Coincidences in Poisson Patterns

By E. N. GILBERT and H. O. POLLAK
(Manusecript received August 3, 1956)

A number of practical problems, including questions about reliability of
Getger counters and short-circuils in electric cables, reduce to the mathe-
matical problem of coincidences in Poisson patterns. This paper presents
the probalelity of no coincidences as well as asymptotic formulas and simple
bounds for that probability under a variety of circumstances. The probability
of exactly N coincidences is also found in some cases.

INTRODUCTION

A number of practical problems are questions about what we call
‘“coincidences” in Poisson patterns. In d-dimensional space, a Poisson
pattern of density A is a random array of points such that each infinitesi-
mal volume element, dV, has probability AdV of containing a point,
and such that the numbers of points in disjoint regions are independent
random variables. Then a volume, V, has probability

an* v
k! ¢

of containing exactly & points. A coincidence, in our usage of the word,
is defined as follows: We imagine a certain fixed distance § to be given
in advance; two points are then said to be coincident if they lie within
distance & of one another.

Examples

The best-known case of a coincidence problem concerns Geiger coun-
ters. In the simplest mathematical model, there is a short dead-time &
after each count during which other particles can pass through the
counter without registering a count. In our present terminology, a count
is missed whenever two particles traverse the counter with coincident
times of arrival. The same problem is encountered with telephone call
registers.
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Another example arises in the manufacture of electric cable. Each
wire in a cable is covered with an insulation which contains occasional
flaws. When the cable is assembled it will fail a short circuit test if it
contains a pair of wires such that a flaw on one wire lies within some
distance & of a flaw on the other wire. In a similar way, coincident flaws
in the insulation of the wire from which a coil is wound can lead to fail-
ure of the coil.

There are also some problems in the development of certain military
systems which lead to the consideration of coincidences in Poisson pat-
terns.

Outline of Work

Our primary aim is to study the probability of no coincidences under
various circumstances. In Part I, we examine coincidences of two differ-
ent Poisson patterns, of densities A and p respectively, on a line of length
L. Here we do not count two points of the same pattern within a distance
3 as giving a coincidence. A set of integral equations yields the probability
of no coincidences as well asan asymptotic formula and upper and lower
bounds.

In Part II, we study the probability, Fo(L), of no coincidences for a
single one-dimensional Poisson pattern of density . These results may
also be interpreted as the distribution function for the minimum distance
between pairs of points of a Poisson pattern. Sample formulas are the
asymptotic formula (for large L)

?\ —a L
Aol Fir—a]°

and the bounds (valid for all L)

. Fo(L) ~

(1 _ ;_1) e—aLe-—(a—?\)é < Fu(L) < eruLe«-(a;I\)B’

where s = —a is the largest real root of
s + A = he—(;-{-?d(‘

The problem of n Poisson patterns, all of the same density A, is ex-
amined in Part III. Coincidences are now counted between points of any
two distinet patterns.

The one-dimensional problems of Parts I-III succumb readily to ana-
lytic techniques. We can find exact expressions for the probabilities of
no coincidences in Parts I-111. Two entirely different methods of deriving
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exact results are available and are illustrated in Parts II and III. Un-
fortunately, the exact formulas, although they are finite sums, contain a
number of terms which grows with L. Much of our effort has been di-
rected toward finding good, easily computed bounds and asymptotic
formulas.

The probabilities of having exactly N coincidences are also obtainable
but they have more complicated formulas. A detailed derivation is given
only in Part II.

In Part IV, we consider the probability of no coincidence in higher
dimensional problems. The methods of Parts I-1II fail in higher di-
mensions, but we are still able to derive some hounds. An exact formula
is derived for the probability of no coincidences within a single two-
dimensional Poisson pattern in a rectangle with sides < 24. We also give
particular attention to coincidences in a three-dimensional cylinder.

Part V contains numerical results.

Reduction of the Examples to the Theory

We now wish to see how answers bearing on the practical problems
previously listed may be found from this study.

The literature on Geiger counters (see bibliography in Feller’) is con-
cerned with statistics of the number of counts registered in a given long
time, ¢. The basic problem is to test the hypothesis that the particles
arrive in a Poisson sequence. To this problem, then, are relevant the
formulas for the probability of N coincidences in one pattern given in
Part IT, and the bounds and asymptotic results there derived.

The problem of coincident flaws in an electric cable is three-dimen-
sional, and we have various approaches leading to the probability of no
coincidences which are valid under different circumstances. If the cable
contains only two wires (with possibly different flaw densities), then the
problem reduces to the one-dimensional case of coincidences between
two Poisson patterns treated in Part I. If the diameter of the cable is
small with respect to §, and if the density of flaws is the same on each of
the n wires in the cable, we have the situation of n identical patterns
treated in Part III. If, in addition, n is very large, we may ignore the
fact that coincident flaws on a single wire do not cause short cireuits,
and think of coincidences within a single pattern (Part II). Without the
assumption that the diameter of the cable is small with respect to 8, the
problem is no longer reducible to a one-dimensional form. Section 4.4
is especially devoted to thick cable, and to producing a lower hound for
the probability of no coincidences in this three-dimensional situation.

The literature on Poisson patterns in a line segment contains the fol-
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lowing related papers. C. Domb' finds the distribution function for the
total length of the set of points lying within distance § of a pattern point.
P. Eggleton and W. O. Kermack® and also L. Silberstein’ consider ag-
gregates, which are sets of & pattern points all contained in an interval
of length 8. In the special case k = 2, aggregates are our coincidences.
These authors find the expected number of aggregates but not the prob-
ability of N aggregates.

I CONCIDENCES BETWEEN TWO PATTERNS
1.1 Integral Equation

Consider two Poisson patterns of points on the real line, the first with
density A (points per unit length) and the second with density u. We want
the probability (L) that in the segment from 0 to L there is no coinci-
dence between a point of pattern No. 1 and a point of Pattern No. 2.
F(L) will be formulated in terms of the conditional probabilities

Pi(L) = Prob (no coincidence, given Pattern No. 1 has point at L),

P,(L) = Prob (no coincidence, given Pattern No. 2 has point at L).

If I, < 6, Py(L) and Ps(L) are the probabilities that patterns No. 2
and No. 1 are empty:

PyL) =™, Py(L)=¢", if L=. (1-1)

If I, > & and Pattern No. 1 contains a point at L, there are two ways
that no coincidences can occur. First, Pattern No. 2 may fail to have any
points anywhere in the interval [0, L]. The probability of this event is
exp — uL. The second possibility is illustrated in Tig. 1 (using circles for
points of Pattern No. 1 and crosses for points in Pattern No. 2). Pattern
No. 2 has points in (0, I.); the one closest to L is at y < L — 8. Since
the interval (y, L) contains no points of Pattern No. 2, the probability
of finding this closest point, ¥, in an interval, dy, is

exp [—u(L — y)lu dy.
The interval (y, y + 8) must befree from points of Pattern No. 1 (prob-

NO COINCIDENCES EMPTY NO CROSSES
1 | 1

— —o—
L

0 y y+d

Fig. 1 — Patterns without coincidence.
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ability exp (—\8)) and the interval (0, ¥) must contain no coincidences
(probability Ps(y)). One obtains finally

L—é
P(L) = e** [1 + ue™ '£ e Py(y) dyJ, (1-2)

and similarly

I

L5
Py(L) = e ™ [1 + e fo Py(y) dy:l. (1-3)

The solutions Py(L) and Py(L) are determined uniquely by (1-1),
(1-2) and (1-3). For (1-1) determines them for 0 < L < § and the in-
tegrations indicated in (1-2) and (1-3) will provide the solutions in 0 <
L = (n + 1)é when they are known in 0 = I £ né. Py(L) and P,(L)
are piecewise analytic; the analytic form of the solution changes
each time L passes an integer multiple of §. These analytic expressions
soon become complicated and are less useful than the bounds and ap-
proximations given later on.

To compute F'(L), consider the last place before L at which either Pat-
tern No. 1 or No. 2 has a point. The probability that this last point lies
between x and » + dx and belongs to Pattern No. 1 is exp [—(A + g)
(L — @)\ dv (Fig. 2). This term multiplied by P;(2) and integrated from
0 to L gives the probability of no coincidences if the last point is a circle.
A similar integral gives the probability if the last point is a cross. Finally
there is probability exp [—(\A 4 u)L] that neither pattern has a last
point [i.e., (0, L) empty]. Then

F(L) = ¢ Mt [1 + fo ’ eM(\P(2) + pPa(z)) dx] (1-4)

1.2 Solution by Laplace Transforms
For¢ = 1 or 2, let

pi(s) = [ PuL)¢™ dL. (1-5)
0
Replacing P,(L) in (1-5) by (1-1) for 0 < L =< 4, by (1-2) for § < I,
NO COIN(I:LDENCES EMPTY
;( eanE —+ - —4 :”:“:/ :
0 T - Tx x+dx L

Fig. 2 — Patterns without coincidence.
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and interchanging the order of integration of a double integral,

(s + wpls) = 1 4 we T H0py(s).

Similarly,
(5 - Npals) = 1+ A M (),
so that
B § 4+ N 4 pe O
pis) = s+ N(s + n) — Wpe—20Futas? (1-6)
and
_ s+ u + he—()\+n+i)5
PO) = NG F B = Mg D (-7)

Likewise, using (1-4), the Laplace transform f(s) of F(L) is

1 4 Api(s) + upa(s)
AN p+s )

As one might expect from the piecewise analytic character of Pi(L)
and P,(L) there is no convenient way of transforming f(s) back to F(L).
By evaluating residues of f(s) exp (sL) at the poles of f(s) one might ex-
press F'(L) as an infinite series of exponential terms. The most slowly
damped term in this series can be expected to approximate F (L) when L
is large. The poles of f(s) are at the zeros of the denominator D(s) of
pi(s) and po(s):

J(s) =

D(s) = (s + N)(s + w) — e O (1-9)

Since D(z) > 0 for = 0 and both D(—X) and D(—pu) are negative,
it follows that D(s) has a real zero s = —a with @ < Min (A, ).

The zero s = —a of D(s) is the one with the largest real part. For,
letting s = a + 4y, we have in the half plane v = —a

[ (s 4+ N(s+w)| — A 2wt [

s+ M|« |84 u| — Ape O

v

(@ + N (@ + ) — e 2O 2 0,

Also, if y # 0 the = sign in the above proof can be replaced by > and

one concludes that all other zeros of D(s) = 0 satisfy

Res < —b
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for some b > a (note that the left hand side of the preceding inequality
does not approach 0 as y approaches = «).
The pole of f(s) at s = —a contributes to F(L) a dominant term

F(L) ~ )\2 + ”2 - (R + 'u)a, + 2Ap’e‘“("\+#—a)ﬁ G_BL
A+ u—a+p—2a+ 260 — a)(x — a)]

In (1-10) the error is O(exp — bL) for large L.
When 6 is small, we find @ = 2\ué + 0(5°) and (1-10) becomes

F(L) =~ [1 + 0(5")] exp — [2Aud + 0(3%)]L. (1-11)

It is interesting to note that a simple heuristic argument also leads to a
formula like (1-11). When § is small and L is large, one expects that the
intervals of length 26 which contain points of Pattern No. 1 at their cen-
ters will comprise a total length near (AL)(23) of the line segment (0, L).
The probability that a set of length 2\L5 shall be free of points of Pat-
tern No. 2 is exp — 2\udL.

(1-10)

1.8 Bounds

In this section we derive some relatively simple expressions which are
good upper and lower bounds on F(L). Both bounds have the same fune-
tional form:

A+ HB —al ( A + MB ) —(\tu) L
. = — e 1 e A . -
K(4, B; L) )\_l_“_ae + N — e (1-12)

In (1-12), a is again the smallest real solution of D(—a) = 0. A and B
are positive constants which are related by

B = a A

A U e—(H-u—n)& — A= ag(h+p—a)6. (1_13)

K(A, B; L) becomes an upper bound or a lower bound depending on ad-
ditional restrictions which will be placed on A and B.
To get the lower bound, we restrict A and B by the inequalities

A< B <V (1-14)

A< (1 — g) M B < (1 - E) M. (1-15)

We first prove that (1-13), (1-14), and (1-15) imply
Py(L) > Ae™ ",  Py(L) > Be . (1-16)

and
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When 0 £ L < 8, (1-16) holds because of (1-1), (1-14), and the in-
equalities a < A\, @ < p. If (1-16) were not true for all L there would be
a smallest value, say L = X > §, at which at least one of the inequali-
ties (1-16) would become an equality. Suppose the inequality (1-16) on
Py(X) fails. Using (1-16) for L < X, and (1-2),

o L O
PiX) > e 1+ Bye " —8

u—a
A6

—uX
a,) e by (1-13),

pe
u—
> Ae ™™ by (1-15).

This contradicts our assumption that (1-16) fails for Py(X). A similar
proof shows (1-16) cannot fail for Py(X).

Having proved (1-16) we now substitute these bounds into (1-4) and
integrate to get F(L) > K(A, B; L).

To make (1-12) into an upper bound it is only necessary to replace
(1-14) and (1-15) by

> Ad ¥ + (1 — B

A>1 B>1, (1-17)

A> (1 — g) ¢’ B> (1 - f-i) P (1-18)

The proof that now F(L) < K(4, B; L) proceeds exactly as before
but with all the inequality signs reversed.

Both bounds are dominated by an exponential term exp — aL, as is
the asymptotically correct formula (1-10). In typical numerical cases the
coefficients multiplying this term in the three formulas agree closely. A
numerical case is given in Part V.

and

1.4 Probability of N Coincidences

The methods of Sections 1.1 and 1.2 can also be used to find the prob-
ability Fx(L) that there be exactly N coincidences in the interval (0, L).
Tt might appear most natural to define N to be the number of pairs of
points (z, ), « from Pattern No. 1, z from Pattern No. 2, such that

|x — 2| <@. (i)

However, we add the additional requirement that x and z be “adjacent”
points; i.e.
the interval (z, z) is empty. (i)
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For example, in Fig. 3, we would count N = 0 coincidences even
though there are 18 pairs which satisfy (i). In cable problems it appears
reasonable to count coincidences as above. If we assume that all flaws
are equally bad, then a short circuit is likely to develop only across an
adjacent coincidence; our N is the number of places on the cable at
which a short circuit can form. Another interpretation is that the cable
can be cut into exactly N + 1 pieces each of which contain no coinci-
dences.

Let Py,~(L) be the conditional probability of having N coincidences
in (0, L) knowing that there is a point of Pattern No. 1 at L. The Lap-
lace transform of P; y(L) turns out to be the coefficient of ¢V in a generat-
ing function of the form

AN+ s+ u
N+ 8)(u + 5) — a2’

where @ = ¢ *™*(1 — () 4 (. Interchanging A and u one gets the gen-
erating function pa(t, s) for the Laplace transform of the probability
Py x(L) of N coincidences, given a point of Pattern No. 2 at L. Finally
the Laplace transform of Fy(L) is the coefficient of ¢¥ in the generating
function

D1 (t, 8) =

| — ¢ OHut0d Api(t, 8) + upa(t, s)
Nt p+os |

Since f(t, s) is a rational function of {, it is easy to find the coefficient of
t*. The poles of this function are again just zeros of D(s). Now, however,
the poles are higher order poles. For large L an asymptotic formula for
Fy(L) has the form exp — al times a polynomial in L with degree de-
pending on N.

FFor more details about this method we refer the reader to Part II
where a similar, but less involved, caleulation is carefully done.

ft,8) =

II SELF-COINCIDENCE§ IN ONE POISSON PATTERN
2.1 Integral Equation

In this part we shall consider a single one-dimensional Poisson pattern
with density A and ask for the probability Fx(L) that in the interval
(0, L) the pattern have exactly N coincidences. We count coincidences

I Yara . OO ) rarn) |
I NSNS LA L

0 J L

Fig. 3 — Patterns with six coincidences.
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as in Section 1.4; a pair (z, 2) of pattern points contributes one coinci-
dence to the total number N only if both | — z| < & and the interval

between x and z is empty.
Note that Fo(L) is related to the distribution function for the mini-

mum distance between the points of the pattern in (0, L):
Prob (min. dist. = 8) = 1 — Fo(L),

where it must be remembered that Fy(L) is a function of 8.

As in Part I, we first define the conditional probabilities Py(L) =
Prob (exactly N coincidences in (0, L), given a point at L). We then
have the following equations: -

.
wLss  Pu@ =2 alw. (2-1)
N+1
IfL<s Fyll)= E%LJF—D,G‘“, N =1 (2-2)

If L > 6, and N = 1, the probability of exactly N coincidences in 0, L)
equals the probability of N coincidences up to the last point of the pat-
tern in the interval (0, L) — and if there are to be any coincidences, there
must be points of the pattern in (0, L). Hence, if L > 4, N = 1,

Fy(L) = fo ’ Py(L — y)e ™A dy. (2-3)

If N = 0, the same argument applies, but there is also the possibility
that there are no points at all of the pattern in (0, L). Hence, if L > 8,

L
Fo(L) = ™ + f P(L — y)e’“")\ dy. (2-4)
0

Now let us consider the case where there is a point of the pattern at L.
Then if the last point preceding L is between L — & and L, this point
and the point at I will create a coincidence; if there i1s no point within
(L — &, L), then all coincidences are within (0, I, — 8). Hence, if L > &,
and N = 1,

&
Py(L) = f Py (L — re™ dy + ¢ VFu(L — 8).  (2-5)

For the case N = 0, we cannot allow a point in the interval (L — ¢, L),
and hence, if L > §,

o0(L) = ¢ MFo(L — 8). (2-6)



COINCIDENCES IN POISSON PATTERNS 1015

2.2 Laplace Transform of Fx(L)

To analyze the system of equations which is given by relations (2-1)
through (2-6), we introduce the generating functions

ﬂLﬂ=§HMMﬁ
and
p(L, 1) = é Px(L)t".

If L. > &, we obtain from (2-3) and (2-4) the relation
ML) =1+ fo ’ p(w, )\ dw, 2-1

and from (2-5) and (2-6) the relation (again if L > §)
Mp(L, 1) = Nt ,/:5 plw, e dw + " Vf(L — 5, 1), (2-8)

If we differentiate (2-7) and (2-8) with respect to L, and then apply
(2-7) differentiated to simplify the last terms of (2-8) differentiated, we
obtain, still only for L > 8,

F(L, ) + ML, t) = \p(L, 1), (2-9)
PL, 1) 4+ M1 = 0Op(L, 1) = A (1 — Op(L — 8, 0). (2-10)
It is easy to check from (2-1) and (2-2) that if L < §, then
p(L t) = e—hLll—l)

and

t

and hence (2-9) is valid for all L, but the left side of (2-10) vanishes if
L = 6. Hence we may take Laplace transforms of (2-9) and (2-10). If
we define

ﬂa0=ﬂ%@ilﬂ+ﬂ,

A(s, 1) = f f(L, e ™ dL,
0
and

B&O=fp@0ﬂwg
1]



1016 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1957

we obtain from (2-9), which we now know to be valid for all L,
(N + 8)A(s, 1) — 1 = AB(s, 1), (2-11)
and from (2-10), by recalling that the left side vanishes for L = §,
sB(s,t) — 1 + M1 — )B(s, t) = A1 — t)e “™B(s, ). (2-12)

Hence

1
Bs, 1) = PRE Y ) (2-13)

and
Als, 1) = 7%5 (1 + AB(s, 0)).

If we denote the Laplace transforms of Py(L) and Fx(L) by pw(s) and
fx(s) respectively, then
)\N[l . ef(s+)~)ﬁ]l\f

pu(s) = [s F N — he- a1’ (2-14)

and

Jo(s) = )\L—i—s (Apo(s) + 1),
(2-15)

fu(s) = %Epﬁ(s) for N=1,2, -

2.8 Exact Formula for Fo(L)

It is possible to solve (2-1) through (2-6) in piecewise analytic form by
computing recursively from each interval of length & to the next one. We
shall obtain the piecewise analytic form for Fo(L) by a direct derivation
essentially due to 2. C. Molina.*

Suppose k is the number of pattern points which fall into (0, L). Let
z; denote the distance between the 7 — 1* point and the i*® point (z; is
the distance from 0 to the first point) as shown in Fig. 4. The configura-

X AL Xk

flﬂ —L— /—.‘\
[ Pt S D ) oo D, |
T A o—b - t + i
o 1 2 L-1 L k L

Fig. 4 — Definition of z; .
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tion of points 1, ---, k on the line is represented by a single point
(%1, *+*, ) in the polyhedron T in k-dimensional space defined by the
inequalities

T: 02z, -,0= a;, nta+t -4 =L,

and the probability distribution of the point (z;, ---, a;) in 7 is uni-
form. The configurations with no coincidences lie in a smaller polyhedron
T" consisting of all points of 7' for which 8 < ., -+, 8 < 2. Given £,
the conditional probability that there be no coincidences is the ratio of
two k-dimensional volumes Vol (7")/Vol (T).

Vol (T") =0 if L=< (k—1)s.

TFor larger valuesof Llet yp = 21, 0 = 22 — 6, ys = 05— &, -+, yr =
x; — 6. Then 7" becomes a polyhedron of the form

T 03,08y, 0=y, n+twp - +usL-— (k-1

Since the transformation from z’s to y’s has determinant equal to one,
T” has the same volume as T’. However, 7" is now seen to be similar
to T but with sides of length L — (k — 1)é instead of L. The volume

ratio sought must be
(L - (k- 1).5)"
— )

Since & has the Poisson distribution with mean AL we obtain finally

L 1+[L/5) (?\L) ( (k . I)B)k
! L ’

F u(L) = e

k=0

The piecewise-analytic character of Fy(L) is evident; increasing L by

an amount & increases the upper limit on the sum by one and thereby
adds a new term to the analytic expression for F(L).

2.4 Asymplotic Formula for Fy(L)

Similar exact formulas could be found for all the Fy(L), but they are
both complicated and inconvenient for computing if 7/5 becomes large.
It is thus natural to aim for asymptotic results and for bounds connected
with them.

The Laplace transform of Fx(L) is given through (2-14) and (2-15)
above. The pole of fy(s) with largest real part is a pole of order N + 1
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at a real negative point
§ = —a> —A\

For large L, the asymptotic behavior is given by

- Ae ™ aL )
Fyll) X 5 =T £ 30 = oIV [1 + 80 — a)] ’

where the error term is 0(L¥ " ¢°) if N = 1. Such a formula, then, is
a good approximation for fixed N as L increases; for fixed L, however,
it will fail to be good for sufficiently large N.

If N = 0, the asymptotic form is

>\ —al
D+ —a°

but the error term now decreases at a more rapid rate, as may be seen
by including the contributions of some of the complex poles of fo(s). To
find these poles, set

FD(L) ~

s + A = 7\6_‘”“‘.

s = —\ + rexp (i6),
one obtains the simultaneous real system
2rm — 0 = &r sin 8 (m integer),
log (r/\) = —ér cos 6.

The first equation defines an infinite family of curves in the s-plane (see
Fig. 5). The second equation defines a single curve which intersects the

family at poles of p(s).
2.5 Bounds on Fy(L)

As in Part I, we may derive bounds on Fy(L) from the integral equa-
tion, and obtain

Since a = A% + 0(5°) for small 8, the bounds are very close if A8 is not
too large.
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1
1 m=3
|
\

5-PLANE ||
B :
]
\
1
\
\
|| ———
__/..’*'{"’ \7/d
\\
1

-AJalp

-_-——'—'——-.m=—2

Fic. 5— Solution of s 4 A = Ae~ (M8

III COINCIDENCES BETWEEN 7 POISSON PATTERNS
3.1 Inlegral Equation

In this part we consider » one-dimensional Poisson patterns and ask
for the probability, #(L), that in the interval (0, L) no pair of points
from different patterns are coincident. Unlike Part I, we now consider
only the case in which all n patterns have the same density \. Let P(L)
be the conditional probability, given that Pattern No. 1 has a point at
L, that there are no coincidences in (0, L).

If0=L =5, P(L) = exp — (n — 1)AL.

Ifs <L,
L—3§
P(L) = e " (1 + (= e f " VP (y) dy)
0

by the same sort of argument used in Part I. Then F(L) will be given
by

L
F(L) = ™" (1 + A f "™ P(2) d:c).
0
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3.2 Bounds and Asymptotic Formula
The Laplace transform of P(L) is
p(s) = {s + (n — DA — ¢ )} (3-1)

which has one real pole at a negative point s = —a, a < (n — A
Again it is this pole which contributes the dominant term to both P(L)
and F(L) for large L. We find

F(L) ~

—al
nie

(I + [(n — DX — alp)(nh — a)’
To bound P(L) by expressions of the form A exp(—alL) one finds
that A > 1 will give an upper bound and

4 < (1 - m—fiﬁ) e

will give a lower bound. The corresponding bounds on F(L) are of the

form
n).A. —nhL HAA —alL
(l_n)\-—a)e +n)\—ae '

3.3 Exact Solution

As in Part IT an exact formula for F(L) may be given as a finite sum.
We now derive it from the Laplace transform,

f(s) = (s + )7 (1 + nap(s)),
of F(L). We may use (3—1) to expand f(s) into the series

— —(RP\-H!)E k
f(s) = {1 + nA ’; (:+ (137\_ . 21} 39)

The identity
(s + 70 s + (n — DN

hg(M“%+M—nmf+<m+ﬁ+mﬁ

provides a partial fraction expansion for the k'™ term of the series (3-2).
Transforming (3-2) term by term with the help of (3-3) we find

F(L — e—n?\b[_(n _ 1)][L,’5]+1
+n g (I § _l)eﬂa]k AZU [—)\(LJ'— kﬁ)j’

This is the desired formula for F(L).

(3-3)
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IV MULTIDIMENSIONAL PROBLEMS

4.1 Two-Paltlern Lower Bound

We now derive some results on the probabilities of no coincidences in
some multi-dimensional situations. The simplest one is a lower bound
for the case of two Poisson patterns.

Theorem: Consider a d-dimensional region of volume V containing two
Poisson patterns with densities \ and u. Let S(8) be the volume of the d-di-
mensional sphere of radius 6. The probability of no coincidences between
the two patterns has the lower bound

e—wu—s—uﬂ(i)).

Proof

Let the pattern with density A be called the A-pattern and the other
the u-pattern. Given any A-pattern of & points there will be no coinci-
dences provided only that a certain region 7' contains no points of the
wu-pattern. T consists of all points of the volume V which lie in any of
the spheres of radius & centered on the & points of the A-pattern. Since
these spheres may overlap and may extend partly outside the volume
V, we have

volume of ' = k S(3),

and

Il

exp (—u volume of T)
= exp (— ku S(8)).

Since the number, £, of points of the A-pattern has the Poisson distribu-
tion with mean AV the (unconditional) probability of no coincidences
has the lower hound

Prob (no coine., given & points)

= (V) NV nS®)
= k! '

Summing the series one proves the theorem. Interchanging A and g in
the theorem gives another lower bound. The one stated above is the
better of the two if A < u.

The difference between the lower bound and the true probability
comes from two sources: (a) The overlap between the k& spheres; this
will be a small effect if \*S(28)V is small, and (b) the spheres which
extend partly outside the volume V'; there will be relatively few such
spheres if only a small fraction of the volume V' lies within distance §
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of its boundary. Hence in some cases the lower bound will be a good
approximation to the correct value.

It may also be noted that no real use was made of the spherical shape
of the volumes S(8). If one wants to consider a point of the u-pattern
to be coincident with a point of the A-pattern if it lies in some other
neighborhood, not of spherical shape, the same lower bound applies
but with S(5) replaced by the volume of the neighborhood.

4.2 Single-Pattern Lower Bound

A similar derivation in the case of a single Poisson pattern leads to:

Theorem: Let a Poisson pattern of density N\ be distributed over a d-di-
mensional region of volume V. Let S(8) be the volume of the d-dimensional
sphere of radius 8. Then the probability of no coinctdences s at least as
large as

e—lV{1 + X‘g(a)}VfS(ﬁ)‘

The theorem will follow from another bound which is slightly more
accurate but much more cumbersome.

Lemma

In the above theorem a lower bound 1s

vis()] k k—1
e (1 + AV +E ;.Z) 9{%1_11[1 — jS(a)/V]). (4-1)

Proof of Lemma

The probability sought is of the form

k
e O‘,K) Pe (4-2)
k L
where pj is the probability that, when exactly k& points are distributed
at random over V, there are no coincidences. To estimate p; , imagine
the & points to be numbered 1, 2, - -+ k and placed in the region one at
a time. If no coincidences have been created among points 1, ---, j
(which is an event of probability p;) the probability that the addition
of point j + 1 creates no coincidence is just the probability that this
new point lies in none of the j spheres of radius 8 centered on points
1, ---, j. The union of these j spheres intersected with the volume 1
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is always of volume =< 75(3). Hence

pin = pill — jS©)/V],
or

k—1

P2 I=I1 (1 — jS()/V]. (4-3)

When ( — 1)8(8) > V the above argument fails because the later
terms of the product are negative; in this case we use the trivial bound
P = 0. Combining (4-2) with (4-3) the lemma follows.

Once more the bound may be expected to be almost correct if A*V.S(23)
is small and if most of the region V lies farther than § away from its
boundary. The bound is also correct for non-spherical neighborhoods
(see discussion of previous theorem).

When V/S(8) is large, the sum (4-1) is unwieldy. If we let H equal
V/S5(8), we may rewrite the typical term in the sum as

& k=1
(?\V H (1 — (RV/H)

HH—-1) - (H—1¥k+1).
If H happens to be an integer, this equals
() ovsm,

so that the complete sum (4-1) equals

(1 - ’g) . (4-4)

We will now prove that if H is not an integer, the sum always exceeds
(4-4), so that (4-4) is a lower bound in all cases. We wish to prove that

[H)+1 Kk

I+ 3 ZHE -1 - (H-k+1D 2z 0+2" @5
=1 k!
for any positive H, in which event the theorem follows with

x = % and H = V/8(s).

The inequality (4-5) will be proved by induction on [H]. If [H] =
then we are required to show that

1+ He= (14 2)"
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for 0 < H < 1. This follows immediately from the concavity of
1+ ="

Suppose now that (4-5) holds for a value H. If we integrate both
sides of (4-5) from 0 to x, we obtain

i [H]+1 Tk+1 (1+$)H+1_1
vt 2 ppmHAE D H =k D 2

which may be rewritten as
(rEI+L K

1+ Z H(H+ DH) - (H—k+2) =1+
This completes the induction, and the proof of the theorem.

4.3 Another Lower Bound (Any Number of Palterns)

Another kind of lower bound can be derived which sometimes will
be better than the above bounds when the region V has a large fraction
of its volume within & of the boundary. For example, ¥ might be a
three-dimensional cireular cylinder (a cable) with a radius which is com-
parable to 8.

To derive this bound one first finds the expected number, E, of co-
incidences in V. An upper bound on £ will also suffice. Then it is noted
that 1 — F is a lower bound on the probability of no coincidences. For
if Qy is the probability of finding N coincidences,

=ZNQN;A§QN=1—Q0. (4-6)

4.4, Thick Cable

For example, we now give a lower bound which is of interest in con-
nection with the problem of a cable with many wires.

Theorem: Let a Poisson paltern of poinls with density X be placed in a
cylinder of length L and radius R > 8. The probability of finding no co-
incidences in the cylinder is at leasl as great as

| — WL (25% Rs )
5 .

Proof

Introduce cylindrical coordinates r, ¢, Z so that the cylinder is de-
scribed by
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Consider first any pattern point (r, ¢, Z) with Z-coordinate satisfying
6 = 7Z = L — 4. Let arrows be drawn from this point to all other pat-
tern points (if any) within distance 8. The expected number of arrows
drawn from this point will be AG(r) where G(r) is the volume of the
intersection of the cylinder with a sphere of radius § centered at the
point. For points near the ends of the eylinder (Z £ 6or L — & = Z),
the expected number of arrows will be less than AG'(»). Since the proba-
bility of finding a pattern point in a little volume element dV is MV,
we conclude that the expected number of arrows drawn in the entire

cylinder will be less than
[l[ ¥aw av.

eylinder

If the cylinder has N coincidences, there will be 2N arrows (each point
of a coincident pair appears once at the head of an arrow and once at
the tail). Hence the expected number of coincidences is

R
E < NrxL £ G(r) rdr. (4-7)

Since an exact formula for G(r) is rather cumbersome, we are content
with a simple but close upper bound. If » £ R — § then clearly G(») =
478°/3. If r > R — & we get an upper bound on G(r) by computing the
shaded volume in Fig. 6; the intersection of the sphere with a half-space.

GO = [268° + 3(R — 18’ — (R — '] /3.

Substituting these expressions for G(r) in (4-7), integrating, and using
(4-6) the theorem follows.

The approximation to G(r) which was made above is bad when R is
much less than §, but in this case good estimates may be obtained from
the one-dimensional results of Part II. Note also that if X is large enough,
the bound becomes negative and is therefore useless.

~~CYLINDER

Fig. 6 — A region for estimating G(r).
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4.6 Upper Bounds

Good upper bounds appear even harder to get than lower bounds.
One procedure is to divide the region V into a number of smaller cells.
If each cell has probability, p, of no coincidences and if there are K
cells, then p™ is the probability of no coincidence in any cell. If there is
no coincidence in V there will be none in any cell; hence p* is an upper
bound on the probability of no coincidence in V.

Of course, p” is too large because of the possibility of a coincidence
between two points in different cells. It follows that p~ will be a close
bound only if the cell size is made large; but then p becomes hard to
compute.

For example, consider self-coincidences in a single Poisson pattern in
a large region of area V in the plane. Cover this area with an array of
hexagonal cells of side 8/2 as shown in Fig. 7. The area of each hexagon
is 34/3 6°/8 so the number of cells used will be about K = 8V/3+/36".
A cell has no coincidence if it contains at most one pattern point, hence

p = (1 + A34/3 6°/8) exp — 3+/3 \6"/8.

The upper bound is

(8V/3+/352)
P~ =™ (1 + 3———2‘3/3 >\52> '

which has an interesting resemblance to the lower bound

M 4w

Fig. 7 — Pattern for studying coincidences in a plane region.
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4.6 An Ezact Calculation

The upper and lower bounds in Section 4.5 are not very close, largely
because of the small size of the hexagonal cells, An improved upper
bound may be obtained using square cells of side 26. We can calculate
p for small rectangular cells but only if we redefine our notion of coin-
cidence in terms of square neighborhoods instead of circular neighbor-
hoods. That is, points (21, ¥1) and (s, y2) are now considered coincident
if simultaneously

|an — 22| £5, and |y — 2| S 6.

The result we get is the only exact calculation of a non-trivial multi-
dimensional coincidence probability known to us.

Consider the rectangle 0 = x = L,0 = y = M with L and M both =
25. If L is less than 8, two points are coincident if and only if their y-co-
ordinates differ by less than 6. The problem then reduces to a one-di-
mensional coincidence computation such as we gave in Part II. There-
fore, suppose both L and M are greater than é.

There is probability

(ALM)* v

k! ¢

Je =

that the rectangle contains & points. We therefore subdivide the problem
into cases of the form “given k, find the probability that the & points
have no coincidences”. Only five of these cases have a non-zero answer.
To show this, divide the rectangle into four rectangles of sides L/2, M /2;
if & = 5 one of these rectangles must contain more than one point, and
so a coincidence. The remaining cases £ = 0, 1, 2, 3, 4 may be further
subdivided according to which pairs of a-coordinates are less than &
apart. Let us number the & points (21, y1), -+, (2%, yx) in such a way
that the x-coordinates are in order x; < 22 £ -+ < x;. If, for some 7,
ZTipe = x; + 6, then the subcase in question contributes zero to the
probability of no coincidences because all of | 2; — xip1 [, | Tiya — Tige |,
| xive — x| are = & and at least one of | y; — yin1 [, | Yisr — Yise |,
| yirz — wi| is =8. The only subcases which remain to give a non-zero
contribution are the nine listed in Table I. The number in the ‘“subcase”
column is k. The next column contains the z-inequalities which define
the subcase. The probability that the & ordered a-coordinates satisty the
stated inequalities is listed as prob,. If the a-inequalities are satisfied
there will be no coincidences if and only if |y — ya | > 8 for every in-
equality |2, — x| = 6 given in the a-inequality column. These y-in-
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TasLe 1
Subcase x inequ. probz ¥ inequ. proby
0 - 1 — 1
1 — 1 - 1
2(a) |22 — 1 > 8 (1 — 8/L)* — 1
BL — &
2b) | 22— 11 =6 iz |ge — | > 8 (1 — 6/M)2
3a) | w2 — w1 =8 2(1 — §/L) lys — | >8] A — &/M)?
I3 — T2 > 6
3b) | za— 2 > 8 2(1 — §/L)* g2 — ya | > 8| (1 —8/M)?
3@ [a—m s | 40— (P =1) [1va—wsl>5] 30— 8/00
T3 — X2 = 4 | —y2] > 8
T3 — T1 > 8
4(a) | x2g— 22 £ 8 31— 8/L)* ly— | > 8| fHQ0 —8/M)*
T3 — T > 8 [ys — ya| > 8
Ty — T2 > 8 lys —ys| > 8
4(b) | z5 — 22> 8 31 — 8/L)* [ys — | >8] 1 —8/M)!
|ys — ya| > 8

equalities are listed in the third column and the probabilities that they
are satisfied are listed as prob, . The probability of no coincidences is

>~ g« prob, prob,

where the sum is over all nine subcases. The sum is

2
exp (—ALM) {1 + ALM + % [L*M* — §*(2L — 8)(2M — §)]

3
+ % (L — (M — 8)*(2LM + Ls + Ms — 45"

If L = M = 25, this reduces to

exp (—45°\) [1 + 45"\ + % o'\ +

i
864

+

16
27

864

(L — ' (M — a)‘}.

W + 10 5"#] :
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A sample of one of the above computations may be instructive. Con-
sider, for example, Case 4(a). We have 0 < oy S m» < 23 £ 24 = L,
and require:

vy — X2 = 0,

€T3 — &1 > 6,

Ty — a2 > 6.
The probability of this is

r3—b

L—é6 L
(L}/8)" f f f dre dey das day
zg=>0 Jarg=rg—8 JYr;=0 Vr=zs+5

f f (L — 20 — 8) (x5 — 8) dus ds
rg=8 Yrg=ry—=8

e )

In the y-direction we require |72 — y1| > 6, |ys — yo| > 8, |1a —
ys | > 6, and there are no order restrictions. Assume first that y,» < y- .
Then the probability that y; and y4 satisfy their restrictions is

() (=)
M M ’

Hence, the probability for satisfying all the conditions is

fu'f JaH-a)(:”'—yg—ﬁ)dyg%_é-(l_i4
M M M 24 M)

Interchanging y. with y; and y, with y, shows that the assumption 3, >
s yields the same answer, so that the required probability is

5(y_2Y
12 M)

4.1 Coincidences between Two Patterns

V NUMERICAL WORK

4.1.1 Machine Computation of F(L)

To compute the probability of no coincidences in a line of length L
directly, it is convenient to transform equations (1-2) through (1-4) into
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the following differential difference equations:
) Difz £ 6
P/ (x) + uPi(x) = {Pg(;b' _ ﬁ)ueftwm ifx >,
Pi@) + NPHE) = {0 ifx <6
Pz — B Awe if x > 8,
F'(x) + (A + wF(2) = APi() + uPa(2),

Pi(0) = Py(0) = F(0) = 1.

[

These have been solved on a general purpose analog computer with
the aid of a lumped-element approximate delay line for a number of
cases. We have chosen for illustrative purposes the parameters A = 5,
u = 10,8 = 0.02, and L = 1. The exact solution, together with various
approximations to be described in the sequel, is plotted in Fig. 8, where
the exact solution is labelled w, .

1.0 p—s
Yy = EXACT SOLUTION
Us = ASYMPTOTIC SOLUTION
09 Us= LOWER BOUND
g\ y U, = UPPER BOUND
\ 5 \4 Us = DISCRETE MARKOV BOUND
0.8 \
k\\
0.6 ~\\\

;

/
/

Y&

o
i
A

N
\\

PROBABILITY OF NO COINCIDENCES

/

o
[N

o

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
L

Fic. 8 — Probability of no coincidences hetween two one-dimensional Poisson
patterns with A = 5, u = 10, if § = 0.02.
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5.1.2 The Asymptotic Formula

An approximation to the probability F(z) of no coincidences is given
by the asymptotic formula (1-10) which, of course, becomes a better
approximation the larger L becomes. If X = 5, ¢ = 10, and § = 0.02,
the smallest value, a, such that

A — @) — a) = g
is @ = 1.548. The asymptotic formula for F() now becomes
F(L) ~ 1.013¢ %%

which is found in Fig. 8 as y. .

5.1.3 Bounds Using the Asymptotic Exponent

Formulas (1-12) through (1-18) give a scheme for computing both
upper and lower bounds for /(L) which have the right behavior for
large L, and also agree with the solution at L, = 0. They become

F(L) =z 1.007¢7™* — 0.007¢7"",
and

F(L) £ 1.195¢ ™" — 0.195¢ 4
respectively, and are represented by y; and y, in Figure 8.

5.1.4 An Upper Bound by a Diserete Markov Process

If we mark on the positive z-axis the points né/2, n = 0, 1, 2, - -,
we can assign to each interval of length §/2 thus created a state (3), 1,
J = 0or1,asfollows: « = 01if no point of the A-process is present in the
interval, ¢+ = 1 if one or more points of the A-process are present, and
similarly for j and . An interval of length 8, made up of two adjacent
intervals of length 6/2, may then be represented by a number between
0 and 15 in binary notation, where 3, 6, 7, 9, and 11-15 represent a
coincidence within the interval of length 8. We now define a Markov
process as follows: in the interval 0 < ¢ < &, let p.¥, 7 = 0, 1, 2, 4, 5,
8, 10, be the probabilities of occurrence of the 7** state, so that, for exam-
ple, @ = ¢ ™™ and 7Y = ¢ ™™ (1 — ¢™). These are the
states in which there is no coincidence in (0, 8). In addition, let ¢
represent the probability of all the other states put together; ie., of a
coincidence in (0, 8). We now define p,'"”, i = 0, 1, 2, 4, 5, 8, 10 as the
probability of the " state in the interval (n8/2, (n + 2)6/2), where we
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require in addition that all states in the intervals (k8/2, (k + 2)6/2)
I < n, are from the same “no coincidence” index set. We define q""

the probability of a state 3, 6, 7, 9, or 11-15, in some interval (AB/Q
(k + 2)8/2), ]. < n. There fue then transition probabilities from states
in the n — 1* to states in the n™" interval. For example,

P"(") = 37“"““6(1’0‘"_” + Pa(PU + 2",
and
= g (= = R+ T )
+ 0= e™M@ ™+ 2" + (1= )T+ ™).

The quantity 1 — ¢'" is then an upper bound for the probability of no
coincidences (upper because it is possible for a coincidence to occur in
the process which is not counted in this subdivision of it). The curve
ys in Fig. 8 is drawn through points at L = n8/2 computed in this
manner.

To summarize the results, we see that the asymptotic formula and
the lower bound are both indistinguishable from the right answer; the
upper bounds are fairly far off. The upper bound derived by the Markov
process is better than that derived from the integral equation until

1.0 - 1 - : ]

o
®

o
o

o
S

PROBABILITY OF NO COINCIDENCES

o
[}

: | \

0 0.1 0.2 0.3 0.4 0.5
Ad2
Fre. 9 — Probability of no coincidences in a 25 X 23 square; neighborhoods are
square.
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about L = 0.5 (25 iterations), when the integral equation upper bound
becomes better.

5.2 A Single Pallern in a Sguare

To test our higher-dimensional bounds, we consider again coincidences
in a single Poisson pattern in a square of side 25. The exact probability
of no coincidences was given in Part 1V assuming square neighborhoods.
The lower bound (Sec. 4.2)

e M+ AS() 8@

applies using V = (26)* and S(8) = (26)° for square neighborhoods. To
use the lower bound 1 — /7 we note that the exact expected number of
coincidences is

1 o 25 25
E’=~A'f f A, y) dr dy
2 o J

where A(z, y) is the area of the intersection of the given square with
the square neighborhood centered at (z, 7). The lower bound is 1 — I =
1 — 92%"/2. The upper bound p® can be used if the square is cut into
K = 4 squares of side 5, each with a probability p = (1 4 A\8%) exp —
A" of no coincidence.

These bounds, together with the exact probability, are plotted as
functions of A\é" in Fig. 9. When A\&” is small, the 1 — E bound is correct
to terms of order 0(\%’). This might have been predicted from (4-6)
since it seems reasonable that @z, Q;, - - - should be of higher order in
A than @, when A is small. Ultimately the first lower bound becomes a
better estimate. It must be recognized that this other lower bound is
being tested under very severe conditions. Since every point of the
square has a neighborhood which intersects the boundary, the errors
from source (b) of Part V are considerable.

The authors wish to thank D. W. Hagelbarger and H. T. O’Neil for
their assistance in the course of the calculations reported in this section,
and Miss D. T. Angell for preparing some of the figures.
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