Distortion Produced in a Noise Modulated
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and Phase Shift
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An expression is given for the FM distortion introduced by a transducer
whose attenuation and phase shift depend upon the frequency in an arbitrary
way. This expression appears to be difficult to evaluate, but it yields useful
approximations for the second and third order modulation terms. In all of
the work, it is assumed that the distortion is small compared to the signal,
and that the signal can be represented by a random noise having the same
power spectrum,

INTRODUCTION

A number of workers have been concerned with the problem of com-
puting the distortion introduced by a transducer when an FM wave
passes through it. Some of the earliest results were published by Carson
and Fry' and by van der Pol.” Several contributions to the subject have
been made recently in connection with studies of microwave radio
systems.

An excellent paper on this subject has been published recently by
R. G. Medhurst and G. F. Small.’ Although their results differ consider-
ably in form from those given here, they are nevertheless closely related
to ours — their ‘“sinusoidal variations of transmission characteristics”
being special cases of our “nonlinear attenuation and phase shift.”

Here we treat the problem by applying a method used in a recent
paper’ to study the distortion produced by an echo. Two assumptions
are made, (1) that the distortion is small compared to the signal, and (2)
that the signal can be represented by a random noise which has the
same power spectrum as the signal. In Section I, we review some known
results and put them in a form suited to our needs. Sections II and III
are devoted to the derivation of our main formulas. The principal result
is given by the triple integral (3.2) for the power spectrum of the dis-
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tortion. Unfortunately, the integrals are difficult to evaluate. However,
it is possible to obtain approximations for the second and third order
modulation terms. These are given in Section IV. Some miscellaneous
comments are made in Section V.

I APPROXIMATE EXPRESSION FOR THE DISTORTION ()

Let the FM signal be ¢'(f) = dg/dt (for phase modulation the signal
would be ¢(¢)). Then the FM wave is the real part of

‘U,’(fz) — eiyl-Hw(t) (1.1)

where p = 2rf, is the carrier frequency. Let this wave pass through a
transducer having attenuation « and phase shift 8, where « and 8 are
even and odd funetions, respectively, of the frequency f. When a unit
impulse of voltage 8({) is applied to the transducer input, the output is

o) = L T e gy (1.2)

For physical systems, g(t) is zero for negative ¢.
When v:(¢) is applied to the transducer input, the output is

w®) = | ,, ()t — 1) df. (1.3)

When #(t) is applied to an FM receiver, the detector output consists of
the original signal ¢'(#) plus the distortion 6'(¢) introduced by the trans-
ducer. Comparison with (1.1) shows that 6(f) may be obtained by
solving

V(t)eipt+:'p(l)+{8(” — ?.?u(t) (1.4)

when p, o(t), v(t) are assumed to be known, and V(¢), (t) unknown.
When V(¢) is taken to be positive, (1.4) determines 6(¢) except for an
additive term of 27n where n is an integer.

We now assume that the transducer acts like a good transmission
medium in that the output differs but little from the input. More pre-
cisely, we assume

Ivo(t) - v,-(t) I &< 1. (}.5)

Since | v4() | = 1, it follows that | u() | & 1. Transducers having ap-
preciable attenuation and delay may be regarded as two transducers in
tandem, one with constant (independent of f) values of « and 8/f which
are roughly equal to those of the original transducer, and the second
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with variable a and B/f. The first transducer produces no distortion of
the signal, and if condition (1.5) is satisfied by the second, the con-
siderations of this paper will apply.

Equation (1.4) may be written as

V(t)e' " = vo(t)/v:t)
so that

8(t) = Im log U"—(t) (1.6)

!}.'(t)'
When we write
vo(t) /vi(t) = 1 + [vo(t) — vat)]/vi(2),

expand the logarithm in (1.6), and use (1.5), we obtain our approximate
expression for 6():

6(t) = Im [vo(t) — v:(D]/v:(t) = Tm vo(2) /v:(t)

Im [v,()]" f_ ) () gt —t) dt

Il

(17)
—Im [ : exp [ip(t' — ) + io(t) — io®lglt — ) dr’.

So far there is nothing essentially new in our work.®

II AUTOCORRELATION FUNCTION OF 6(t)

In Section I, ¢’(t) could be any reasonable sort of signal. In the follow-
ing work we assume that it is a Gaussian noise whose power spectrum,
we (f), 1s given to us. The power spectrum of ¢(¢) is

we(f) = wv'(f)/(2“"f)2, (2.1)

and its autocorrelation function is
Y = f w,(f) cos 2nfr df. (2.2)
[}

We have written y, instead of ¢(7) or R,(r) to simplify the appearance
of the formulas which occur in our work.

Our problem is to find the power spectrum, we(f), of the distortion
6(t), given w,(f). The method of solution is much the same as that used
in Reference 4. We first find the autocorrelation function Re(r) of ()
and then obtain ws(f) by taking the Fourier cosine transform of Ry(r).
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Let the last integral in (1.7) be F(t) so that 8(t) = Im F({). Then
8(t)6(t + ) = 3 Re [F()F*(t + 7) — F(OF(t + )} (2.3)

where F*(t 4+ 7) is the complex conjugate of F(t + 7). The autocorrela-
tion function of 8(¢) is obtained by averaging over the ensemble of the
noise functions ¢(f):

Ro(r) = av 8(0)6 + 7)

= av % Re { f_ Z dt ﬁ : dt" exp lipt. — 0 + i0(t) — ip(D)]

gt — Oglt + 7 — t)lexp [—ip(t” — t — 7) (2.4)
— ip(t”) + do(t 4+ 7)] — exp [ip(t” — t — 7) + (")
— dp(t + 'r)]}

Since g(t) is real, g*(t) = g(f). The averaging process may be carried
out by a method analogous to that used in Reference 4. The formula to
be used is

av exp [ie(t) — te(t) + tap(t”) — iap(t + 7)]
= exp [—o(l + @) + Yoot — apovr + @i (2.5)
+ apiv — ap, + aPrr_i]
where a is either —1 or 41, and ¢, is an even function of . When (2.5)
is used in (2.4) a double integral for Ry() is obtained. The substitutions
z=if—1t,
y=t+ -1, ' (2.6)
R, = V”r+z—y — ¥rgr — Yigz — 'f/r—v + ¥r
convert the double integral into

Re(r) = lRef d:r:] dy g(a:)e_‘.”’_w"”"w”
2 — —o (2'7)

[ei'm.l+-'!u —l'pu—R.,].

-g(y) — e
The symbol R, is chosen to agree as closely as possible with the notation
of Reference 4. There R, was the autocorrelation of the random func-
tion, v(t), where v(t + T) = o(t) — o(t + T), T being the echo delay.
Here, R, is the average value of the product,

[e(t) — ot + W] lelt + 7) — ot + 7+ 2)]

which becomes the autocorrelation function of »(t) wheny = 2 = T.
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It may be verified that the expression (2.7) for R,() is an even fune-
tion of r, as it should be. Expression (2.7) is the autocorrelation fune-
tion we set out to find.

The distortion 6(¢) has an average value, 8, whose square is Rg(=).
Since ¢(t) is a noise function, its autocorrelation function V. goes to
zero as r approaches «. Hence, Rys() is given by the expression ob-
tained from (2.7) by setting R, = 0. The autocorrelation function of
o) — 8is

Ro_i(r) = Ry(r) — Re()

% Re f_m dz L dy g(z)e T Mottty (2.8)
g™ (™ — 1) — (e — 1)),

IIT POWER SPECTRUM OF THE DISTORTION

Since 8(¢) has an average value which is generally not zero, its power
spectrum, wy(f), has a spike of infinite height at f = 0 corresponding to
the power in the de component 8. When this spike is subtracted from
wy(f) the remainder is the power spectrum of 6(f) — § given by

we_ (f) = 4 fow Ro_5(7) cos 2xfr dr. (3.1)

When we use (2.8) and note that Ry_3(r) is an even function of T, We
obtain

wy_i(f) = f_ e f_ " dyg@glpe e j: " [cos (pr — py)

(€™ — 1) — cos (pr + py)(e ® — 1)] cos 2mfr dr.

Reasoning similar to that given in Reference 4 shows that the inter-
channel interference spectrum, w.(f), (i.e., w.(f)Af is the average amount
of distortion power received in an idle channel of width Af centered on
the frequency f, all other channels being busy) may be obtained from
(3.2) by replacing (¢*"* — 1) by (&F* F R, — 1).

The power spectrum of 6({) —  may be regarded as made up of
modulation products of all orders. It turns out that the contribution of
n'" order products is given by the integral of the R," terms obtained
from the power series expansions of exp [£R,).

(3.2)

IV FIRST AND SECOND ORDER MODULATION TERMS

Here we shall study the first and second order modulation terms.
These arise from the first and second powers of R, in the expansion of
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the quantity within the square brackets in (3.2):

2R, cos px cos py + R, sin px sin py. (4.1)

The integrations with respect to 7 may be performed with the help of

f Yris €08 2mfr dr = “’*’éf ) Re e (4.2)
f YryWiryo €OS 2mfT dr

- (4.3)

= Rei f_w du wo(u)w,(f — u) exp {—i2wlbu + c(f — W]}

which follow from (2.2) and the fact that we have defined w(—f) to be
equal to w(f). In our notation the total power in a random noise function
is the integral of w(f) fromf = 0tof = =.

The first order modulation term is obtained from (3.2) by replacing
the term within the square bracket by 2R, cos px cos py. When the ex-
pression (2.6) for R, is used, the integration with respect to 7 may be
performed with the help of (4.2):

[ﬂ R, cos 2nfr dr = %’f—) Re [( % — 1)(e™ — 1)]. (44)

This leads to the following expression for the first order modulation
term in (3.2)

w,(f)

This is the quantity which is to be subtracted from we—i(f) to obtain
the interchannel interference spectrum w.(f).

The second order modulation term is handled in much the same
manner. With the help of (4.3) it may be shown that

2

f d:cg(:c)e‘"’"”" cos p.ﬁc(e_z’”"ch - 1. (4.5)

f R.? cos 2xfr dr = Re i f du w,(w)w,(f — u)

_(e—2rizu _ 1) (6—2“'2:(!71:) _ 1) (4-6)

'(EEriyu _ 1) (e2riy(f—u) _ 1)'

From this it follows that the second order modulation term in (3.2) is

f dx g(r)e_%wz sin px

27‘12. j;: duw,(u)w,(f — )
(4.7)

2
_(e—huu _ 1)(6—211::(1'—11.} _ 1)
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When ¢ — . is so small that exp (—y¢» + ¢.) may be replaced by
unity, as it is in some important practical cases, approximations may
be obtained for (4.5) and (4.7). The integral in 2 may be expressed as
the sum of integrals of the type '

f._ g(m)e—ipr—ﬂrfnz dﬁl’ — [B_ﬂ_iﬁ]fna-i-,fp

G. + iBa, (4.8)

Il

f g(x)e™ ¥ dy = G_, — iB_,.

The values of the integrals follow from (1.2) and the Fourier integral
theorem. G' and B are, respectively, even and odd functions of frequency,
and G, , B, are their values at the frequency f = f, + a where f, = p/27
is the carrier frequency:

G at frequency f, + a = G, ,

B at frequency f, + a = B, .
In this way we get the approximation
4w () [(Gr — 260 + G_p)* + (B; — B_)] (4.9)
for the first order modulation term, and
1

318 f_., duw,(Ww,(f — u)[(Gw — Gy + Gry — Gy — Gy

+ G_)*+ (Bu + B_w + By + B_jyu — By — B_; — 2By)’]

for the second order modulation term.

Expression (4.10) is an approximation to the second order modulation
term (4.7). When most of the interchannel interference is due to second
order modulation products, (4.10) is also an approximation to w.(f), the
interchannel interference spectrum. The following remarks may be of
some help in deciding whether (4.10) may be used.

1. For the case of phase modulation and a “flat” signal band, the
first of equations (5.3) shows that ¢ and ¢, may be made as small as
we please by choosing the signal power (as measured by P;) small
enough. Since R, is proportional to Py, Py may be chosen small enough
to make R," and higher order terms negligible in the expansion of the
integrand of (3.2) (unless there is some sort of symmetry which causes
the second order terms to vanish). In this case the interference is mostly
second order modulation and (4.7) is a good approximation to w.(f).
Furthermore, as P, approaches zero, exp (—yo + ) approaches unity

(4.10)
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and (4.10) becomes a good approximation to (4.7). Just how small P,
has to be depends upon the signal bandwidth, f, , and the characteristics
of the transducer.

2. Tor the case of FM and a flat signal band, the second of equations
(5.3) shows that even if Py is small, the difference Yo — ¢, approaches «
as | = | approaches «. To justify the use of (4.10) in this case it is neces-
sary to take into account the behavior of g(¢), the response of the trans-
ducer to the unit impulse 8(f). For example, if the duration of g(z) in
(4.7) is so brief that g(z) becomes negligibly small before —yo + ¥ be-
comes appreciably different from zero (which may be achieved by mak-
ing P, small enough) then (4.10) is a good approximation to (4.7).

3. When the attenuation, «, and phase shift, 8, are given for any
particular transducer, the corresponding g(¢) may be obtained from (1.2).
Once g(#) and yo — ¥, are known, the conditions under which exp (—vo +
¥.) may be replaced by unity in (4.7) and O(R.”) terms neglected in (3.2)
may be determined by direct examination of the integrals.

As might be expected, the third order modulation results are quite
complicated. The third order modulation term in (3.2) is

31|—4' j:: df’ f;m df,’ww(f')w¢(f”)ww(f”’)
(4.11)

2

f dx g(z) cospx e (" — 1) — DE"" - 1) }

where f”’ = f — f — f” and z = exp (—12xx). When yy is small this is
approximately

1 S , . I ,
3116 f_ . df f_ . df"wo(fw (f M w(f)NH + K1 (412)

where

H = m(f") + m(f") + m{) +m{ =7 = 1)

(4.13)
—m(f = ) — m(f — ") = m(0) — m(" + 1),

m(f) = Gy + G, n(f) = By — By,

and K is an expression obtained from H by replacing n by m.

V MISCELLANEOUS COMMENTS

Here we make some miscellaneous comments related to the foregoing
results.
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If the transducer is perfect except for an echo, its response to a unit
impulse 8(7) is
g(t) = 8(t) +ré(t — T) (5.1)

where 7 and 7" are the amplitude and the delay of the echo. The results
obtained using (5.1) agree, as they should, with the results obtained in
Reference 4. Of course, » must be assumed small compared to unity in
order that condition (1.5) may hold.

When the power spectrum of the signal is equal to a constant P, over
the band (f., fi) and zero elsewhere we have for phase and frequency
modulation, respectively,

PM: ‘ww(f)=Pn, fa<f<fb:

. (5.2)
FM: wo(f) = Po/@2xf)’, fo<[f<f.
When f, = 0 the autocorrelation functions are
PM: . = Pyfu(sin v) /v,
(5.3)

FM: o — ¢» = A[—1 + cosv + 2Si(v)],
v =2nfyr, A = Pfy(2nfy)" = (o/f)"

The mean square values of the signals are P,f, (radians)® for PM and
Puofy (radians/sec)” for FM. If, for FM, ¢ is the rms frequency deviation
in eps (so that the “peak” deviation is, say, 4¢ cps) then (270)* = Py, .
The difference ¥y — ¢, is used in the FM case to avoid difficulty at f = 0.
It will be noticed that our formulas are such that the y’s may be re-
placed by (¢ — ¥o)’s without altering the values of the various ex-
ponents, ete. In microwave systems the quantity A is often small in
comparison with unity.

As an example of the use of the second order modulation approxima-
tion (4.10) consider the case where the attenuation, «, is zero and the
phase shift 8 = ax(f — f,)*/2 radians, a, being small. Then, since G ~
1 —a B~ —B, we have G, ~ 1 and

B.~ —[8forf = f, + ul
= —agu.2/2.

When we take the I'M case of (5.2) and substitute in the approxima-
tion (4.10), the interchannel interference power spectrum is found to be

1 Te PD Pg _ 2
218 Ji—, (2rw)? @mA(f — w)? 0 + Qasu(f — )] du 55

= (2m) aPo/2)*(2fs — ).

(5.4)
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Dividing by w.(f) = Po/ (2xf)? gives the ratio of the interference power
to the signal power

(axaf/2)°(2 — /1) (5.6)

where the relation Py = (27¢)?/f» has been used to eliminate Po . Here
o is the rms frequency deviation of the FM signal in cps. The expression
(5.6) agrees with results of some earlier work done at Bell Telephone
Laboratories. In that work the second order modulation products were
summed directly.

It is interesting to apply the formulas given here to some of the
cases considered by Medhurst and Small.? They have shown that when
(in our notation) @ = —r cos 2xfT and B = 0 the power spectrum of the
distortion is

woi(f) = sin’ wfTwoe—s(f)leono , (5.7)
and when « = 0 and 8 = r sin 2=f7,

wo—i(f) = cos” mf T[wo_i(f)lecto - (5.8)
Here [we_3(f)]echo 18 the power spectrum of the distortion due to a simple
echo of amplitude » and delay T (corresponding to a = —r cos 2xfT

and 8 = r sin 2afT). Expressions (5.7) and (5.8) may also be obtained
by setting the impulse response g(¢) equal to

T r
8(t) —|—§5(t -1 :I:§6(t+ T

in (3.2).

The second order modulation approximation for the @ = —r cos
2xfT, 8 = 0 case may be obtained from (4.10) and turns out to be

f w,(u)w,(f — w)[2r sin pT sin «fT sin muT" sin w(f — w) TP du. (5.9)

It is seen that this contains the factor sin’xfT predicted by (5.7). When
(5.9) is applied to the FM case of (5.2) an integral something like (5.5)
(but more complicated) is obtained. The ratio of the second order
modulation interference power to the signal power is found to be

2[r sin pT sin wf TV (a/fo) UK (5.10)

where K is the quantity

. oo 7 [sin (y/2) sin (e — y)/2 * _
K= e fa-u[ yla — o) ] dy (5.11)
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tabulated in Table 4.2 of Reference 4 and
a = 2T, U = 2af,T. (5.12)
The parameters a and k that appear in the table are defined by
a=f/fs and k = 8f;T.

These formulas serve to supplement the formulas and curves given by
Medhurst and Small.
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