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Tables have been prepared for use in any experiment designed lo selec
that particular one of k binomial processes or populaiions with the highest
(long time) yield or the highest probability of success. Before experimenta-
tion the experimenter chooses two constants d* and P* (0 < d* = 1; 0 =
P* < 1) and specifies that he would like to guarantee a probability of at
least P* of a correct selection whenever the true difference between the long-
time yields associated with the best and the second best processes is at least
d*. The tables show the smallest number of units required per process to be
put on test to satisfy this specification. Separate tables are given for k = 2,
3, 4 and 10. Each table gives the result for d* = 0.05 (0.05) 0.50 and for

* = 0.50, 0.60, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, and 0.99. For values of
d* and P* not considered in the tables, graphs are given on which inler-
polation can be carried oul. Graphs have also been constructed to make
posstble an inlerpolation or extrapolation for other values of k. An alterna-
tive specification is given for use when the experimenter has some a priori
knowledge of the processes and their probabilities of success. This specifica-
tion s then compared with the original specification. Applications of these
tables to different types of problems are considered.

INTRODUCTION AND SUMMARY

A frequently encountered problem is that of selecting the ‘“best”
one of &k (k = 2) processes or populations on the basis of the same num-
ber n of observations from each process. We shall assume that the given
processes are all binomial or “go —no go” processes and that the best
process is the one with the highest probability of obtaining a “success”
on a single observation. We shall consider a single sample or nonse-
quential procedure which means that the common number n of observa-
tions from each process is to be determined before experimentation
starts. The corresponding sequential problem is being investigated.'
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Briefly, the technique employed here is to let the experimenter decide
how ““close” the best and second best processes can be before he is willing
to relax his control on the probability of a correct selection. The selection
of a best process will, of course, be made on the basis of the largest
observed frequency of “success’”; the only remaining problem is to
determine the value of n. Tables and graphs which cover almost all
practical problems in this framework are given for determining the re-
quired value of n. In particular, tables and graphs are given for k = 2,
3, 4 and 10. Graphs are also given to approximate the result for any value
of & up to 100.

This problem arises in many widely different fields of endeavor; we
shall briefly consider two industrial applications. One application of the
binomial problem is to comparative yield studies. Here success corre-
sponds to the making of a good unit, and the goal is to select the process
with the highest (long-time) yield. Another application of the binomial
problem is to comparative life testing studies. In this case the experi-
menter selects a fixed time T and defines the best process as the one for
which the probability of any one unit surviving this time 7' is highest.
Then, of course, a successful unit is one which survives the time 7'. In
treating this as a binomial we are discarding the information contained
in the exact times of failure. In many cases the times of failure are either
unknown or very inexact; in other cases it is not known how to utilize
the knowledge of the exact times of failure. Hence, it would be valuable
to know the results for the more basic binomial problem. The time 7" is
considered fixed throughout; its value is determined by non-statistical
considerations. The specification and the final decision of the experi-
menter all refer to this predetermined time 7'. It should be noted that
the experimenter cannot use information obtained from the continuation
of the test beyond time T since the best process for T is not necessarily
the best process for a longer time, say 107 This binomial type of analysis
has the advantage that it does not assume any particular form of the
life distribution. In particular, the assumption of exponential life is
avoided.

The presence of & priori information changes the number of observa-
tions required. An alternative specification is given which is justified by
certain A priori information based on past experimentation. The amount
of saving is briefly examined. This area of utilizing & priori information
to reduce the number of observations required should be investigated
further.

The treatment of the problem in this paper is based on the assump-
tion that, after experimentation is carried out, the experimenter must



SELECTING THE BEST ONE OF SEVERAL BINOMIAL POPULATIONS 539

choose one of the & processes and assert that it is best. If he allows him-
self the possibility of hedging and asserting that he needs further ex-
perimentation, then the problem changes and the tables of this paper are
not appropriate.

The following additional assumptions will be made:

1. Observations from the same or different processes are independent.

2. Observations from the same process have a common fixed proba-
hility of ‘“success’.

3. There is no chance of error in determining whether a success or a
failure has occurred.

The assumption of a common probability fixed once and for all for
each process is one that should be checked carefully in any practical
application of the results in this paper. Roughly speaking, this assump-
tion states that each of the processes is in a state of statistical control
as far as the probability of success is concerned.

‘We shall consider only the case in which the same number n of obser-
vations are taken from each process. This is certainly reasonable for a
single sample procedure if no & priori information is assumed.

STATISTICAL FORMULATION OF THE PROBLEM

Each of &k given binomial populations II; is associated with a fixed
probability of success p; where 0 < p;, =1 (i =1, 2, ---, k). For ex-
ample, in the yield problem p; is the long-time yield for process II; or
the probability that any one unit from II, is a good one. Let the ordered
values of the p; be denoted by

P Z P Z 0 2 P (1
No & priori information is assumed about the values of the p; or about
the correspondence between the ordered p(; and the k identifiable popu-
lations II; . In particular, we have no idea before experimentation
starts whether pyy; is associated with IT,, o, -- -, or II; .

The problem is to select the population associated with pp; on the
basis of n observations from each population. If there are ¢ ties for first
place, say

P = P = 0 = Py > P t<k) (2

then we shall certainly be content with the selection of any one of the
associated ¢ populations as the best one.

As an index of the true difference (or distance) between the best and
second best populations we introduce the symbol

d = pny — P (3)
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It is assumed that if the difference d between the best and second best
populations is small enough, then the error involved in wrongly select-
ing the second best process as the best one is an error of little or no con-
sequence. The experimenter is therefore asked to specify two quantities
which will determine the number n of observations he is required to
take from each process.

Specification: He specifies the smallest value d*

(0 < d* = 1) of d for which it would be economically
desirable to make the correct selection. He also specifies (4)
a probability P* (0 = P* < 1) of making a correct
selection that he would like to guarantee whenever the

true difference d = d*.

Letting Pes = Pes (P, * - » P) denote the probability of a correct
selection we can now rewrite the specification that the experimenter
wants to satisfy in the simple form

Pes = P* for d = d* (5)

[The word “specification” will be used below to denote the specified
pair of constants (d* P*) as well as the condition (5); it will be clear
from the text which is meant.] Sinee the final selection is to be made on
the basis of the observed frequency of success, the essential problem is
to find the number n of observations required per process to satisfy the
specification (5).

The possibility that d may be less than d* is not being overlooked.
The region d < d* is being regarded as a zone of indifference in the
sense that if d < d*, then we do not care which process is selected as best
so long as its p-value is within d* of the highest p-value py . For values
of P* < 1/k no tables are needed since a probability of 1/k can be at-
tained by chance alone.

Some comments on the above approach and on a possible modifica-
tion have been placed in Appendix I in order to preserve the conti-
nuity of the paper.

CONFIDENCE STATEMENT

After the experiment is completed and the selection of a best process
is made, the experimenter can make a confidence statement with confi-
dence level P*. Let p, denote the true p-value of the selected population
and let p, denote the maximum true p-value over all unselected popula-
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tions. Then the confidence statement, consisting of two sets of inequali-
ties

pu — d* = po £ py 0=py—p =d*

Py = pu = proy + dF 0=p.— po =sd*

has confidence level P*. It should be noted that the above confidence
statement is not a statement about the value of any p but is a statement
about the correctness of the selection made.

LEAST FAVORABLE CONFIGURATION

The main idea used in the construction of the tables was that of a
least favorable configuration. Before defining this concept we shall
define the set of configurations

pu —d =P =pm = = P (6)

obtained by letting d in (6G) vary over the closed interval (d*, 1) as the
Less-Favorable set of configurations. It is intuitively clear and will be
rigorously shown in Appendix II that if our procedure satisfies the
specification for any true configuration (6) with d = d” and pyy; = piy,
then it will also satisty the specification when

py —d Z pe Z P = - = py (7)

Of course, we shall be interested particularly in the case in which d
equals the specified value ¢*. If d = d* is fixed in (6), then (6) specifies
the differences between the p-values, but the “location” of the set is still
not specified. We shall use py to locate the set of p-values. The proba-
bility Pes of a correct selection for configurations like (6) with d = d*
depends not only on d* n and I but also on the location py; of the
largest p-value (except for the special case I = 2 and n = 1). [In the
corresponding problem for selecting the largest population mean of &
independent Normal distributions with unit variance,” this probability
Pcs depends only on the differences and, hence, only on d in the configura-
tion corresponding to (6)].

When (6) holds with any fized value of d, the probability Pce (for any
fixed n) may be regarded as a function of pyy; where d < py; = 1). This
funetion is continuous and bounded over a closed interval and therefore
assumes its minimum value at some point py (d) = pu; (d;n) in the
closed interval (d,1). Fig. 1(b) gives the value of py; (d) as a function
of d for k = 3 and forn = 1, 2, 4, 10 and =. For any particular value
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of n and for d = d* we shall be particularly interested in the value Pl =
pu (d*;) since this (as shown in Appendix II) gives the smallest
probability Pés of a correct selection for all the configurations included
in the statement of the experimenter’s specification. This particular con-
figuration (6) with ¢ = d* and pyy = ply (which depends on n) is
called the Least-Favorable Configuration.

Although the least favorable configuration depends on n, it has been
empirically found that for n = 10 (and in some cases for n = 4) the least
favorable configuration is approximately given by ply = 3 (1 + d%
in which the two values, p(y and p{s = p{y — d* are symmetric about 3.
This symmetric configuration clearly does not depend on n. Fig. 1(b)
shows that as n — = the least favorable configuration approaches this
symmetric configuration (i.e., the straight line marked n = =) quite
rapidly for any value of d. In Appendix III it is proved that the sym-
metric configuration is least favorable as n — «. Fig. 1(a) shows for
k = 3, n = 10, and any value of d the error in P¢s which arises as a result
of using the symmetric configuration instead of the true least favorable
configuration.
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Fig. 1 — (a) Error in Pgg as a result of using the symmetric configuration in-
stead of the least favorable configuration for & = 3, n = 10, and any common true
difference d. (b) Least favorable value pi) (d) of p ;) as a function of the common
true difference d = pyy; — pray, ¢ = 2, for k = 3 and selected values of n. (for

d=d*pu (d)=pw)
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CONSTRUCTION OF THE TABLES

Consider any fixed value of d*. For each of a set of increasing values
of n the minimum probability Pfs of a correct selection for d = d*
(i.e., the probability for the least favorable configuration) was computed.
These calculations were then inverted to find the smallest n for which
the Pgs is greater than or equal to the specified value P*. Tables I
through IV give the smallest value of n for k = 2, 3, 4, and 10, for d* =
0.05 (0.05) 0.50, and for selected values of P*. Graphs corresponding to
these tables are given in Figs. 2 through 5.

For small values of n (say, n < 10) it was necessary to approximate
p(y by caleulating the Pcs exactly for several values of py; and proceed-
ing in the direction of the minimum probability Pgs. For the special
case n = 2 and k = 3 an explicit formula for p{i is given on Fig. 1.

For large values of n (say, n > 10) the Pts was calculated by assum-
ing the symmetric configuration. Here it was necessary to make use of
the normal approximation to the hinomial. Fortunately the appropriate
table needed in this normal approximation is already published.” The
proof that this table is appropriate is given in Appendix II1. The result-
ing value of n is given by

n=Ba-ay=d (8)

- R

where the constant B, depending on P* and £, is equal to 2C* and C is the
entry in the appropriate column of Table I of R. E. Bechhofer’s paper.”
A short table of B values, Table V (see page 550), is included in this
paper to make it self-contained.

The middle expression in (8) will be referred to as the normal ap-
proximation and the right hand expression in (8) will be referred to as
the “straight line” approximation. In many cases it has been empiri-
cally found that these two expressions give close lower and upper bounds
to the true value. Thus by noting the curves drawn in Figs. 4 and 6 for
I = 4, P* = 0.75 it appears that for all values of d* the true Pl is
between the normal approximation and the straight line approximation.
Assuming this to be so, it follows that for & = 4, P* = 0.75 the required
value of n satisfies the inequalities

Ba—wl=sasz|® (9)
d p

where [2] denotes the smallest integer greater than or equal to the en-
closed quantity x. This result (9) is empirical and not based on any
mathematically proven inequalities. It is used here only to estimate the
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TaBLE I — NuMmBgR oF UNiTs REQUIRED PER PrOCESS TO (GUARANTEE
A PROBABILITY OF P* oF SELECTING THE BEest oF k& BinoMmiaL Proc-
1SSES WHEN THE TRUE DIFFERENCE pry — P2y 18 AT Liasr d*
(k= 2)

The three values in each group are: (1) Normal approximation, (2)

Straight line approximation, and (3) Smallest integer required.

P‘
di
0.50| 0.60 0.75 0.80 0.85 0.90 0.95 0.99
0.05 |0 | 12.81 | 90.77 141.30 | 214.29 327.66 539.77 | 1079.70
0| 12.84 | 90.99 141.66 | 214.83 328.48 541.12 | 1082.41
0| 14 92 142 215 329 541 1082
0.10 [ 0 3.18 | 22.52 35.06 53.17 81.30 133.93 267.90
0 3.21 | 22.75— | 35.41 53.71 82.12 135.28 270.60
0 4 23 36 54 83 135 270
0.15| 0 1.39 9.88 15.39 23.33 35.68 58.78 117.57
0 1.43 | 10.11 15.74 23.87 36.50— 60.12 120.27
0 2 11 16 24 37 60 120
0.20 |0 0.77 5.46 8.50—( 12.89 19.71 32.47 64.94
0 0.80 5.69 8.85+| 13.43 20.53 33.82 67.65+
0 1 6 14 21 34 67
0.25 |0 0.48 3.41 5.31 8.06 12.32 20.29 40.59
0 0.51 3.64 5.67 8.50 13.14 21.64 43.30
0 1 4 6 9 14 22 42
0.30 |0 0.32 2.30 3.58 5.43 8.30 13.68 27.36
0 0.36 2.53 3.93 5.97 9.12 15.03 30.07
0 1 3 4 6 9 15 29
0.35 |0 0.23 1.63 2.54 3.85— 5.88 9.69 19.38
0 0.26 1.86 2.89 4.38 6.70 11.04 22.09
0 1 2 3 5 7 11 21
0.40 | 0 0.17 1.19 1.86 2.82 4.31 7.10 14.21
0 0.20 1.42 2.21 3.36 5.13 8.46 16.91
0 1 2 3 4 5 9 16
0.45 | 0 0.13 0.90 1.39 2.11 3.23 5.33 10.65+
0 0.16 1.12 1.76—| 2.65+ 4.06 6.68 13.36
0 1 2 2 3 4 7 13
0.50 [0 0.10 | 0.68 1.06 1.61 2.46 4.06 8.12
0 0.13 0.91 1.42 2.15— 3.28 5.41 10.82
0 1 1 2 3 4 5 10
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TaBLE II — NumBer oF Unirs REQUIRED PER ProcEss To GUARAN-
TEE A PROBABILITY oF P* oF SELECTING THE BEST oF k& BINOMIAL
Processes WHEN THE TRUE DIFFERENCE py; — Prg) IS AT LEBAST
d*. (k = 3)

The three values in each group are: (1) Normal approximation, (2)

Straight line approximation, and (3) Smallest integer required.

P
a*
0.50 0.60 0.75 0.80 1 0.85 0.90 0.95 0.99
0.05 | 30.89 78.16| 205.06 272,36 363.06 496.14 732.63 (1305.21
30.97 | 78.36| 205.58 | 273.04 | 363.97 | 497.38 | 734.46 (1308.49
31 79 206 273 364 498 736 1308
0.10 7.66 19.39| 50.88 67 .58 90.08 123.10 181.78 323.85+
7.74 19.59( 51.39 68.26 90.99 124.34 183.62 327.12
8 20 52 69 91 125 184 327
0.15 3.36 8.51| 22.33 29.66 39.563 54.02 79.77 142.12
3.44 8.71] 22.84 30.34 40.44 55.26 81.61 145.39
4 9 23 31 41 55 82 145
0.20 1.86 4.70, 12.33 16.38 21.84 20.84 44 .07 78.51
1.94 4.90[ 12.85—| 17.07 22.75—| 31.09 45.90 81.78
3 5 13 17 23 31 46 81
0.25 1.16 2.94 7.71 10.24 13.65—| 18.654| 27.54 49.07
1.24 3.13 8.22 10.92 14.56 19.90 29.38 52.34
2 4 9 11 15 20 29 52
0.30 0.78 1.98 5.20 6.90 9.20 12.57 18.57 33.08
0.86 2.18 5.71 7.58 10.11 13.82 20.40 36.35—
2 3 6 8 10 14 20 35
0.35 0.55+| 1.40 3.68 4.89 6.5 8.901 13.154+| 23.43
0.63 1.60 4.20 5.57 7.43 10.15 14.99 26.70
2 2 5 6 8 10 15 26
0.40 0.41 1.03 2.70 3.58 4.78 6.563 9.64 17.17
0.48 1.22 3.21 4.27 5.69 7.77 11.48 20.45—
1 2 4 5 6 8 11 20
0.45 0.30 0.77 2.02 2.69 3.58 4.90 7.23 12.88
0.38 0.97 2.54 3.37 4.49 6.14 9.07 16.15+
1 2 3 4 5 6 9 15
0.50 0.23 0.59 1.54 2.05— 2.73 3.73 5.51 9.81
0.31 0.78 2.06 2.73 3.64 4.97 7.34 13.08
1 2 3 3 | 4 5 7 12
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TapLe IITI — NumBer or Units Requirep PER Process 1o GUAR-
ANTEE A PROBABILITY OF P* OF SELECTING THE BEST OF k BINOMIAL
ProcessEs woHEN THE TRUE DIFFERENCE Py — Pray 18 AT LEAST
d*. (k = 4)

The three values in each group are : (1) Normal approximation, (2)

Straight line approximation, and (3) Smallest integer required.

P‘
da*
0.50 0.60 0.75 0.80 0.85 0.90 0.95 0.99
0.05 |69.85—|132.654-(282.27 357.52 | 456.82 599.53 | 848.30 |1438.12
70.02 [132.99 [282.98 358.42 | 457.96 601.03 | 850.42 |1441.72
71 134 283 359 458 601 850 1442
0.10 [17.33 | 32.91 | 70.04 88.71 | 113.35—| 148.76 | 210.48 | 356.83
17.51 | 33.25—| 70.74 89.61 | 114.49 150.26 | 212.61 | 360.43
18 34 71 90 114 150 212 360
0.15 | 7.61 | 14.44 | 30.74 38.93 49.74 65.29 92.37 | 156.61
7.78 | 14.78 | 31.44 39.82 50.88 66.78 04.49 | 160.19
8 15 32 40 51 67 094 160
0.20 | 4.20 7.98 | 16.98 21.51 27.48 36.06 51.03 86.50+
4.38 8.31 | 17.69 22.40 28.62 37.56 53.15+| 90.12
5 9 18 23 29 38 53 89
0.25 | 2.63 4.99 | 10.61 13.44 17.17 22.54 31.89 54.06
2.80 5.32 | 11.32 14.34 18.32 24.04 34.02 57.67
3 6 12 14 18 24 34 57
0.30 | 1.77 3.36 7.15+ 9.06 11.58 15.19 21.50—| 36.44
1.95—| 3.69 7.86 9.96 12.72 16.70 23.62 40.05—
3 4 8 10 13 17 23 39
0.35 | 1.254-| 2.38 5.07 6.42 8.20 10.76 15.23 25.82
1.43 2.7 5.77 7.31 9.35—| 12.27 17.36 29.42
2 3 6 7 9 12 17 28
0.40 | 0.92 1.75—| 3.71 4.70 6.01 7.89 11.16 18.92
1.09 2.08 4.42 5.60 7.16 9.39 13.29 22.53
2 3 5 6 7 9 13 21
0.45 | 0.69 1.31 2.79 3.53 4.51 5.92 8.37 14.19
0.86 1.64 3.49 4.42 5.65+ 7.42 10.51 17.80
2 2 4 5 6 7 10 17
0.50 | 0.53 1.00 2.12 2.69 3.43 4.51 6.38 10.81
0.70 1.33 2.83 3.58 4.58 6.01 8.50+4| 14.42
2 2 3 4 5 6 8 13
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TasLe IV — NumBER oF UNits REQUIRED PER ProcESS TO GUARAN-
TEE A PROBABILITY OoF P* OF SELECTING THE BEST oF k BINOMIAL
Processes wieEN THE TRUE DIFFERENCE pp; — pra 18 AT LEAST
d* (k= 10)
The three values in each group are: (1) Normal approximation, (2)

Straight line approximation, and (3) Smallest integer required.

Pt
a*
0.50 0.60 0.75 0.80 ‘ 0.85 0.90 0.95 0.99
0.05 216.96 |312.51 |511.15+ 604.04 | 722.50—| 887.54 |1165.49 [1798.01
217.50+4-(313.29 |512.43 | 605.55+| 724.31 | 889.77 |1168.41 [1802.51
218 314 513 606 725 890 1169 1803
0.10 | 53.83 | 77.54 |126.83 | 149.87 | 179.27 | 220.22 | 280.18 | 446.12
54.38 | 78.32 [128.11 151.39 ‘ 181.08 | 222.44 | 292.10 | 450.63
55 79 128 | 151 181 222 291 449
0.15 | 23.62 | 34.03 | 55.66 65.77 78.67 96.64 | 126.90 | 195.77
24.17 | 34.81 | 56.94 67.28 80.48 98.86 | 129.82 | 200.28
25 35 57 67 80 98 129 198
0.20 | 13.05+4| 18.80 | 30.75—| 36.33 43 .46 53.39 | 70.10 | 108.15
13.59 | 19.58 | 32.03 37.85—| 45.27 55.61 | 73.03 | 112.66
14 20 32 38 45 55 72 111
0.25 | 8.16 | 11.75—| 19.22 22.71 27.16 33.37 | 43.82 67.59
8.70 | 12.53 | 20.50—| 24.22 28.97 35.59 | 46.74 72.10
9 13 20 24 29 35 46 70
0.30 | 5.50—| 7.92 | 12.954| 15.31 18.31 22.49 | 29.53 45.56
6.04 8.70 | 14.23 16.82 20.12 24.72 | 32.46 50.07
7 9 14 17 20 24 32 48
0.35 | 3.90 5.61 9.18 10.84 12.97 15.93 | 20.92 32.28
4.44 6.39 | 10.46 12.36 14.78 18.16 | 23.85—| 36.79
5 7 11 13 15 18 23 35
0.40 | 2.854| 4.11 6.73 7.95—| 9.51 11.68 | 15.34 23.66
3.40 4.90 8.01 9.46 11.32 13.90 | 18.26 28.16
4 5 8 10 11 13 17 26
0.45 ] 2.14 3.08 5.06— 5.96 7.13 8.76 | 11.504| 17.756—
2.69 3.87 6.33 7.48 8.94 10.98 | 14.42 22.25+
3 4 6 8 9 11 14 20
0.50 | 1.63 2.35—| 3.84 % 4.54 5.43 6.67 8.76 13.52
2.18 3.13 5.12 6.06 7.24 8.90 | 11.68 18.03
3 4 5 6 7 9 11 16
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hen the true

TaBLe V— VALuEs or B

1C? ro BE UseEp WITH THE NORMAL
AppROXIMATION (8) WHERE C' 15 OBTAINED FROM TABLE I
or R. E. BEcHHOFER’S PAPER!

Prob. of Correct k=2 k=3 E=1 E=10
0.99 2.7060 3.2712 3.6043 4.5063
0.956 1.3528 1.8362 2.1261 2.9210
0.90 0.8212 1.2434 1.5026 2.2244
0.85 0.5371 0.9099 1.1449 1.7965+
0.80 0.3541 0.6826 0.8961 1.5139
0.75 0.2275— 0.5139 0.7074 1.2811
0.70 0.13756— 0.3832 0.5575— 1.0892
0.656 0.0742 0.2792 0.4347 0.9256
0.60 0.0321 0.1959 0.3325— 0.7832
0.55 0.0079 0.1294 0.2468 0.6569
0.50 0.0000 0.0774 0.1751 0.5438
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order of magnitude of the error in our large sample calculations. For ex-
ample, if & = 4, d* = 0.05 and P* = 0.90, then from Table V we find
that B = 1.5026 and the two expressions in (8) yield 599.54 and 601.04.
Hence, it would follow from (9) that » is 600 or 601 or 602. Based on an
investigation of the behavior of these two approximations in the case of
smaller P* or larger d* values, it is estimated that the true value of n is
601. Even if the correct value is 600 or 602 the error would be less than 1
of 1 per cent. Fig. 6 illustrates these bounds on the Pcs for k = 4,
P* = 0.50, 0.75 and 0.99. For P* = 0.60 the straight line approxima-
tion is a eloser lower bound than the normal approximation.

It is estimated that all integer entries in Tables I through 1V have an
error of at most 1 per cent and, in particular, that all entries under 100
are exact.

OTHER VALUES OF L

In addition to the tables and graphs for & = 2, 3, 4 and 10 there are
also graphs (Figs. 7 through 14) on which interpolation can be carried
out for & = 5 through 9 and on which extrapolation can be carried out
for = 11 through 100. By plotting n versus log & (or n versus k on
semi-log paper) and drawing a straight (dashed) line through the values
of n for i = 4 and & = 10 we obtain results which are remarkably good
approximations for & > 10. The solid curve in these figures connects the
true values obtained for &k = 2, 3, 4 and 10.

For large values of & the theoretical justification for a straight line
approximation is given in Appendix V. In order to check the accuracy of
our procedure of drawing the straight line through the values of =»
computed for & = 4 and & = 10, we have chosen two points at k = 101
for an independent computation of the probability of a correct selection.
For P* = 0.90, d* = 0.10 and & = 101 the dashed line in Fig. 12 gives n
as approximately 400. To check this we computed the normal approxi-
mation to the probability P¢s of a correct selection for the least favor-
able configuration in the form

« 1 = _
Pis &= Fx 4+ h)f(x) de = —= F™(@A/2 + ke dz (10)
ant--] '\/ﬂv — o
where

l) ’* n . .
W= 2" V/n - (= 4.02015 in this example) (11)

f(x) is the normal density and /() is its c.d.f. This was computed by a
method suggested by Salzer, Zucker and Capuano’ and the result was
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PZLs = 0.9168 as compared to the value 0.90 in Fig. 12. The expression
(10) is derived in Appendix III. Another check was made at P* = 0.99,

* — (.20 and k& = 101. The value of n from Fig. 14 is 162. The value of
the PL computed from (10) using Salzer, Zucker and Capuano’ is
0.99254.

Further calculation using (10) yielded the more accurate results 378
and 154 instead of 400 and 162, respectively, in the above illustrations.
The error in both cases is less than 6 per cent; for smaller values of k the
percentage error will, of course, be much less.

For interpolation the results are estimated to be within 1 per cent
of the correct value. For example we estimate from Fig. 11 that the re-
quired value of n for k = 5, P* = 0.85 and d* = 0.05 is 523. This value
was computed by the normal approximation and found to be 522.

TIED POPULATIONS

In computing the tables and graphs it was assumed that if two or more
populations are tied for first place then one of these is selected by a chance
device which assigns equal probability to each of them. The experi-
menter may want to select one of these contenders for first place by
economic or other considerations. In most practical problems we may
assume that such a selection is at random as far as the probability of a
correct selection is concerned. Hence, it appears reasonable to use the
tables in this paper without any corrections even when the rule for tied
populations is altered in the manner described above.

It is interesting to note that in the yield problem the experimenter
may settle the question of ties for first place by taking more observa-
tions until the tie is broken. However, in the life-testing problem he may
not settle ties by letting the test run beyond time 7" since the best process
for time T is not necessarily the best for a time greater than 7',

In some applications when there are two or more populations tied for
first place, the experimenter may prefer to recommend all these con-
tenders for first place rather than select one of them by a chance device.
In this case we shall agree to call the selection a correct one if the recom-
mended set contains the best population (or, when pp; = pg, if the
recommended set contains at least one of the best populations). Exact
tables for the procedure so altered have not been computed. However,
if the value of n is large and this rule for tied populations is used, then
the experimenter may reduce the tabled values by an amount equal to
the largest integer contained in 1/d*. For example, using the above rule
for tied populations for the case k = 2, P* = 0.99, d* = 0.30, the tabled
value 29 can be reduced by 3 giving the result 26.
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ALTERNATIVE SPECIFICATION

If the experimenter has some A priori knowledge about the processes,
then he will prefer to specify the following three quantities in order to
determine the number n of observations he is required to take from
each process.

Specification: He specifies pf;, and ply (0 = ply =
pfy = 1) in the neighborhood of his estimate of the
probabilities associated with his processes. He also speci-
fies a probability P* (0 = P* < 1) that he would like
to guarantee of making a correct selection whenever the
true p = p’["l] and the truep = p?;] .

(12)

TasLe VI — Numser or Unirs REQUIRED PER Procrss To GUARAN-
TEE A PROBABILITY OF P* OF SELECTING THE BETTER OoF Two BI-

" *
NOMIAL Processes wHEN THE TRUE pny 2 pryy AND THE TRUE

P2y S Pa) . (ALTERNATIVE SPECIFICATION, k = 2)
o Phy = 0.75 Pl = 0.95 PL) = 0.90 Ply) = 085 Pl =095
Plag = 0.60 £z = 0.80 Pz = 0.80 £1ay = 0.80 pla) = 0.90
0.50 1 1 ~ 1 1 1
0.60 2 2 3 9 6
0.75 10 6 13 53 27
0.80 14 8 19 83 40
0.85 21 11 ‘ 28 124 60
0.90 32 16 [ 42 189 91
0.95 53 25 { 68 312 1 149
0.99 106 49 135 298

TaBLe VII — NumBER oF Uxirs ReEQUIRED PER Process To GuUARr-
ANTEE A PRrROBABILITY oF P* oF SELECTING THE Bust or Four Bi-
NOMIAL Processes wueN THE TRUE p;y; = ply AND THE TrUE
P = p{'“g] . (ALTI' RNATIVE QPECIFIU ATION, k = 4)

P*

0.50
0.60
0.75
0.80
0.85
0.90
0.95
0.99

Py = 0.75
,b[ql = (.60

14 l
28
35
45
54
83
139

\
'
1

ﬁm = 0.95
P[-.] = (.80

p[l] = 0.90

T2 = 0.80

831

Pl = 095
Pl = 0.90
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Again we can rewrite the specification that the experimenter wants
to satisfy in the simple form

Pes = P* for pm = pfy and pe = Plu (13)

Tables VI and VII give the number of observations 1equ1red per proc-
ess for several selected triplets of specified constants (pty, Ptn, P¥
when & = 2 and k = 4. These results are also given in graphical form
in Figs. 15 and 16.
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Fig. 15 — Number of units required per process to guarantee a probability of
P* of selecting the better of two binomial processes when the true pp) = Py and
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For example, on the basis of past experience the experimenter may
-estimate that the probabilities associated with his & = 4 processes are
all in the neighborhood of 0.60. This constitutes his & priori knowledge.
He may then decide that he would like to make a correct selection
with probability P* = 0.85 when the best process has a yield of at least
75 per cent and all the others have a yield of at most 60 per cent. Enter-
ing column 1 of Table VII we find that n = 45 observations per process
are required.

It is much more difficult to furnish tables for the alternative specifica-

. [
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n " Pra) =080 i | 0!95 i //
) V Y | / /
70 A a7, / /

Fig. 16 — Number of units required per process to guarantee a probability of
P* of selecting the best of four binomial processes when the true p;;; = p},, and
the true ps) = pTg] .
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tion since there is an extra parameter to vary and the appropriate
tables for the normal approximation are not available.

In the computation of these probabilities the least favorable con-
figuration

Py = ply and Ply = P = Pw = ' = Pw (14)

was used. It follows from Appendix II that if the probability of a correct
selection is at least P* when (14) holds, then it will also be at least P*
when

pu = ply and Pl = P = P = 0 2 P (15)

For small values of n, exact calculations were carried out. A typical
exact calculation is shown in Appendix 1V. The approximations used
for large n are given in Appendix III.
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able configuration for k = 4 and P* = 0.85. (For n = 5 the longest vertical segment
gccurﬂ at the point A, where the abcissa and the ordinate are symmetrical about

5)



SELECTING THE BEST ONE OF SEVERAL BINOMIAL POPULATIONS 561

COMPARISON OF THE TWO SPECIFICATIONS

It should be pointed out that for a given k the same value of n would
satisfy the specification for different specified triplets

* *
P*, pry , Pray

For example with k = 4, P* = 0.85 and = fixed we could vary p{y in
the alternative specification and compute for each pfi) the correspond-
ing largest value of pfey such that the specification (P*, ply, pfy) is
satisfied. This is shown in Fig. 17 for n = 5, 10, 20 and 60. The vertical
distance in Fig. 17 between the appropriate curve and the 45° line
(n = =) is the length of the indifference zone (pfy, p{n). The indif-
ference zone widens in the center and narrows at both ends. In fact we
find just as in the original specification that for n greater than (say) 4
the indifference zone is widest when pfy; and pfy; are symmetrical about
0.5. It is clear that the two specifications would coincide if we took d* in
the original specification and set pfy = 3 (1 + d*), pfay = % (1 — d*)

1.00 %
B - —$— - o /

0.80

0.75}

0.65

0.60

0.30 0.35 0.40 0.45 0.50

Fig. 18 — Probability of a correct selection as a function of the true difference
d = puy — pra) under the least favorable configuration for & = 2 and selected
values of n.
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in the alternative specification. We shall be interested in comparing the
alternative specification (P*, pfy , ply) with the original specification
with the same P* and with d@* set equal to pfy; — pfy . It is clear that
the value of n required for the original specification will always be
larger.

The original specification is simpler and is preferable to the alternative
specification when little or nothing is known about the processes on test,
but the price that has to be paid for ignorance is an increase in the
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Fig. 19 — Probability of a correct selection as a function of the true difference
d ]= Ppuj — pe) under the least favorable configuration for k¥ = 3 and selected
values of n.
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required number of observations. In the example of the preceding sec-
tion the value of n required for the alternative specification is 45 as
compared to 51 observations per process required to satisfy the original

specification with the same P* and with d* = pfi; — ply. Here the
saving is only moderate. The saving will be much larger if p{y and
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Fig. 20 — Probability of a correct selection as a function of the true difference
d = pp; — pre) under the least favorable configuration for & = 4 and selected
values of n.
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iy are further from 0.5 and d* is small. For example, for k = 4, P* =
0.95, piy = 0.95 and p{z; = 0.90 the value of n required for the alter-
native specification is 239 as compared to 850 observations per process
required to satisfy the original specification with the same P* and with
d* = 0.05. The alternative specification is justified on the basis of & priori
or previous information about the approximate values of the p’s.

REVERSING THE TABLES

The experimenter may wish to use the tables of this paper in reverse.
For example, if n is fixed and d* is specified by the experimenter, then
by using the appropriate table he can find the probability of a correct
selection that is guaranteed for d = d*; i.e., a greatest lower bound to
the probability of a correct selection for d = d*. This process of re-
versing the given values and the values to be computed can most easily
be carried out on graphs. For example, the above problem of finding the
guaranteed probability of a correct selection given d* and n is most easily
carried out on Figs. 18, 19, and 20.

AprpENDIX I
MODIFICATION OF THE ORIGINAL SPECIFICATION

The same value of n will, of course, satisfy the specification for dif-
ferent pairs of specified values (d*, P*). From a purely mathematical
point of view it is not necessary that ¢* should be the smallest difference
for which the experimenter desires to make a correct selection. For ex-
ample, if & = 3 the experimenter could specify any one of the four pairs
(0.10, 0.60), (0.25, 0.90), (0.30, 0.95) or (0.40, 0.99) and obtain the same
result, namely n = 20. The experimenter may prefer to specify the curve
or set of points corresponding to a fixed n. Several such curves are given
in Figs. 18, 19, and 20 for k = 2, 3, and 4, respectively. The experi-
menter would decide in advance on some property of the curve that he
considers desirable and from the appropriate figure he could find the
curve with the smallest n-value that satisfies the desired property.

The main point of the above paragraph is to point out that the original
specification in the body of the paper is one particular way, but not the
only way, of stating a specification that will determine a value of n.
The only criterion for a good way to state the specification is that the
experimenter should be able to bring his best judgment (or best guesses)
to bear on the quantities that have to be specified in advance.
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ArpeEnDIX 1I

MONOTONICITY PROPERTIES

We shall prove that for any fixed d (0 £ d = 1) the probability Pcs
of a correct selection is smaller for the configuration:

pm —d = pp = pm = - = pp (A1)
than for any configuration given by
pu—dZpe 2 pa 2 0 2 py (A2)

where py; is considered fixed and the p;;; (i = 2) are variables. In other

words, for fixed ppy; the probability Pes is a strictly increasing funetion
of each of the differences

v

P — P (i =2)

We shall need the following lemma.
Lemma 1: For any pair of integers v, n (0 = x £ n) and any
8 (0 = 8 < 1), not depending on p, the function

x—1
Hx; p, 6) = Z;, Ci'p'(1 = p)" 0P (1 — p)"T (A3)
J=

is a decreasing [unction of p over the wnil interval (0 = p = 1). More-
over, 1l s strictly decreasing unless (x = 0 and 8 = 0) or (x = n and
8 =1).

Proof: Differentiating (A3) with respect to p gives after telescoping
terms

(0 — DaC"p"'(1 — p)"" = 8(n — )C."p' (1 — p)" ! (A4)

which is negative for 0 < p < 1 unless (x = 0 and 8§ = 0) or (x = n and
6 = 1). Since H iscontinuousin p at p = 0 and p = 1 thelemma follows.

Let X(; denote the chance number of successes that arises from the
hinomial process associated with

P (?’ =1, 2: e ;n)

the value of the integer n is assumed to be fixed throughout this discus-
sion and it will usually not be listed as an argument. The probability
Pes of a correct selection for any configuration with puy > ppy is
given by the expression on the top of the next page.
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k
Pos = P{X < X for i22} +} 2 P(Xw =X and

X < Xo fori= 2,4 #a} + - (A5)

1
+§P{X(n =Xg = = Xw)

It will be necessary to write the P s for any configuration with pyy > P
in another form which is more useful for the purpose at hand. Corre-
sponding to any binomial chance variable X (which takes on integer
values from 0 to n) we define a “Continuous Binomial” chance variable
Y by letting ¥ be uniformly distributed in the interval (j — Li+ 9
with the same total probability in this interval as the ordinary binomial
assigns to the integer j, namely

Cinpj(l - p)n_’. (.7 = 0: 1’ ] n)

We will now show that the probability Pgs of a correct selection is unal-
tered if we replace each of the k discrete binomials by its corresponding
continuous binomial. Let ¥ denote the continuous binomial (CB)
chance variable associated with pr; and let y(;) denote any value it can
take on. Let X(; denote the nearest integer to ¥, and let z; denote
the nearest integer to y, (¢ = 1, 2, -+, k). Then X, is a discrete bi-
nomial (DB) with the same parameters (pr, n). Let

g(z, p) = C."p° (1 — )" (e =0,1,---,n)

Then the density g(y, p) of the continuous binomial (disregarding the
half-integers) is given by g(y, p) = g(z, p) where  is the nearest integer
to y.

For two continuous binomials (i.e., & = 2) the probability Pcs of a
correct selection for any configuration with pp; > pya is given by

n+1/2
Pos(CB) = £ P{Yo < yoloae ; pw) dya (A6)

1/2

n z(1)+1/2
= 2, f P{Yo < yolela ; pw) dyay (A7)

z(1)=0 Yz(1)—1/2
Within any interval (v, — %, 2o + 3) we have
P{Ye <y} = P{Xw < 2o} (A8)
+ P{X@ = 20}P{Y e <yo | Xo = 20}
= P{X@p < s} + 3 P{Xo = aw) (A9)
which depends only on zg, . Hence from (A7)
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Pes(CB)
n (A10)
= ZO[P[X&) <z} +3P{Xe =20}P{Xg = 20}
z(1)=
= P{X@ < Xo} + iP{Xe = Xu) (A11)
= Pes(DB) (A12)

The above is easily generalized to hold for any & > 2. The details of this
generalization are omitted. For general k this equality holds not only
for the important special case p; > ppz but also for the more general
case (2) for any ¢ < k. Since the latter result is not needed here, the
proof is omitted.

If we let G(y;p) denote the c.d.f. of the continuous binomial then
lemma 1 can be restated in the following form.

Lemma 2: For any integer n and any y, the function G(y;p) is a non-
increasing function of p. In particular, for —3 < y < n + it isa
strictly decreasing function of p.

Proof: For any y, set @ = x(y) and 8 = 6(y) equal to the integer part
and the fractional part of (y + 1), respectively. Then for any y we have
the identity in p

Glyp) = Hp, ) (O =p=1) (Al3)

For any o such that —% < 5, < n 4+ % we have 0 = 2(y) =< n and
0 = () = 1. The inverse function y(x,0) = @ + 8 — % is a single-
valued function of the pair (x,0); the two particular pairs (0,0) and
(n,1) correspond to the wnique values y = —% and y = n + 1, re-
spectively. Hence the pair [x(y0), 8(yo)] must be different from these two
particular pairs above since it corresponds only to 3 which is in the
interior of the interval (—3, n 4+ 1). Lemma 2 then follows from lemmas, 1
and the fact that G(y;p) is identically zero in p for y £ —1 and identi-
cally one in p fory = n + 3.

The probability Pcs of a correct selection for & discrete or k& continuous
binomials for any configuration with pu) > p2) can now be written as

n+1/2 k
Pes = [ [I],; PiY < I/cn}:l ooy s pm) dyay  (Al4)

1z i=2
nt1/2 k
= f_”-. I:Il (r'(;/iplf])] g(yspuy) dy. (A15)

Clearly if any one or more of the p;;; ( = 2) decreases, holding pp,
fixed, then it follows from lemma 2 that the right member of (A15) is
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strictly increasing, i.e., for fixed py) the Pesisa strictly increasing fune-
tion of each of the differences pyy — Py (i = 2) as was to be shown.
It follows from the above result that in searching for a least favorable
configuration among all those in which the experimenter wants his
specification satisfied we may restrict our attention to those of the form
(A1). Moreover, we may set d in (A1) equal to d* since, for d > d* and
fixed py , the difference d — d* may be added to each pa (i = 2) and
the probability of a correct selection is increased. Then (A15) reduces to

n41/2
Pes = f 0 G Hyspm — dg(yspm) dy (A16)

It was shown in the section on the least favorable configuration that
there is a value pf1; of pp) which when substituted in (A16) gives the
minimum value Pgs of Pgs .

We can now prove the following result in which py is not fixed. For
any specified pair pfa; = ply; the probability Pes of a correct selection
is smaller for the configuration

P = Plu; Pl = Pl = Pw = = P (A17)
than for any configuration given by
Pu = P P 2 Pm ZPw =t 2 P (A18)

This is shown by considering two separate steps.

The first step is to increase pp holding all the other p’s fixed at Pl -
For any arbitrary set of values of p;y with pyy > pe the probability
of a correct selection can be written as

k n4-1/2 k
Por =3 [ [ L, 6mw) | 11 = Glmlotuam av (419

=2 J-1/2 i=2, igtj

by adding the probabilities that

Yo > Y >min {Ye, -+, You, Yam, - Yol
for
i=2,3,---,k
For
*
pay > Py = Pl = 0 = PR = P

this reduces to

n41/2
Pes = (b — 1) f_ " [1 — Gly;pu))G* ™ (y;pl)g(W,plr) dy  (A20)
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This result can also be obtained by starting with (A16) with

P = o0 = pw = pm — d* = Py
and integrating by parts. It is clear from (A20) that for fixed pryy i = 2)
the P¢s is an increasing function of pp; and is indeed strietly increasing
for ppy in the unit interval.

The second step is to hold pp; fixed and to decrease the values of
piy (i = 2). This increases the probability of a correct selection by our
previous result above. This proves the monotonicity property for the
alternative specification.

ApreEnDpIX III

LARGE SAMPLE THEORY — ORIGINAL SPECIFICATION

For py > pua the probability of a correct selection satisfies the in-
equalities
PlXy>Xw(@=23,k} < Pes
< P{X(l) = X(i) (i = 2r 3) e ;k)} (AZI)

unless py; = 1 and pi; = 0 in which case equality signs hold since the

three quantities above are all unity. Letting ¢py = 1 — pu;, we can
write the left member of (A21) as
— *
P{Z,-> d* v/'n (i=1,2,---,k—1)}
Vpmaw + (pu — d5qu + d¥)
(A22)

where

Xay — Xy — nd*
7. = (1) (i+1) n ((=1,2 -,k —1)

Valpmam + (pu — d*) (g + d%)]
(A23)

For the configuration (A1) with d = d* the chance variables Z; tend to
normal chance variables N(0,1) with zero mean and unit variance as
n — =». We have purposely omitted any continuity correction in (A22)
in order to get a better approximation for the smaller values of n.

To derive the least favorable configuration for large n we canrestrict
our attention to those configurations given by (Al) with d = d*. The
quantity p(1;, which minimizes (A22), is obtained by maximizing the
expression in (A22)

Q(p)

p(l —p)+ (p —ad*)(1 — p + d¥) (A24)
—2p" + 2(1 + d¥)p — d*(1 + d*) (A25)
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The derivative of Q(p) vanishes at
pin =30 +d); qu=3%0-—4d% (A26)

which gives the symmetric configuration. Clearly this value of p gives
to Q(p) its maximum value, } (1 — d**). This proves that the symmetri-
cal configuration is least favorable in the limit as n — .

Under the configuration (A1) with d = d* and n -— = the distribution
of the chance variables Z; (¢ = 1, 2, ---, k — 1) approaches a joint
multivariate normal distribution with zero means, unit variances and
correlations given by

ZZ;) = Pmgm L2 (A2
ol pmqm + (py — d¥)(qm + d*) @ =3 ( )

which do not depend on n. For the symmetric configuration this reduces
to the simple form

plZiZ;) = % (i #j). (A28)

This is precisely the case which arises in 1] and consequently the tables
in [1] can be used for our problem when (the answer) n is large. The con-
stants ¢ = C(P*, k) tabulated in [1] solve the equation

P{Z;>—%(é=1,2,---,k—1)}:P* (A29)

for standard normal chance variables Z; satisfying (A28). If we equate
C'/+/2 and the corresponding member of (A22), then we obtain for the
symmetric conﬁguration

d*n

\/ﬁ 1/ 1 — " (A30)

or solving for n and letting B = 1(” this yields the large sample normal
approximation
B

ne o (1 — d**) (A31)
Since d* is usually small when 7 is large and since the solution in (A31) is
usually somewhat smaller than the true value, then it is of interest to
examine the simpler approximation
B
d*
which is greater than the result in (A31). This is called the straight line
approximation since it plots as a straight line on log-log paper as shown

IIZ

n (A32)
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in Figs. 2 through 5. As d* — 0 both the normal approximation and the
true value are asymptotically equivalent to the straight line approxima-
tion.

The normal approximation to the probability of a correct selection
can also be written in another form similar to (A16) which is actually
more useful for numerical calculations. The left member of (A21) can
be written as

k-1
> [II P {wi

wy =2

.

- (A33)
< Wi Vpwam + (o — pio) \/f_l}:l P (W, = w)
\/73[1'1%‘1
where
X — npr .
W = —F———— (1=1,2---,k (A34
\/RPMG’H] ) )

and w, is the same function of xq) as Wi is of X, . The outside summa-
tion in (A33) is over the values taken on by wi as xq, runs from 0 to n.
Asn — o the expression in (A33) approaches

o [l (5 o )

=2

where f(¢) is the standard normal density and F(¢) is the standard normal
c.d.f. For the symmetric configuration, which is least favorable for large
n, (A35) reduces to

Ph~ [ F*‘“( M) d A
[Lr(o+ Z200) tman (430

A straightforward integration by parts gives the alternative form

Phy (k- 1) [ [1 _F (w _ %)] P w)f(w) dw  (A37)

which corresponds to (A20).
A simple method for computing such integrals based on Hermite poly-
nomials is deseribed by Salzer, Zucker, and Capuano.’

LARGE SAMPLE THEORY — ALTERNATIVE SPECIFICATION

The expression corresponding to (A22) for the alternative specification
is

* * -
P{Z,- s = (prn — pi21) vV (i=1,2-,k— 1)} (A38)
Vptnghy Hptak
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which is already written for the least favorable configuration. The tables®
are not immediately applicable since the correlations

* *
p(z;Zj) = — *p[IIQ[ll* - ('L ;'5.7) (A39)
Pigo + Praidiz)

are not, in general, equal to 3. In the cases treated in Tables VI and VII,
ph = 0.5 and hence piygfy < plagla so that the correlations (A39)
are all less than 3. It was found that linear interpolation on the required
value of n between the results for p = 0 and p = } gives moderately
good results when 7 is large. The result for p = 3 is given by

(pingtn + pingpy) (A40)

nsA
(P?‘l] - P?ﬂ)z

with A = 2B where B is given in Table V. The result for p = 0 is given
by (A40) with X = o> where A, is the solution of the equation
P{Z > —\) = P00 (Ad1)

which can easily be found from univariate normal probability tables.
An explicit expression for the result of this linear interpolation is

* * -]:B _ )\2 * =ll=) )\ 2
Phe P gin( (p* 0 )p;l-)li:lalén-] S (for py = 0.5) (A42)
(11 — P2l

The expressions for the probability of a correct selection for the al-
ternative specification corresponding to (A36) and (A37) are

Phy = f- " P (aw + b)f(w) dw (A43)

— alk — 1) f_ : [1 - F("”T‘b)] P (w)f(w) dw  (Ad4)

where
* gt (pty — PV
ar= 4/ BN 5 0 and b P T ERUVE S 0 (A45)
Pl1q121 V piaaie a

These expressions can also be evaluated by the method described by
Salzer, Zucker and Capuano.’
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Arrenpix IV
TYPICAL EXACT CALCULATION
A. Original Specification

The exact expression (A5) for the probability of a correct selection
for any configuration simplifies if the configuration is least favorable.
For any pair of integers (j,n) we define

bi = P{Xq =3} = C"(piu)(qin)"”’ (0 =7 =n) (A46)
by = P{Xa =j} = C"(piy — d*)(gfy + )" (0 =j = n) (A47)
Byj = P{X« = j} (A48)

Then the exact probability Pecs of a correct selection for the least
favorable configuration can be written as

k .
PLy = bez Ci b:., -y (A49)

=0 i=0 ].

where B, _; is defined to be zero. Here, for each value of X, , the letter
t denotes the number of processes that tie with X, for first place and
for any given value of 7 the conditional probability of a correct selection
is 1/(1 + 7). Taking k = 4 as a typical case, we can write (A49) more
explicitly as

Pis = 21 byBi ;1 + 2 5 35 buybyy Bija+ Z; b1 b3j Ba j1
= =1 i=

(A50)
Z lesz

7—0

If n = 10 then we may use the symmetric configuration, i.e., we may set
P = %+ (1 + d%), in computing from (A49) or (A50).
B. Allernative Specification

The probability P{s of a correct selection for the alternative specifi-
cation is the same as in (A49) and (A50) except that we now define

bij = P{Xw = jl = C;"(pfa)(af))" 76 = 1, 2) (A51)
B, = P{Xy = j} (A52)
A typical exact ealculation for & = 4, using (A50), (A51) and (A52) with

pu = piy = 0.75
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and

*
Pz = P = P = P2l

is given in Table Al. Exact values for the individual and cumulative
binomial probabilities were obtained from References 4, 5 and 6.

TasLe Al — CALCULATION OF THE Pgs
Py = Py = 075; P = P = P = Py = 0.60; k=4

i buj ba; Baja b:.j b;.j B;q’-‘ E:-J'-l

0.00000 | 0.00010 — 0.00000 | 0.00000 — —_
0.00003 | 0.00157 | 0.00010 | 0.00000 | 0.00000 | 0.00000 | 0.00000
0.00039 | 0.01062 | 0.00168 | 0.00011 | 0.00000 | 0.00000 | 0.00000
0.00309 | 0.04247 | 0.01229 | 0.00180 | 0.00008 | 0.00015 | 0.00000
0.01622 | 0.11148 | 0.05476 | 0.01243 | 0.00139 | 0.00300 | 0.00016
0.05840 | 0.20066 | 0.16624 | 0.04026 | 0.00808 | 0.02764 | 0.00459
0.14600 | 0.25082 | 0.36690 | 0.06291 | 0.01578 | 0.13462 | 0.04939
0.25028 | 0.21490 | 0.61772 | 0.04622 | 0.00994 | 0.38158 | 0.23571
0.28157 | 0.12003 | 0.83271 | 0.01462 | 0.00177 | 0.69341 | 0.57741
0.18771 | 0.04031 | 0.95364 | 0.00162 | 0.00007 | 0.90943 | 0.86727
10 0.05631 | 0.00605 | 0.99395 | 0.00004 | 0.00000 | 0.98794 | 0.98196

Check
totals....| 1.00000 | 1.00000

OIS MW =O

10
3 by Bl = 044715
=1
3 10
5 Z b1,j ba,s Be i = 0.08493

1—1

E by b2; By = 0.01464

=1

0.00145

Il

1 "
Ig libz.J

Total

0.54817 = Pés

AprPENDIX V

In this appendix it will be shown that for large values of k the value of
n required to meet any fixed specification (d*, P*) is approximately
equal to some constant multiple of (In k).

Let n = n(k) denote the unique positive decimal solution of the equa-
tion

f_ " Pl + b A/n)f(w) dw = P* (A53)
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where f(w) and F(w) are defined above, P* and b are known constants
with 1/k < P* < land b > 0 and the argument & is a positive integer.
Let & be a (small) fixred number such that 0 < ¢ < Min (P* 1 — P*%).
Then ¢ < P* —1/k for sufficiently large k. Let A = A(¢) be defined by

A
f fw) dw =1 — ¢ (A54)
—4
so that

0< F*w 4+ b v/n)f(w) dw < & (Ab5)

[w] >4

for any integer £ = 1, any n > 0 and any b > 0. Let n’ and n"" be the

unique positive decimal solutions, respectively, of the equations

j:: F*'w + b A/n))f(w) dw = P* — ¢ (A56)
’ FYw 4 b A/2/)f(w) dw = P* (A57)

where P*, b and & are the same as in (A53). It follows from (A55), (A56)
and (A57) that for any integer £ = 1

n =n =n" (A58)

From (A54) and (A57) we have

A i o P*
f P + by a(w) do = 1 — (A50)
—A -

where f.(w) is the density of the normal distribution, truncated at A
and —A. The right hand member of (A59) is positive and less than
unity since ¢ < 1 — P*. Hence there exists a w, with |w, | = A such that

‘ F* ' w + by/n")fa(w) dw = F*(wy + b+/n"")  (A60)

Since w,, is bounded and n” is large for large & we can use the well-known
approximation

_exp [—(w, + b\/vW)z/Z]“
2r(wy + b/n”
V2w + by/n"") (A61)

(k= 1) exp[—(ws + b\/f?’)2/2}
'\/Q;(’wa + b\/?)

where only the leading term is considered. Hence from (A59), (AGO)

Fslw, + by/n’) = [1

éexp{
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and (A61)

— Inln (1; E)\/E’r +In(k —1)

(A62)
= Hws + b/ + In (wa + bv/n”)
Sinece w, is bounded and In v/n” = o(n"’) it follows that for large &
=AYk —1)=Chnk (A63)

where C is a proportionality factor. Starting with (A54) and (A56) the
same argument gives the same result as (A63) for n’. Hence, by (A58),
the same result must hold for n.
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