the detection region. We say that a binary
block code is strictly e-error-correcting if each detection region is exactly
the sphere of radius e centered at the code word of the detection region.

This paper is devoted to the consideration of close packed strictly
e-error-correcting binary block codes. We shall refer to such a code as
an e-code, for brevity. Hamming' observes that a necessary condition
for the existence of an e-code on n places is that

1+n+%n(n—1)+---+(") (1)

€

be a divisor of 2". In this paper we derive an additional necessary condi-
tion. Our condition includes as a special case a condition of Golay* for
the existence of e-codes of group type, and applies to all e-codes, whether
or not they are equivalent to group codes.§

* If B, is regarded as a subset of the real linear vector space consisting of all
sequences o = (@ @2 , **- ,a,) of n real numbers, then the ““weight’’ of an n-word
is simply the £ norm (defined as ||« || = El" | an |), and our ‘‘distance’’ is the
metrie derived from this norm.

t The term “block code’, due to P. Elias, serves to distinguish the codes of
fixed length considered here from the codes of unbounded delay introduced by
Elias, Reference 3.

1 In a communications system? using such a code, the transmitter sends only
code words. If, due to errors in handling binary symbols, the receiver delivers
itself of an n-word other than a code word then: (a) if the n-word lies in a detec-
tion region, one assumes that the code word of the detection region was intended;
(b) if the n-word lies in limbo, one makes a note to the effect that errors have
oceurred in handling the word but that one is not attempting to guess what they
were.

§ The terms “group alphabet” (Slepian®), ‘‘systematic code’” (Hamming!),
“symbol code” (Golay*), “check symbo} code” (Elias?), “parity check code”, are
roughly synonymous. More precisely, a group code is a parity check code in which
all of the parity check forms are homogeneous (‘“‘even’), so that 00 --- 0 is one
of the code words; see Reference 5.
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II, DISTRIBUTION OF CODE WORDS

Suppose an e-code on n places is given. Let us inquire as to the dis-
tribution of weights of code words. We denote by », the number of code
words of weight s, 0 = s < n, and by

G(2) = ;ﬂ e )

the generating function for these numbers, with x a complex but other-
wise free variable. We show in this section that G(z) satisfies a certain
inhomogeneous linear differential equation of order e.

If there exists an e-code on n places then this differential equation will
have G(x) as a polynomial solution; the necessary condition for the
existence of an e-code on n places given in Section 4 is essentially a
restatement of this fact.* First, however, we must derive the differential
equation and obtain its solutions.

If w, is a code word of the given c-code (1 = o = K), define the set
of j-neighbors of w, as the set of n-words which lie at distance exactly j
from w, ; designate this set by S;(w.). (Sy(w.) is the set whose only
element is w, itself.) Our derivation is based on the observation that, in
an e-code on n places, ‘

C-=

Si(ws) = B, T (3)

0

K
U
a=1 j

is a partition of B, . For, the detection regions:

‘UD Si(wa), l1=a =K
ot
are disjoint, and in each such sum representing a detection region the
summands are disjoint (the distance function being single valued).
Furthermore, each n-word of B, lies in some detection region (close
packed property) and hence appears in one of the sets S;(w.) for some
a and for some j satisfying 0 = j < e.

The set

U Si(wea)
a=1

* The author is not yet able to demonstrate the converse. That is, suppose one
obtains a polynomial solution G(z) of (11), below, satisfying appropriate boundary
conditions, and from it some coefficients », ,0 £ s £ n. It does not follow from
the methods of this article that there is actually some e-code on n places for
which these », represent the number of code words of weight s,

t U = set union,
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consists of the n-words which are j-neighbors of some (not specified)
code word; let us refer to these n-words simply as j-neighbors. Denote by
v;,» the number of j-neighbors which are of weight s (with »,, = v, as
above). Applying (3) to the n-words of weight s, we see that

8

Vs+yl,t+"'+vc,s=(n), Oésgn (4)

is the total number of n-words of weight s. If we multiply (4) by " and
sum on §, we have

Gz) + Gi(x) + -+ + Gea) = (1 + )" (5)
where
Gila) = 3w ©

is the generating function (with respect to s) for the numbers v;,; .

We now express G;(x), 0 < j = e, in terms of G(x). Suppose code
word w is of weight s; that is, w consists of s ones and n — s zeros in
some order. A j-neighbor of w is obtained by choosing j places out of n
and changing the letters of w in these places, 0’s to 1’s and 1’s to 0’s. If,
in this procedure, ¢ of the 1’s of w are changed to 0’s, so that j — ¢ of
the 0’s are changed to 1’s, then the resulting j-neighbor of w is of weight

s — g + (7 — q). Now, there are (S ways of choosing ¢ places among

the s where the letters of w are 1, and there are independently (;1 _—_ 2)

ways of choosing j — ¢ places among the n — s where the letters of w

are 0. Thus, of the (j’ different j-neighbors of w, the number (Z

(?’ : Z) are of weight s + j — 2¢. We may regard each of these as con-
tributing 1-2*7 to the generating function G,(x) of (6) (provided
0 < j < e, so that there is no overlap); hence, summing over all j-neigh-

bors of a code word and then over all code words,
Gilx) = 22w 2, (8)(n - s) gt 0j=<e* (7)
=0 a=p \9/\J — ¢
From the easily verified polynomial identity
(2: + y)a(l + :tfy)"ﬂ — Z yi E (s)(n - 3) :_Us-i-i—w
=0 g=0 \@/\} — ¢

* The limits (0, =) on the g summation are merely for convenience; the bi-
nomial coefficients vanish outside the proper range, under the usual convention.
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(n, s integers, 0 < s < n) it follows that

o~ (s\(n — 8\ _sri2g 1 (m + 1 + :Ly)“_
-zg (q)(j - q) ! C 2m yH

where contour (' is, say, a small circle around the origin, taken posi-
tively. Thus

N (% + )1+ :cy)""
Gi(x) = § omi i dy
1 (1+$y) (w+y) (8)
T 2mi yitt @ 1+ 2y dy
= L,G(:v)

where the operator L; is thus defined. Change of integration variable
gives
R G(z) dz
2w e; (1 — z2)m—itl(z — )it
1—-2a%""d G
71 021 (1 — z2)"i |,
(n - 'p) 271 — %) dPQ(a)
J—r p! dx?
(with €', a small circle enclosing x but not 27", 2* % 1). Thus L; may be
regarded as a linear differential operator of order j, (L, = 1).
Using this result, (5) may be given the form

(L4 2)" = Lo+ L + - + LIG®)
1 [yt =1 _,.(:c+y)
"l 1=, Wi )v (0
= MG(x)

this last expression as a definition of operator 3. Written as a differential
equation, (10) is
1 —-a)" & fn — a’G(x n
SOF () D L
=0 =0 r dx?

It is stralght-forwa.rd that the only singularities of this equation are
regular singularities® at * = 1, =.

LG(z) = (

(9)

III. THE DIFFERENTIAL EQUATION

In this section we discuss (11) without reference to the fact that G(z)
is supposed to be a generating function. That is to say, with # and e
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fixed but arbitrary non-negative integers, we denote by
Glx) = 2 na' (12)
a=0
any solution of (11) regular in the unit circle.
It proves convenient to introduce certain functions f, () defined by
Fug@) = (14 )81 — 2)"*
(13)

s

s (nr E} 2’

8

i
o

where the coefficients ¢.(n, £) are given by

Mm9=i04fﬁ:§cig (14)

r=0

Here, £ is to be regarded as a free complex variable. By (1 + Df 1 — )"t
we mean exp (£ log (1 + 2) + (n — &) log (1 — a)), each logarithm
vanishing at z = 0. As a function of 2 this function is single valued in,
say, the x-plane cut on (==, —1] and [1, = ), and the series (13) con-
verges to it in: |z | < 1.

Binomial coefficients are defined by

(r) _ IGg+D
s/ s+ 1—8)

=1 G = s+ D)

5 s> 0

when ¢ is not an integer, and ¢.(n, £) is seen to be a polynomial in ¢ of
degree s:

wind) =2+ + 0 (1) (15)
The recurrence relation
com, &) +ein, &) + - Feun, §) = @u(n — 1, 8) (16)
obtained by expanding the various factors [ ] in the identity
[(1+ )81 — 2" 9 — )7 = [+ 21— 2"

is an important one. We note also for reference that

‘!’U(n: E) =1
eo(n, n — £) = (—=1)'aln, £)
prln, 1) = (g) )

8

ea(n — 1, m) =1+(7f)+ +(n)
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valid for all n, £ and non-negative integers s. We see, by the way, that
¢{n — 1, n) is simply the Hamming expression (1).
The function f, ¢(x) has the property that

X + y _ fn.E(x)fn.E(y)
Jus (1 + nfy) L (18)

at least if, say, given x, | i | is small enough. I'rom this and (8) for the
operator I.; it is apparent that

Lifui(x) = ei(n, E)fns(x) (19)
Similarly, using (19) and (16), or directly from (10) for the operator 2/,
Mfue(@) = [Lo + L+ -+ + Lefae(x)
= ¢i(n — 1, Hfne(x)

If & is one of the roots of the polynomial ¢.(n — 1, §) then (20) be-
comes

(20)

M1+ 2)*(1 — )" =0

If we assume for the moment for simplicity that ¢.(n — 1, £) has e
distinct roots £, 1 = B = ¢, then (11) has as complementary function

> 441+ P - 2
=1

where the Az are e arbitrary constants.
Fortunately, the funetion (1 + x)" = f,..(x) is also a member of the
family (13); hence

M1 4+ 2)" = ¢(n —1,n)(1 + 2)"
and the function
(14 )"
e.(n — 1,n)

is a particular integral of (11). [We see from (17) that ¢.(n — 1, n) does
not vanish in cases of interest.] Finally, when the roots of ¢.(n — 1, &)
are distinet, the general solution of (11) must be of the form

6) = T S a0 0% - )

If go(n — 1, £) has multiple roots then the general solution will con-
tain additional terms

(const.) (1 4+ x)**(1 — x)"7% |:10g 1+ w] (22)
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i.e., the u™ derivative of f, () with respect to & with p any positive
integer less than the multiplicity of root & .

Before applying these results to e-codes in detail, let us derive a cer-
tain modification of (21). First, we see from (17) that if n is a positive
integer, then n is not one of the roots of ¢.(n — 1, £). If the roots &
of g(n — 1, £) are distinet and if 43, 1 = 8 = ¢, are any ¢ numbers
then a polynomial 8(¢) of formal degree e is uniquely determined by the
e -+ 1 conditions:

0(¢s) = (8 — )/ (n — 1, &5)dsa, IS8 =e*
(23)
f(n) =1

using, e.g., the Lagrange interpolation formula. It is obvious that G(z),
(21), may be expressed in terms of this polynomial as

1 [ (1428 — )" )
il G e —Tp © (24)

where T' is any simple closed contour surrounding the roots: n, &, &,
-+, & of the denominator of the integrand; (the numerator is an entire
function of ¢ provided x* = 1).

Analysis a little more detailed shows that even if ev{n — 1, £) has
multiple roots the general solution of (11) can be represented in the
form (24), again with 6(¢) any polynomial of formal degree ¢ such that
8(n) = 1. The ¢ constants of integration appear as the e + 1 parameters
of 0(f) restricted by 6(n) = 1.7

Expansion of the integrand in (24) according to (13) yields the form

Gx) =

_ 1 ws(n, £)6(£) B
“wilE=mem 1% FTOLZo 3

for the coefficients of G(x), (12).
If we denote by

Vs

LiG(z) = Gi(x) = i Viax (26)

=0

the result of applying the operator L; to any solution (24) of (11), then
it is straightforward that

oy b 2 = 2)" ein, D)
= A e I PX (IS ¥ I

* The prime denotes differentiation with respect to £.

t If G(z) of (24) is to satisfy (11) it is sufficient that 8(£) be any function regular
within (and on) I and that 8(rn) = 1, as may be easily verified. Since G(z) depends
on 8(£) only by way of the values of 8(£) at the zeros of the denominator in (24),
the condition that 8(¢) be a polynomial of formal degree ¢ serves merely to deter-
mine 8(¢) uniquely for a given solution G(z).
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and that

ea(n, E)eiln, £)6(£) ~
i e Lg% om0l @9

(An interesting reciprocity v; , = »,,; is apparent from (28). In an e-code
one has (number of j-neighbors of weight s) = (number of s-neighbors
of weight j) only for 0 = s,j = ¢, since L;G(x) is the generating func-

tion for j-neighbors only it 0 < j < e.)

ja =

V. BOUNDARY CONDITIONS
The coefficients », , (25), of any solution of (11) satisfy the relation:

1 6(¢)

2ri rt —n

w4+ -+ = dt =1 (29)

by virtue of (16) and the normalizing condition 8(n) =
With v an integer such that 0 £ v = ¢, denote by

GV (x) =D AL (30)

a=0

a solution of (11) which satisfies the e boundary conditions

) (v) (r _

Vo =n = = Py =0

(31)
e 0 n
vt = vy = oo =, =0

We must have v.,,m = 1 in such a solution, from (29). Thus the condi-

tions (31) are equivalent to specifying the values of G'(x) and its first
e — 1 derivatives at the ordinary point x = 0 of (11), so that such a
solution ' (x) exists and is uniquely determined.®

Given an e-code on n places, each n-word of B, lies at distance e or
less from exactly one code word; namely, the code word to which it
belongs. In particular, the n-word 00 - -0 must lie at distance ¢ or less
from a single code word. That is to say, there is exactly one code word
in the sphere of radius ¢ centered at 00---0. If this code word is of
weight v, then the generating function for the given e-code can be none
other than the solution G‘”(x) of (11) defined in the preceding para-
graph.

If there exists an e-code on n places in which the code word of least
weight is of weight v, then there can be derived from it an e-code on n
places in which the code word of least weight is of weight v’, where 4’
is any integer satisfying 0 < 4’ =< ¢. The transformation is that of choos-
ing certain places among n and then changing the letters of each n-word
of B, in these places, 0’s to 1I’s and 1’s to 0’s. (Such a transformation
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corresponds to one of the operations of the orthogonal group which
leaves invariant the n-cube representing B, .) Metric properties in B,
are invariant under such a transformation, clearly, and an e-code is
transformed into an e-code. Thus if there exists any e-code on n places
then (11) must have ¢ + 1 distinet polynomial solutions G (x), satis-
fying boundary conditions (31) for each case y = 0,1, -+, e.

In (25) for the coefficients », , move contour I' out to a circle sufficiently
large that the expansion

1 _ ¢! _l_(const.)_i___.
(£ — n)e(n — 1,8 2% gt

converges on I'. Suppose that the polynomial 8(£), of formal degree e, is
of actual degree f: 0(¢) = ¢t + 0(F"), ¢ # 0, where 0 = f = e. Then
the numerator of the integrand in (25) is of the form: (2°ct"/s) +
0(£"™), and it is clear that

v, =0 0=s=e—f—1

ele
Voy = 2___f(e Y #0

Hence, if 8" (£) denotes the polynomial which gives G () in the repre-
sentation (24), then 6" (£) must be of actual degree e — v.

A particularly simple case is the one v = e; the polynomial 8 (¢)
must be of degree zero, and is determined by the normalization as
6“)(¢) = 1. Thus

1 [+ 2 -2
ool I ey py e R (82)

From this we have immediately the following

Theorem: If there exists an e-code on n places then the equation
edn — 1, £) = 0in £ has e distinct integer roots.

Proof: If there exists an e-code on n places, then there exists an e-code
on n places in which the code word of least weight is of weight e. The
solution (32) of (11) must be the generating function for this e-code;
hence (32) must reduce to a polynomial of formal degree n. If g.(n — 1, £)
had multiple roots then noncancelling logarithmic terms (22) would
appear in the G (2) of (32). Thus ¢.(n — 1, §) must have e distinct
roots &, 1 = B = e. Each solution (1 + 2)¥(1 — 2)"% of the homo-
geneous equation appears in @ (z) with nonvanishing coefficient:

_ 1
(& — n)ed(n — 1, £)

G(‘)(:v) —

Ag
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Since G“(z) must be a polynomial in z, it must be expressible as a
polynomial in 1 + x; hence each root £ must be an integer.* (It is not
necessary to require further that 0 = £ =< n, since it follows easily from
(14) that any real root of ¢.(n — 1, £) satisfies 0 < ¢ < n — 1 provided
n and e are integers such that 0 < ¢ =< n.)

As a corollary we have that if ¢ is odd then n must be odd. This follows
from the theorem and the fact that 3(n — 1) is a root of ¢.(n — 1, £)
when e is odd, from (17).

We consider next the case y = 0. If 00---0 is a code word, then its
e-neighbors are the n-words of weight e. Furthermore, the n-words of
weight less than e belong to the code word 00---0, and can be e-neigh-
bors neither of 00---0 nor of any other code word. Hence it must be
true that

626 = (1) + 06 (38)

With G, (x) represented in the form (27), divide the factor e.(n, £)687 (%)
in the numerator by the denominator; the result will be

e, £)8V () = [( — n)e(n — 1, OlglE) + r(k) (34)

with quotient g(£) a polynomial of degree ¢ — 1 and remainder »(£) a
polynomial of formal degree e¢. The term involving ¢(¢) obviously con-
tributes nothing to G, (x) in (27), so that from (33) and arguments
similar to those giving G’ (x), above, r(£) must be the constant

r(§) = (:f) = g.(n, n)

Trom (34) we then obtain the values of 8“(%) at the poles of the inte-
grand in (24), and thus

GO@) = L+ e, W) (1 4 )P — )"

P T B ~ N o v s e R

Before obtaining G (2) explicitly for intermediate values of v, we
must first discuss a certain set of recursion relations holding between the
coefficients », of any solution of (11). These relations are

e+p

> (DMkw =0, p=1,2 .-+, (36)

s=¢—p+1

* The condition of Golay for the existence of group codes, obtained by different
means, 1s essentially that ¢.(n — 1, £) have at least one root an integer. Cf.: (4)
of Reference 4, in view of (16), above,
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where we define », = 0 for s < 0 and where the coefficients &, , are

- EOCT)(N) @

(The derivation of (36) is given in Appendix A.) Equations (36), written
out, are of the form

I‘-l. eVe — I"l. e+1Vel = 0

k‘.’.. e—1Ve—1 — k‘.’, e Ve + kz. e+1Ve41 — kZ. e+2Vet+2 = 0

from which we see that (36) may be used to determine

Vel 5 Veq2 y, """
recursively in terms of
Ve, Verl, "*" 5, W
We see also that if
Vo= Vo1 = -+ = ¥ypn =0

(with vy such that 0 = v < e — 1) then
Vel = Veq2 = ' ' = Vopmy = 0.

This has the following interpretation in terms of e-codes. It is well known
(and obvious) that two different code words in an e-code must be sepa-
rated by distance at least 2¢ + 1. Hence if the code word of least weight
in an e-code is of weight v then all other code words are of weight not
less than 2¢ + 1 — . In the generating function for such a code it must
be the case that not only

G(ﬂ(.’r:) = 27 + O(xeﬂ)
but in fact
G () = ¥ 4+ 0™ ™) (38)
Equations (36) insure that this condition is satisfied automatically.*
As a particular case of (38), we have
GVx) =1+ 0@=""").
We see that if we apply the operator L, to G (x) there will result

LG () = ey(n, n)z” + 0" ) (39)
* It is also necessary for the existence of an e-code that (36) determine v,y ,
Vers, -++ 48 non-negative integers when v, , ve-1, -+, vo are those of (31). This

condition is discussed a little further in Appendix A.
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using the differential operator form for Z,, (9). On the other hand, the
funection

LG%@) 1 [0+ — )" [a"”(.g)p,(n, 5)]
tp-,(ﬂ, n) N 2_11"1 T (E — ”)‘Pe(n- —_— I,E) Py(n,ﬂ) df (40)

is a solution of differential equation (11), in view of the discussion fol-
lowing (24). From (39) we see that this function can be none other
than G (x). Finally, applying L, to G”(z) in the form (35), we have
explicitly

(1 + .'L')" Wﬂ(n': ") -

eeln — 1,m) * ey(n, n) 3=
ey(n, E)(1 + 2)%(1 — )" %
ec(n, &) (85 — n)e./(n — 1, &)

G(v)(x) —
(41)
0<y<e

V. EXAMPLES

The known cases where the condition of Hamming is satisfied are the
following:

Case I: e = 0,n = 1

The Hamming expression (1) reduces to unity. In fact,

wln — 1,8 =1,

and the condition that all roots be integers is vacuous. The generating
funection for code words is (uniquely):

G(u)(:l') — (]- + -1')Jla — (1 _I_ 117)'1

woln — 1, n)

Fach n-word of B, is a detection region and thus a code word. There is
no error correction.

Case II: e = 1,n = ¢

The Hamming expression becomes the sum of all the terms in the bi-
nomial expansion of (1 4 1)". The “codes’” in this class consist of a single
code word surrounded by its detection region consisting of the sphere
B, of radius n. No signalling is possible, of course, but our methods still
apply.

From the representation

AY n—t

1 (1 +2)(1 = 2) da

T s+1

es(n, £)

271 Je

1 (1 + 20)*

j— )

21 Je v (1 )t

(42)
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(valid for all n, £) we have immediately

_onf(EY_2
en(n — 1,8 =2 (ﬂ) _TT.!E(E_ 1)+ E=-—n+1
and the roots are 0, 1, --- , n — 1. The generating function G (x) of
(32) becomes™*

n! 1 (1 + .’L‘.)E(l — :t',)"_Ed

(m)e N L
@) = 2% 201 Jr ()t ¢

= ?LI 3 (71)’1—5 o E —_— HﬁE
"iﬂgﬂmu + 21 — 2)

1 n n
= ol +0) - ==
as one might expect. The explicit form for ga(n, £) is somewhat com-
plicated, but for £ an integer it follows immediately from definition (13)
that

ou(n, £) = (=1)"F  E=0,1,---,n

From (35), then,

@ = 5 )Y (?) (1 + 0t — 2

— b0+ + - D) =1

which, again, is not surprising. The details for other values of ¥ seem to
be more tedious, although one expects (41) to yield G (z) = 2"

Case III: e =2 1,n = 2e + 1

The Hamming expression in this case:

1+(2e+1)+ +(2e+1)=22...
1 e

consists of the first half of the terms in the binomial expansion of
(1 4+ 1)**™. The code words in a code of this class are any two n-words
separated by distance n (i.e., two vertices at opposite corners of the
n-cube). The group codes in this class are the “majority rule” codes. f
T'rom (42) we have (using the substitution y = 4v + 4%

*(5).= sl (g) denotes the descending factorial.

" 1 The two code words in such a code are 00 --- 0 and 11 --- 1. An n-word be-
longs to 00 - -- 0 if it contains more 0’s than 1’s, and to 11 - -+ Lif it contains more
1’s than 0’s.
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" f (1 + y)l(E—l) dy
2ni Jo [(1 4+ )t — TH[A + )b + 1

and, without difficulty,

o2, =2 (M) T - -2t

(43)

©s ('n': E) =

The roots are 1, 3, - -+, 2¢ — 1, and from (32):

@) = oo (1 + 2 — 2t ag
22ideE—2-DE-DE=-3) - E—2+1)

=271+ D) +2)° — (1 — 2 = 2" 4 2™

In the case ¥ = 0 we need the result

ee(2e + 1, §) = 27 [(e if 1) - (%Ef; 11))]

from (43). It is then tedious but straightforward to obtain from (35)

0@ = L3 (2" + 1) (1 + )P — )™

o =t \2r + 1
C 0 — 2) o (1 P = [ = 2) — (14 )]
_ 1 + x2<+l

One expects to get
G”)(a:) _—— + 1:2t+l—'r

from (41), but verification appears to be complicated.

Case IV:e=1,n=2t—1(t=3,4,---)

The single error correcting codes of Hamming' are included here.
(The examples for ¢ = 1, resp. ¢ = 2, appear under Case II, resp. Case
III, above.) Since n is always odd the condition that ¢;(n — 1, £) =
2t — n + 1 have an integer root is automatically satisfied. Fory = 1
the generating function is

L (1 — ;13)5(1 _ m)u—f
27t dr (£ —n)(2t —n + 1)
_ 1+2)" -0+ ;r)“"‘”(l _ :L.)i(nﬂ)
- 1 +n

G (x) = dt

from which we have

N 1 n 3 f3n — 1)
Y = TTn {(s) — (=1) (%s )} s even
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= }r - {(’;) — (=1l @E’: - B)} s odd

Fory = 0, Eq. (35) works out as

(14 2)" +nl 4+ 2P0 — 2}
1+n

@) =

s0 that

v = 1_—:——?.3 {(:) + n(=1)" (in - 1))} s even

1 n saty 3 — 1)
= 1+n {(s) + n(—1) Gty (%(8 _ 1))} s odd

Case V:e=2,n =90
The double error correcting codes for n = 2, 5 are covered by Cases
11, 111, respectively. The discovery that

1 4 90 + 1(90)(89) = 2"

A
|

is due to Golay.” We have
200(n — 1,8) = (26 — n + 1P —(n—1)
with roots
in— 1% m—1
Since these roots are not integers when n = 90, there can be no 2-code
for n = 90.* H. S. Shapiro has shown (in unpublished work) that the
Hamming condition for e = 2 is satisfied only in the cases n = 2, 5, 90,

so that the only nontrivial 2-codes are those equivalent to the majority

rule code on 5 places.
Case VI: e = 3, n = 23
Golay” finds:

1+ 23 4+ 1(23)(22) + (23)(22)(21)/6 = 2"
and gives explicitly a 3-code on 23 places of group type. We have
Gosn — 1,8) = (26 — n + D[2t — n + 1) = (3n — 5)]
and when n = 23 we verify that the roots are the integers 7, 11, 15.
Computations by the author show that for n < 10" the Hamming con-
dition for ¢ = 3 holds only when n = 3, 7, 23.

* This settles a question raised by Golay, who shows that there is no eode of
group type in this case, but not that there is no code at all.
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For e = 4 we have
Uen — 1,8 = (26 — n + 1) = Bn — 7)) — (6n° — 30n + 40)

Tor n = 4, 9 this reduces to the forms given under Cases II, 111. Pre-
liminary calculations by the author shows that any other solutions of
the Hamming condition for ¢ = 4 must be such that n > 10", so that
the question of the existence of 4-codes (other than the majority rule
code) is somewhat academic.

Computations of Mrs. G. Rowe of the Mathematical Research De-
partment show that Clases I-VI cover all cases of the Hamming condition
being satisfied in the range

0<e=mn, 1 =n =150

APPENDIX A

From (13) we have

1 — a2\
(ﬁ) T + T & Zsos(n £a’ (A1)

Applying the operator D = —(1 + x)'d/dx to both sides of (A1) p
times, there results

N
Pl — 1), (} +;) = e, OV 4 07 (A

The substitution » = (1 + 2) ! reduces D to d/dv, so that

D21 4+ )™ = — (1 — )"

z( ) Y (5)ell — 1)~ (n — ), """

o=0

- Z v ( Xp - i) a1+ 2

using Leibnitz’s rule. We substitute this into Eq. (A2), multiply both
sides of the result by

(14 2)"7"(1 — )" 7/p!
(with 7 arbitrary), and then equate coefficients of x* on both sides:;

2y
there obtains

_ L+
% (”‘ ) '5) el = 7,8 = 35 (=1l 73 Dl (A3)
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valid for all n, £ r and all non-negative integers p, ¢, where

w0 = 5QGTNETE) o

The coefficients «,,.(n, 7; t) vanish unless s = ¢t + p;if nand p — 7
are non-negative integers then the coefficients ,.(n, r; t) are positive
integers provided ¢ — p + 7 = s and vanish otherwise. In particular,
(setting r = 1,1 = €),

(" N -1,0= 3 (Db 00 =12, (49)
s=e—p+

where we define ¢,(n, £) = 0 for s < 0; the ko = kp.(n, 1; ) are

those of (37) of the text. If we multiply » of (25) by (—1)"k,.

and sum on s there results (36), since the left hand member of (A5) is

a polynomial multiple of the denominator of the integrand in (25).

If the code word of least weight in an e-code is of weight v, then the
first nontrivial one of the (37) is the one for p = ¢ + 1 — v, and it
gives (since »,'” = 1)

(7) _ lkepr—yy

V2ef1—y =
kt+1-—7-26+1—‘f

_ =M —y—1 - (n—¢)
(2¢e +1—7)(2 —7v) -+~ (e+1)

A necessary condition for the existence of an e-code on n places is that
this expression be a non-negative integer in each casey = 0,1, ---, e
It is not clear, however, that this condition is independent of the one
set forth in the theorem of Section IV.

ArpENDIX B

We give here a relation due to K. M. Case® which shows that the
statement of our main result as it appears in the Abstract heading this
article agrees with the theorem proved in Section IV.

In the defining relation

1+ 21 —2)"" =2 2'e(n, 1) (B1)

a=0
for the coefficients ¢,(n, ») assume that n and r are integers, multiply
both sides by (—1)" ( ) y', and sum on r, 0 = r = n. The result is
n

(1 —2) —y(l+ )] =2, E (:) yx'e(n, r)  (B2)

r=0 s=0
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Rearrange the left hand member and re-expand it, to get

(1 —2) —yA + )" = [0 =y — 2(L + I
2 (=1 (’s”) 2+ 9@ =" gy

-2 > (1) #vedn o

=0 r

Il

Comparing coefficients of 2y" in (B2

- ()t ) = - (2

or, changing notation slightly,

and (B3), we have, finally,

e n, s) (n,r sintegers), (B4)

\_/v

")

(with n, e, £ integers and 0 = ¢, £ £ n — 1). Thusif ¢.(n — 1, £) vanishes
for e different integers £ then so must g:(n — 1, €), at least when e < n.
But ¢i(n — 1, e) is the coefficient of 2 in (1 4+ 2)°(1 — 2)"° when this
is written out as a polynomial in x, by definition.

™

(n — 1)
eiln — 1,0) = (—1)F ( £/ on—1,8 (B5)
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