Self-Timing Regenerative Repeaters

By E. D. SUNDE
(Manuscript received March 29, 1956)

In self-timing regenerative repealers, a timing wave for control in pulse
regeneration 1s derived from the binary pulse train at each repeater with the
aid of a resonant circuit tuned to the pulse repelition frequency. The timing
wave can be made lo exercise complete control in retiming of pulses inde-
pendent of the received pulse train, or it can be combined with the received
pulse train to provide partial retiming. The timing principles are discussed
here for a particular type of self-timed regenerative repeater invented by
Wrathall, in which a timing wave derived from either the received or the re-
generated pulse train is combined in a particular way with the recetved pulse
train. The regeneration characteristics of such repeaters as determined by
vartous design paramelers are tnvestigaled, together with the cumulation
of timing deviations in repeater chains and the circuil requirements that
must be met to insure salisfactory performance.

INTRODUCTION

Pulse transmission systems employing binary codes, such as PCM,
have two inherent properties that are desirable from the standpoint of
avoiding excessive transmission impairments by noise and other imper-
fections in the transmission medium. For one thing binary pulse codes
permit substantial transmission distortion of pulses within certain
tolerable limits with negligible degradation of received signals. For
another, regenerative repeaters can be used at intervals along a route to
prevent accumulation of transmission distortion of pulses from various
sources, so that virtually the entire allowable distortion can be permitted
in each link or repeater section,

The above desirable properties are secured in exchange for increased
channel bandwidth, and can be used to full advantage in applications of
binary pulse systems to such transmission media as radio and wave
guides, where transmission is at such high frequencies that increased
channel bandwidth does not entail increased attenuation. In wire cir-
cuits, however, where baseband transmission is the more economical
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method, attenuation increases nearly in proportion to the square root of
the channel bandwidth. For this reason, rather short repeater spacings
may be required for binary pulse systems, so that for economical appli-
cations to wire circuits it is imperative to have reliable regenerative
repeaters of simple design.

In their principle of operation regenerative repeaters are by nature
more complicated than ordinary repeaters. In addition to providing gain
to off-set attenuation in the transmission medium, as in ordinary re-
peaters, they must also perform gating operations for sampling and
regenerating the received pulse train. This, however, does not pre-
clude the possibility that these operational principles can be implemented
in repeater design by instrumentation that is simpler than required for
ordinary repeaters.

The possibility of simple instrumentation resides partly in the cir-
cumstance that equalization circuitry for regenerative repeaters can be
substantially simpler than for ordinary repeaters, owing to less exacting
requirements on equalization. Furthermore, satisfactory performance
in pulse regeneration can be achieved without very precise timing in
sampling and regeneration of pulse trains. It is thus possible to secure
nearly the same performance as for ideal regenerative repeaters by par-
tial rather than complete exact retiming of pulse trains at each repeater.
This facilitates simple gating arrangements for regeneration of pulses.
Moreover, it permits a timing wave for control of gating operations to
be derived from either the received or regenerating pulse trains with the
aid of a simple resonant of circuit.

The simplicity of instrumentation permitted by these considerations
is exemplified in a self-timed regenerative repeater for baseband pulses
invented by L. R. Wrathall of Bell Telephone Laboratories. The cir-
cuitry of the repeater together with the results of tests on laboratory
models are dealt with elsewhere! and not considered here. The purpose
of this paper is an analysis of the timing principles underlying this type
of repeater together with its regeneration characteristics as deter-
mined by various basic design parameters, on the assumption of ideal
implementation of the timing principles by appropriate instrumentation.
In the Wrathall repeater “quantized feed-back” is employed as a means
of reducing the effect of low-frequency cut-off in transformers. Since this
is not an essential feature of self-timing repeaters and has no direct
bearing on the timing principles, it is disregarded herein.

1 L. R. Wrathall, Transistorized Binary Pulse Regenerator, B.S.T.J., 36, pp.
1059-1084, Sept., 1956.
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I REGENERATION AND RETIMING
1.0 General

In an ideal regenerative repeater the received pulse train is sampled
at proper fixed intervals, to determine whether a pulse is present. The
regenerated pulses transmitted into the next repeater section are all
of the same shape and amplitude, independent of the shape of the input
pulses. Thus pulse distortion from noise and other system imperfec-
tions is removed, provided the maximum distortion is held within proper
limits. Errors in the form of pulses in place of spaces, or conversely, are
encountered when these limits are exceeded. In a repeater chain there
will be cumulation of errors in proportion to the number of repeater
sections in tandem. However, the rate of errors in each section and thus
in the whole chain can be limited by a relatively small increase in the
signal-to-noise ratio of each section as the number of repeaters in tandem
is increased. This increase in signal-to-noise ratio with increasing length
of the repeater chain is much less than with ordinary nonregenerative
repeaters. For this reason regenerative rather than ordinary repeaters
are desirable, though not essential for systems employing binary codes.

An ideal regenerative repeater with the above features would entail
rather complicated instrumentation for precise timing, sampling and
pulse regeneration. With partial rather than complete exact retiming
the repeaters can be simplified, in exchange for some sacrifice in per-
formance, as shown later.

1.1 Regeneration Without Retiming

It would be possible to have a repeater in which pulses would be re-
generated in amplitude and shape, but without retiming. Pulses would
in this case be regenerated when the amplitude of the pulse exceeded a
certain triggering level L. If the pulse shape is given by P(#), this would
occur at a time ¢, such that

P(t) = L. (1.1)

This would permit simple instrumentation, since regenerated pulses
would be triggered without separate sampling of the received pulse
train. With this method, however, timing deviations in the regenerated
pulses would result from transmission distortion of the received pulses
by noise and other system imperfections. These timing deviations would
cumulate in a repeater chain and cause a reduction in the tolerance of
the repeaters to noise, such that the signal-to-noise ratio would have to
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be increased with the number of repeaters in tandem in the same way
as for ordinary repeaters.

1.2 Regeneration with Complete Retiming

With complete retiming, the instants of pulse regeneration would
be controlled by a periodic retiming wave, R(t), with a fundamental
period equal to the interval between pulses. The received pulse train
would be sampled at instants when the retiming wave had a certain
level L, . The sampling instants {, would thus be given by

R(t) = L.. (1.2)

R(to) would satisfy this equation for {, = nT =+ AT, where 7' is the
nominal interval between pulses, n is an integer and AT is a certain
tolerable deviation from the desired sampling instants. Pulses would be
regenerated provided P(f) > L and would be omitted if P{t) < L.

With this method the timing deviations in regenerated pulses would
be limited to £ AT, regardless of the timing deviations in received pulses.
There would be no cumulation of timing deviations in a repeater chain.
However, the tolerance of the repeaters to noise would be somewhat
reduced by the timing deviations +AT.

1.3 Regeneration with Partial Retiming

Partial retiming is obtained by a combination of the above two
methods, by triggering regenerated pulses without sampling at instants
to determined by

P(t) + R(t) = L. (1.3)

To permit regeneration without sampling and without a marked reduc-
tion in the tolerance of the repeaters to noise, the timing wave R(f)
must meet certain conditions illustrated in Fig. 1. One is that it must be
a nearly periodic function as for complete retiming. The second condi-
tion is that R(f) must be zero near the sampling points to obtain sub-
stantially the same tolerance to noise in the presence of a pulse as in
the absence of a pulse. A third condition is that R(f) must have sub-
stantial negative values between sampling points in order that the
repeater be rather insensitive to noise between sampling points, as with
complete retiming. It will be recognized that, in general, the maximum
value of R(f) need not necessarily be zero, as in the above illustration.
It can be greater or smaller than zero, provided the triggering level is



SELF-TIMING REGENERATIVE REPEATERS 895

modified accordingly. A maximum value of zero is, however, convenient
from the standpoint of instrumentation.

A limiting shape of retiming wave that would result in complete re-
timing, but without the need for special sampling is also illustrated in
Fig. 1.

1.4 Dertvation of Timing Wave from Pulse Train

As shown above, the retiming wave must be essentially periodie, with
a fundamental frequency equal to the pulse repetition frequency f = 1/T,
where T is the interval between pulses. The simplest form is a sinusoidal
wave, which can be derived from the pulse train at repeaters with the
aid of a narrow band-pass filter, such as a simple resonant circuit cen-
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Fig. 1 — Principle of partial retiming method.
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tered on the pulse repetition frequency. This possibility resides in the
circumstance that a random “on-off” pulse train can be resolved into
two components. One is an infinite sequence of pulses of the same
polarity and equal amplitude, the other a sequence of randomly positive
and negative polarity. The response of a resonant circuit to the first
component is a steady state sinusoidal wave of the pulse repetition fre-
quency. The second component gives rise to random variations in ampli-
tude and phase, which in principle can be limited to any desired extent
by limiting the band of the resonant circuit and the deviation in the
resonant frequency from the pulse repetition frequency.

A principal feature of this method of “self-timing”, aside from its
simplicity, is that the timing wave becomes a slave of the pulse train.
Thus, if there is a fixed delay in pulse regeneration at a repeater, the
same delay is imparted to the timing wave derived from the pulse train
at the next repeater. This prevents a cumulation of such fixed delays
with respect to the timing wave, but not with respect to an absolute
time scale; i.e., with respect to an ideal timing wave transmitted along
the repeater chain and independent of the pulse train.

1.5 Self-Timed Repeaters with Partial Retiming

A timing wave derived from the pulse train with the aid of a resonant
cireuit can be used in conjunction with complete or partial retiming.
With complete retiming, pulses could be regenerated at the zero points
in the timing wave, and the effects of amplitude variations in the timing
wave can thus be avoided. Timing deviations in the regenerated pulses
would in this case depend only on phase deviations in the timing wave,
caused partly by the component of randomly positive and negative
polarity in the pulse train and partly by timing deviations in the pulse
train from which the timing wave is derived.

With partial retiming the situation is more complex. Timing devia-
tions in regenerated pulses in this case depend not only on amplitude
and phase variations in the timing wave, but also on the regeneration
characteristics of the repeaters.

1.6 Types of Timing Deviations

In a regenerated pulse train there will be fixed and random timing
deviations. Of the latter there are three types. One is the timing devia-
tion taken in relation to an exact timing wave with a period T equal to
the nominal pulse interval. The second is the timing deviation taken in
relation to the timing wave derived from the pulse train, which in itself
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will contain random deviations. The third type is random deviations in
the interval of adjacent pulses. If the first type is held within tolerable
limits, this will also be the case for the second and third types. For this
reason only the first type is considered herein.

II REGENERATION CHARACTERISTICS WITH PARTIAL RETIMING

2.0 General

With partial retiming, there will be timing deviations in the re-
generated pulses as a result of timing deviations, amplitude variations
and distortion by noise of both the received pulses and the timing wave.

e —
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>

N(0)=P(0)-L

Fig. 2 — Reduction in tolerance to noise by displacement in timing wave.
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The conversion of these variations into timing deviations in the re-
generated pulses depends on certain relationships between the pulse
train and the timing wave, discussed in the following sections.

2.1 Tolerance to Notse

From Fig. 2 it can be seen that if the timing wave is displaced by 7o,
the value of P() + R(t — o) in the presence of a pulse exceeds the
triggering level by a maximum amount

[P(t) + R(t - TIJ) - L]mn: = [P(Tu) - L] (21)

It will be recognized that the right-hand side of this equation represents
the tolerance to noise of negative amplitudes with instantaneous sam-
pling at ¢ = 7o, as in an ideal repeater with complete retiming.

With partial retiming, the tolerance to noise will be less than the above
maximum value. However, it will be greater than the average of P(f) +
R(t — 7o) — L in the range where the latter difference is positive. Let it
be assumed that it is smaller than the maximum by a factor k somewhat
smaller than unity. The tolerance to noise with a displacement o in the
timing wave is then smaller than without a displacement (ie., 70 = 0)
by the factor

— k[P(To) - L] _ P(Tu) -— L
HERPO - PO - L’

The tolerance to noise will thus be reduced in a way similar to that
for an ideal repeater with complete retiming. The absolute tolerance to
noise will be less than for a repeater with complete retiming by a factor
J; somewhat smaller than unity, say in the order 0.8, corresponding to
about 2 db.

(22)

2.2 Conversion of Timing Deviations

With partial retiming, timing deviations in received pulses and in the
timing wave are converted into smaller deviations in regenerated pulses.

Let 7, be a time displacement in a received pulse and 7, in the timing
wave, both in the positive direction. Pulses will then be regenerated
at a time ¢, given by

Pty — ) + R(t/ — ) = L (2.3)

where the minus signs are used since this corresponds to a displacement
of P and R in the positive direction. Subtracting (1.3) from (2.3),

P(tgr - Tp) - P(tg) + R(to’ - 1',-) - R(to) = 0. (2.4)
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By adding and subtracting P(t’) + R(t') and rearranging terms, (2.4)
can also be written

[P(t') — P(to)] + [R(t') — R(t)]
= [P(t') — Pty — )] + [R(t') — R(t' — 7).

Tor small values of 7, and 7, , such that 8. = t,' — {, is sufficiently small,
both sides of (2.8) can be represented in differential form as

8. [P'(to) + R'(to)] = 7,P'(to) + 7.R' (L) (2.6)

where P’'(ly) = dPo(t)/dt at t = t,, and R’ is correspondingly defined.
Equation (2.9) can be written in the form

(2.5)

5f = prP + TrTy (27)
where
L PW L R
PTPW R 7T PW A+ R@W @8
and
pr+ 1. =1 (2.9

With random uncorrelated displacements of rms values 7, and 7 ,
the rms value of 4, is

& = (p/'7 + r/7)" (2.10)
P

"Equation (2.9) and (2.10) give the timing deviations in regenerated
pulses in terms of the deviations 7, and r, in the received pulses and
in the timing wave. To limit timing deviations in the regenerated pulses,
it is necessary to make p, and the product r,7. small. This will entail
the use of a timing wave comparable in amplitude to that of the pulses,
or greater, in conjunction with a small timing deviation 7, in the timing
wave.

2.3 Conversion of Amplitude Variations Into Timing Deviations

With partial retiming there is a conversion of amplitude variations
in the received pulses and in the timing wave into timing deviations in
the regenerated pulses.

Let the pulses have an amplitude variation a, and the timing wave a,
expressed as fractions of the normal values. Pulses will then be regen-
erated at a time 4’ given by

1+ a,,}P(tu') + (1 + &-r)R(io’) = L. (2.11)
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Subtracting (1.3) from (2.11),
[P(t/) — P(to)] + [R(t/) — R(ty)] = —a,P{t') — a.P(L').

For small values of a, and a, , such that 8, = t’ — ¢, is sufficiently small,
the same procedure as in Section 2.2 gives

ba = (Pally + 7atlr), (2.12)
and
R0l = w0
For uncorrelated variations of rms amplitude g, and g, the correspond-
ing rms timing deviation is
b = (p'e,’ + r'a)'". (2.14)
Equations (2.12) and (2.14) give the timing deviations in regenerated

pulses resulting from amplitude variations in the pulses and in the
timing wave.

2.4 Resullant Timing Devialions in Regeneraled Pulses
For small variations in the pulses and in the timing wave as considered
previously, the resultant timing deviation in a particular regenerated
pulse is
A =6 + ba. (2.15)
Considering a large number of pulses, the resultant rms timing devia-
tion in terms of the rms deviation in the received pulses and in timing
wave is

A= G5+ 8" (2.16)
These expressions can also be written
A=A, + A, (2.17)
A= @& +4)" (2.18)
Ap = PeTp + Dally
A = piH + Py, (2.19)
Ay = 1e1r + Tallr
AS =5+ el (2.20)
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III ILLUSTRATIVE REGENERATION CHARACTERISTICS
3.0 General

In this section the general equations given in the preceding sections
are applied to a particular case, in order to obtain specific expressions
tor the regeneration characteristics and illustrative curves, as an aid
to further analysis. The particular case selected for illustration approxi-
mates the conditions in experimental Wrathall repeaters, and may be
regarded as an idealized model of such a repeater, in which certain effects
to be discussed later are ignored.

3.1 Pulse Shape

It will be assumed that the pulses are transmitted at intervals T
and that the shape of the received pulses after equalization is given by:

P() = %[1 + cos” %} (3.1)
This is the familiar ‘“raised cosine” type of pulse. With n = 1 the pulse
width is the maximum that can be tolerated without intersymbol inter-
ference. With n = §, the amplitude of a pulse train at a point midway
between two success pulses is equal to half the peak amplitude of a
pulse. The latter assumption will be made here, for reasons discussed
later.

3.2 Retiming Wave

The retiming wave is assumed to be given by

k() = —é cos ¥ [1 — cos (21r 71‘ - |]/):| . (3.2)
This type of retiming wave can be obtained if a sinusoidal wave of the
pulse repetition frequency f = 1/7T is applied to a resonant circuit to
reduce distortion of the timing wave by noise. The resonant circuit
would have a nominal resonant frequency f = 1/T, but because of mis-
tuning it would actually be f, . The output of the resonant circuit after
appropriate adjustment of amplitude would be of the form [Appendix I,
equation (2)]:

Rolt) = %cos ¥ 008 (2#% _ ¢), (3.3)

where ¢ is the phase shift of the resonant cireuit at the frequency f,
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given by:
tany = Q (f {"), (3.4)

and Q is the loss constant of the resonant circuit. If the peaks of the
wave given by (3.3) are held at zero potential, a retiming wave as given
by (3.2) is obtained. This type of retiming wave can also be obtained by
applying an infinite sequence of rectangular pulses of equal amplitudes
with spacing T to a resonant circuit.

3.3 Triggering Instants

With a pulse shape and retiming wave as assumed above, the resul-
tant wave is given by

P() + R(t) = -[ + os"—r%:l — ‘3";“” [1 — cos (z«T - ¢)] (3.5)

This wave is shown in Fig. 3 fory = 0 and 60°. For ¢ = +90° the
retiming wave disappears, so that the combined wave is P(f).

-1 Tt
~Plt)= [1+cos 7 T]

R(t)=—9):'—w[|-cos (2#%— ;0)]

Fig. 3 — Illustrative example of pulse shape and retiming wave.
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The triggering instants {, are obtained from the relation

P(t) + R(t) = L.

903

(3.6)

With complete retiming the optimum performance, with positive and
negative noise amplitudes of equal probabilities, is obtained with a

triggering level 3. With partial retiming, optimum performance

is ob-

tained with a somewhat lower triggering level, but this is of secondary
importance in connection with the present analysis. For this reason
L = } is assumed, in which case the following equation is obtained for

determination of f; :

7 lo to
cos— - —cosy |l —cos|2r 5 —¢)| =0. (3.7)
n T T
1.0 -0.5
\\ ,l
0.9 h 1
- \ ]
\ [}
% ]
0.8 $ t—{-0.4
1
e t'ib 1
T \ [
0.7 <y T/
) A\ i/
/]
0.6 I~ 0.3
/ / \‘=|
~ ~,
0.5 i S N A Lo
' I / So \\ 3 ," T
N N 4 7 1
~ [
0.4 > !y 0.2
’ sy~ \ i ’
B 3NN gy
4 = - -7
0.3
0.2 \ 0.1
0.1 \
o \\ 0
N \\
-0.2
| \
Z90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

PHASE SHIFT ANGLE OF TIMING WAVE, i, IN DEGREES

Fig. 4 — Triggering times versus phase shifts in timing wave.
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TaBLE I — VALUES oF #/T FOR 9 = 4 AND 7 = 1

' —90° —60° —30° 0 30° 60° 90°
7 =1 —0.375 | —0.322 | —0.258 | —0.198 | —0.156 | —0.17 | —0.375
=1 —0.50 —0.391 | —0.203 | —0.215 | —0.170 | —0.15 | —0.50
TaBLE IT — VALUES OF P, AND 7, FOR 5 = §
(' —90° —60° —30° ] 30° 60° 90°
Dy 1 0.61 0.43 0.32 0.32 0.50 1
Ty 0 0.39 0.57 0.68 0.68 0.50 0

This equation is satisfied for the values of f/T" given in Table I. The
values of f,/T are also shown in Fig. 4 as a function of y.

3.4 Conversion Factors for Time Deviations

The conversion factors defined by (2.8) become:

1 . owmie _
pr = —D‘ sin ; T =1 Tr, (3.8)
Te = % 27 cos ¢ sin (27r ti% — \b) ’ (3.9)
and
D = sing f% + 23 cos ¢ sin (2#%—1 - |,!’/), (3.10)

where #,/T has the values given previously as a function of .

For various values of ¥, the factors for n = $ are given in Table IT and
in Fig. 5.
3.5 Conversion Factors for Amplitude Into Time Deviaiions

The conversion factors defined by (2.13) become

__In1 Tl
Pa ~5 [1 + cosn T]’ (3.11)
and
_Inl _ b _ ‘
Ta = — €08 W [1 cos (21r T n,b)], (3.12)

where D and t,/T are defined as before.



SELF-TIMING REGENERATIVE REPEATERS 905
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Fig. 5 — Conversion of timing deviations in received pulses and in timing
wave into timing deviations in regenerated pulses, for pulse shapes and timing
waves shown in Fig. 3. Timing deviations in regenerated pulses in relation to
timing deviation ¢, in pulses and ¢, in retiming wave is pid, + 7, .

For various values of ¢ the factors for n = 4 are given in Table IIT

and in Fig. 6.

3.6 Correlated Amplitude and Time Deviations

The amplitude and time deviations in the pulses are generally uncor-
related, but this does not always apply to the timing wave. In particular,
if a deviation 7, in the timing wave is the result of a change in the phase
¢, it will be accompanied by a given amplitude variation. A change in
phase by Ay is related to the corresponding time deviation r, by

2r .
Ay = (3.13)
TasLe III — Vavues oF p,/T axp r,/T For n =
"] —90° —60° —=30° 0 30° ’ 60° ‘ 90°
Pa/T —0.24 | —0.185 | —0.175 | —0.19 —0.22 —0.325 | —0.24
ra/ T 0 0.035 0.055 0.072 0.106 0.14 0
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With this change in phase, the factor cos ¢ of (3.2) is modified to

cos (¢ + AY) = cosy cos Ay — sin ¢ sin Ay,

(3.14)
>~ cos ¥ — 2—”nsin¢

T
where the approximation applies for small values of ¢. The amplitude
variation resulting from the above change in phase is accordingly
a = —71» 2,—-” sin . (3.15)
Considering both the time deviation r, and the corresponding ampli-
tude variation a. , the resultant time deviation in regenerated pulses is
in accordance with (2.20)

Ay = 107 + Tally (3.16)
The resultant equation can be written
A, = 87, (317)
0.35 T T
P N
0.30 | /_/ AN
AN
0.25 N
AN —%/
0.20 "'--..___ -
/
0.15 1
‘ [
0.10 i
0.05 :
| |
0 : i
-0.05 —~ ____L___- ‘ ‘
| T — H
| _ /T {
-0.10 } \Mjl\ | ,/
-0.15 1— ‘ | _/
=90 =75 =60 —45 -30 =15 4] i5 30 45 60 75 a0

PHASE SHIFT ANGLE OF TIMING WAVE, i/, IN DEGREES

Fig. 6 — Conversion of amplitude variations in received pulses and in timing
wave into timing deviations in regenerated pulses, for pulse shapes and timing
waves shown in Fig. 3. Timing deviations in regenerated pulses for amplitude
variations a, and a, in received pulses and in timing wave i8 paa, + 7ot .
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where

_Zncosy | . b
8= - {sm (Q-n- T 1[/)

+ sin ¢ l:l — cos (21r % — :}'/):I}

and D and {,/T are defined as before.

The factor 8 indicates the time deviation in regenerated pulses in
relation to the time deviation 7, in the timing wave which results from
a phase shift Ay as given by (3.13). It may be regarded as a timing feed-
back factor that is of interest in connection with timing from regenerated
pulses as discussed later. The factor 8 is shown in Fig. 4 for y = £ and
7 = 1.

(3.18)

3.7 Reduction in Tolerance to Noise by Timing Deviations

When the pulse shape is given by (3.1) and the timing wave is dis-
placed by 7y, the tolerance to noise is in accordance with (2.2) reduced
by the factor

1 w0sT0) 1
“:é(l—{—cosnT) 5
1 w0 1
= cos 2
= ST
For a phase displacement y,
70 = TY/2m, (3.20)
and
L = COS i (3.21)
2

For n = #, the factor x and the corresponding reduction in the toler-
ance to noise in db are as follows:

¥ = 1] } +30 ‘ +45° +60° ' =+90°
- 1 0.94 | 0.866 | 0.766 0.5
Bab = 0 0.5 1.2 23 6
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1V DERIVATION OF TIMING WAVE FROM PULSE TRAIN

4.0 General

The retiming wave R(f) must have a fixed relation to the received
pulses, with certain tolerable fixed and random deviations to be con-
sidered later. Such a timing wave can be derived from the pulse train
with the aid of a sufficiently narrow band-pass filter, the simplest form
of which is a resonant circuit consisting of a coil and capacitor in series
or in parallel.

A train of rectangular “on-off” pulses is shown in Fig. 7 as it would
appear at the output of a regenerative repeater and at the input of the
next repeater, (dotted) with uniform intervals 7' between sampling
points.

As indicated in Fig. 7, the pulse train can be regarded as being made up
of two components. One of these is an infinite sequence of pulses of one
polarity, the other an infinite sequence of randomly positive and negative
polarity.

It will be recognized that the first of the above components at the out-
put has a fundamental frequency equal to the pulse repetition fre-
quency, f = 1/7T, and the forced response of a resonant circuit to this
component will be the pulse repetition frequency, regardless of any im-
perfections in tuning. In order that this frequency be present in the re-
ceived pulse train, it is necessary that the spectrum of the received pulses
extend beyond the pulse repetition frequency, so that there will be a
ripple in a long sequence of received pulses of one polarity, as indicated
in the illustration.

The second random component of the pulse train will have a fre-
quency spectrum that is nearly uniform over the band of the tuned
cireuit, and which will vary in amplitude depending on the composition
of the pulse train. The response of the tuned circuit to this component
is thus rather complex, and must be treated on an approximate statistical
basis. It will consist of an almost periodic wave with random amplitude
and phase modulation, and with mean frequency equal to the resonant
frequency.

Owing to the presence of the second component, there will be a
variation with time in the amplitude and phase of the response of a mis-
tuned resonant circuit, and resultant deviations in timing. The re-
generated pulses will thus not be uniformly spaced, but will in general
have random deviations from the desired exact positions. Such deviations
can be created by superposing on a train with uniform spacing a random
dipulse train, as indicated in Fig. 7. The resonant circuit response to this
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dipulse train would be expected to be smaller than to the random ampli-
tude component of the pulse train. It may be regarded as a third compo-
nent representing a second order effect resulting from the second com-
ponent.

In the Appendix, this method of superposition has been used as a basis
of an analysis of a resonant circuit response to a random binary pulse
train. This problem has also been dealt with by somewhat different
methods in prior unpublished work by W. R. Bennett and J. R. Pierce,
both of Bell Telephone Laboratories.

In this analysis it is assumed that the regenerated pulses are of suffi-
ciently short duration to be regarded as impulses. The response of the
resonant circuit to the second and third components above, when taken
in relation to that for the first component will, however, remain very
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ST~ 1P | & T~ STEADY1 STATE
e p - ~,
] s T s | =T s *  OR SYSTEMATIC
| = t ! COMPONENT
| |
'
|~ j ‘
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|| e A I [ 2
SN ] L2 |~ ||| .~ RANDOM COMPONENT
| \\ N X \\s -~
|
/’ \\\ 4’ \\ | a0 I+2
J AN N /s AN “ON- OFF” PULSE_TRAIN
, W \ S/ AN WITHOUT PULSE
il _” N o Sl DISPLACEMENTS
]
' 1
- b el ! > dspe
( | |
i
] B 3
T T T DIPULSE COMPONENT
. . ! ;
1 1 "
fedi > da | > dape
I 142+3
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Fig. 7— Resolution of “on-off”” pulse train with timing deviations into sys-
tematic component (1), random component (2), and time displacement compo-
nent (3).
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nearly the same for other pulse shapes, provided the frequency spectrum
of the pulses can be regarded as approximately constant over the im-
portant portion of the band of the resonant circuit. This approximation
is legitimate for resonant circuits with a loss constant @ and pulse shapes
at the input of repeaters as considered here.

4.1 Resonant Circuit Response to Steady State Component

The first component consists of an infinite sequence of impulses of
amplitude 1 and all of the same polarity, at intervals T'. This Sequence
has a fundamental frequency f = 1/7. When it impinges on a resonant
circuit with resonant frequency f, = f — Af and loss constant @, the
response is of the form

A, (t) = cos ¢ cos (ot — ¢), (4.1)
and
Af
tan ¢ = Q(f/fo — fo/f) = 2Q 7 (4.2)
The response is thus a steady state sinusoidal wave of frequency [
displaced from the fundamental component of the input wave by the
phase shift ¥ and reduced in amplitude by cosy. This is the phase
shift and amplitude reduction of the resonant circuit at the frequency f
when the resonant frequency is fo .

4.2 Resonant Circuil Response to Random Signal Component

The second component consists of an infinite random sequence of im-
pulses of amplitude =3, at intervals 7. The response of the resonant
circuit to this component will be a randomly fluctuating wave A.(f) of
mean value 0. The maximum positive amplitude is obtained when all
impulses of the second component are positive and is A.({) = A.. The
maximum negative amplitude is 4,(f) = —A,. Owing to the presence
of this component the total output of the resonant circuit A, + A.(f)
ean thus fluctuate between the limits 0 and 24, , but the actual fluctua-
tions of significant probability will be smaller.

The above fluctuations can be resolved into a component in phase
with the steady state response given by (4.1) and another component at
quadrature with the steady state timing wave. The rms values of these
components taken in relation to the amplitude of the steady state wave

are

| r_ ’ _ ™ e 2 1/2 1
a = Af /Aa - (EQ) [l - \[’/2] m, (4.3)
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and

1/2
Ef” — -;lr”,/fls — (I“TQ) I‘l’l . (4.4)

cos ¥

These relations apply for small values of ¢ and for =/Q < 1.

The resultant rms amplitude variation in the timing wave is ¢, = a,'
as given by (4.3).

The rms phase error g, resulting from the quadrature component a,”
is given by

tan @ = @ = a,”. (4.5)

The corresponding rms time deviation is (7'/2w)g. or

_ T (= \" 1¥]
& = 5;(4—62) cos Y’ (4.6)

With regard to the probability of exceeding the above rms values by
various factors the normal law can probably be invoked with reasonable
accuracy. As mentioned before, the maximum possible amplitudes are
A.(t) = +A, which would correspond to a peak factor (2Q/ =)', With
{) = 100, the factor is about 8, while with ¢ = 1000 it is uboutl 25.
Based on the normal law the probability of exceeding the rms value
by a factor of 4 is about 5 X 107°, and by a factor of 5, about 10™". The
normal law would be expected to apply, since the limiting peak values
are substantially greater than the peak values expected with significant
probabilities.

4.3 Resonant Circuit Response to Pulse Displacements

Because of the random components given by (4.3) and (4.4), the
timing wave will contain small random amplitude and phase deviations
from a sinusoidal wave represented by (4.1). This will result in small
random deviations in the positions of regenerated pulses triggered from
the timing wave, which is represented by the third component shown in
Fig. 7. When the rms deviation in the pulse positions is §, there will be
an additional random quadrature component in the timing wave which,
when taken in relation to the steady state component, is given by

1/2
ai” = A /A, = wb (’é) ) (4.7)

The corresponding rms phase deviation is given by

o 220 (4.8)
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The resultant rms time deviation is (7'/27)a; or

8 = da, (4.9)
and

= (r/Q)". (4.10)

The above factor ¢ applies to a single resonant circuit. When the rms
timing deviations represented by (4.9) are present in the regenerated
pulse train, the rms deviation at the output of the second resonant

eireuit is
§5.2 = 59!19!2:
where

Q] = .

With n resonant circuits in tandem,

8,0 = danapay - - @ . (4.11)
The factors a, are given by
a=a=(r /Q)‘” (4.12)
12
a; = ( 3 — 1)) j =2 (4.13)
@ = (-9
az = (1 - %)Uz,

ar = (1 — P ete.

[er-aergs - el = o 132546 [2(1@2(; _1_) 1; 2 (4.14)

_ e (2n)1

- o 20, (4.15)
1 1/2

= o (_n) when #n> 1. (4.16)
™

The factors g; for j = 2 represent the reduction in timing deviations
resulting from the reduction in bandwidth as resonant circuits are
added in tandem. If resonant circuits with a narrow flat pass-band were
used, the bandwidth of any number of resonant circuits in tandem

would be the same as for a single resonant circuit. In this case @» =

= an = 1.
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4.4 Deviations in Timing Wave

The timing wave derived from an * on-oft” pulse train with the aid of
a resonant circuit will in accordance with the expressions given in the
previous sections contain three types of amplitude and timing devia-
tions.

The first type is a fixed amplitude reduction by a factor a; and a fixed
time deviation 7o given by

ap = cosy, (4.17)
and
To — £ !P, (4:18)
2mr

where ¢ is given by (4.2).

The second type is a random amplitude and time deviation resulting
from the random amplitude component of the pulse train, which have
rms values

~ T 1 2 e 1
a, = (Z_Q) [1 —y¢7/2] sy’ (4.19)
and
LT\ |y .
8 = “Tr (4_@) cos 1,/ (420)

The third type is a random amplitude and time deviation resulting
from random timing deviations 7, = § in the pulse train. The amplitude
variation can be disregarded and the rms time deviation is

-\
05 = a7y, a = (Q) . (4.21)

The total rms amplitude variation is accordingly given by (4.19).
The total rms timing deviation obtained by combining (4.20) and (4.21)
18

Tr =§r2 + (_!2'?192)1,'2- (422)
The expressions for g, and 7, are the quantities appearing in (2.20) for

A, , the total rms timing deviation in regenerated pulses resulting from
random amplitude and timing deviations in the timing wave.
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V SELF-TIMED REPEATERS WITH PARTIAL RETIMING
5.0 General

As shown in the preceding section, timing for pulse regeneration can
be derived from the pulse trains, with certain random phase and ampli-
tude variations in the timing wave that can be reduced by inecreasing the
loss constant @ of the resonant circuit. This method of ‘self-timing”
ean be combined with partial retiming, and the regeneration charac-
teristics of this type of repeater will be discussed in the following sections.

For purposes of numerical illustration, the same type of pulse shape
and timing wave will be assumed as in the previous numerical illustration
in Section III. This pulse shape and timing wave closely approximates
those in experimental Wrathall repeaters, in which timing is derived
from the regenerated pulse train. In the following discussion timing
from the received pulse train will also be considered.

5.1 Timing from Recetved Pulse Train

It will be assumed that the timing wave is derived from the received
pulse train with the aid of a resonant circuit and that random timing
deviations are absent. The response of the resonant eircuit is then a
sinusoidal wave as given by (4.1). From this wave it is possible to obtain
a retiming wave of the form

R(}) = —cosy I:l — cos (2#% — \l/>:| (5.1)

This can be accomplished by holding the peaks of the timing wave from
the resonant circuit at zero potential with a diode. This is the form of
retiming wave previously considered in Section III, in conjunction with a
pulse shape given by (3.1).

As shown in Section 3.7, the tolerance to noise will vary with the
phase shift ¢ of the resonant circuit, in accordance with (3.21). If a
reduction in the tolerance to noise of about 2 db is allowed, the maxi-
mum permissible phase shift would be about ¢ = 1 radian (57.6°). On
this basis the maximum permissible deviation Afy.x in the resonant fre-
quency from the pulse repetition frequency f as obtained from (4.2)
with ¢ = 1 radian becomes

Afmax __ tany _ 1.58

r T2 T 20 (6.2)

For various values of ) in the range that can be realized by simple
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resonant cireuits, the permissible deviations are as follows:

Q ‘ 10 ‘ 25 50 100 200

i
Afmax/f ‘ 0.08 ‘ 0.030 E 0.016 0.008 0.004

This assumes that there are no random timing deviations and that the
tolerance to noise is reduced by not more than 2 db.
5.2 Timing from Regenerated Pulse Train

It will again be assumed that there are no random timing deviations.
Without a phase shift in the resonant circuit, let the regenerated pulses
be triggered at a time f, . When there is a phase shift ¢/, the pulses will
be triggered at a time #, The timing wave derived from the regenerated
pulses will then have a time shift ‘

A = tu’—fu+2£¢’.
™

This time shift will cause pulses to be regenerated with a time shift
B’ A, which must equal t/ — f, . Accordingly,

W=ty =g (tn’ b+ %;b)
and

, o, _ T 8Y
to hh = P (5.3)

With timing from the received pulse train with a phase shift ¢ in the
resonant circuit, the following relation applies:

W —th = 23 By. (5.4)
™

If t¢ — o is to be the same in both cases, so that the timing wave and
tolerance to noise is the same, the following relation must exist between
the phase shifts in the resonant cireuit:

v =y —8) % (5.5)

In this expression, 8 and @8’ are the factors shown in Fig. 4. It will be
recognized from (5.5) that the smallest permissible phase shifts are ob-
tained for large values of g’. From Tig. 4, it is seen that the largest
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values of 8 are for phase shifts between 0 and —60°. For n = §, 8= 0.7
and forn = 1, 8= 0.9.

For = 2 and 4 = 1 the tolerable maximum phase shifts ¢’ in the
resonant circuit with timing from the regenerated pulse train, in rela-
tion to the maximum tolerable y with timing from the input, are

¥V ~03p for g =%, (5.6)
and
¢ =01y for 5=1.

Although greater phase shifts can be tolerated when ¢ is positive, and 8’
is smaller than above, the requirements on the resonant circuit must be
based on the worst condition that can be encountered, as above.

From (5.6) it follows that for = 1 the requirements on the per-
missible phase shift in the resonant circuit are much more severe than
for 4 = 4. For this reason the latter value of 7 is decidedly preferable
for the particular case in which the peak amplitudes of the pulse train
and the timing waves are equal, as assumed here. A value n = } is also
desirable from the standpoints of avoiding intersymbol interference
between adjacent pulses at the triggering instants, to permit the timing
wave to be derived from the pulse train and to permit self-starting of
the repeaters, as discussed later.

In accordance with (5.6) the maximum tolerable frequency deviation
for n = 3 will be less than with timing from the received pulse train by
a factor of about 0.3. The maximum permissible frequency deviation for
a phase shift of about one radian in the timing wave and 0.3 radian in
the resonant circuit, will accordingly be about as follows:

Q 10 25 } 50 ‘ 100 ’ 200

Afmax/f 0.0256 0.009 ‘ 0.005 l 0.0025 ’ 0.0012

For a repeater with complete rather than partial retiming, the factor
B would be unity, and timing from the regenerated pulse train would
not be possible.

5.8 Random Timing Devialions

In combining random timing deviations from various sources at a
particular repeater, it will be assumed that there is no correlation be-
tween the various deviations, so that they will combine on a root-sum-
square basis.
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In accordance with (2.21) the rms timing deviation at the output is
then:

a' = (p/%" + ples) + (77 4 rda), (5.7)
where in accordance with (4.13) and (4.16)
™ 2oy |1
w=[Ha-vm] L, (58
7= (" + o) (5.9)

1/2
@x = (@) 5 (510)

T(x\* y ]
=5 (o) o1y
When (5.9) is inserted in (5.7)
A = (p} + o'r)F, + paay + rd 4 e (5.12)

This expression gives the rms timing deviation at the output in terms of
the rms deviation 7, at the input and the various repeater parameters.

With timing from the output, rather than the input as assumed above,
7 is replaced by A in (5.9), and the following relation is obtained:

A1 — @) = pli + pdey + e e (5.13)

In the above expressions p,” = 0.15, r 2 04 and o =2 0.03 (Q =
100). The term o’r,° can thus be neglected in comparison with p. in
(5.12) and in comparison with 1 in (5.13).

The following expression is thus obtained with timing from either the
input or the output:

A% = (pi7,) + paay) + (787 + rial)
A+ AS

(5.14)

I

5.4 Magnitude of Random Timing Deviations

The first two terms of (5.14) represents the rms timing deviations in
the regenerated pulses resulting from timing deviations and amplitude
variations in the received pulses. The last two terms represent the timing
deviations resulting from timing deviations and amplitude variations in
the timing wave. The conversion factors p., pa , r- and 7, are discussed
in Section IT and representative values given in Figs. 5 and 6. The values
of a. and §, are obtained from (5.8).
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TaBrLE IV — RMs DeviaTions FroM Timing WAvVE
DistorrioN For @ = 100

v —60° —30° 0° 30° 60°
18/ T 0.011 0.005 0 0.006 0.015
Fale/ T 0.006 0.007 0.009 0.014 0.024
AT 0.0126 0.009 0.009 0.015 0.028
r L4 3.2° 3.2° 5.4° 10°

In Table IV are given the values of the two last terms in (5.14), which
represents the rms deviations A, owing to random deviations in the
timing wave. The results are given for the particular case in which
Q = 100, and for other values of Q are inversely proportional to Q.
The table shows the deviations as a fraction of the interval T' between
pulses, and also as the corresponding rms phase deviation . .

In Table V are given the values of the first two terms in (5.14), which
represents the rms deviation A, in the regenerated pulses resulting from
random amplitude and timing deviation in the received pulses. In binary
systems it is customary to limit the rms pulse distortion to @, = ¥,
corresponding to 1% the peak amplitude of the received pulses, or £ the
triggering level (17 db signal-to-noise ratio). The corresponding rms
phase deviation would be about y%; radian, corresponding to an rms
deviation 7, in the pulses of 0.016 the pulse spacing, or 7,/T = 0.016.
The total rms timing deviation obtained from (5.14) and the correspond-
ing rms phase deviation are given in Table VI.

Tasrt V— Rms DeviatioNns ReEsurring FroM PuLskE DisTORTION

¥ —60° —30° ‘ 0° } 30° 60°
Palty/T 0.019 0.018 0.019 0.022 0.032
pera)T 0.010 0.007 0.005 0.005 0.008
Ap/T 0.021 0.020 0.020 0.023 0.033
@y 7.5° 7.2° i 7.2° 8.2° 12°

TaBLE VI — Torarn Rms DeviaTions rroMm TiMming WAVE
AND Purse DiIsToRTION

' —60° —30° 0° 30° 60°

AT 0.025 0.022 0.022 0.028 0.043
@ 9° 8° 8° 10° 16°
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The probability that random phase deviations will exceed the above
rms values by a factor of more than 4 is small enough to be ignored. On
this basis the sum of the fixed and random deviations would be limited
to about 70°, if the fixed phase shift y is less than =430°. With this re-
quirement on the fixed phase shift for satisfactory performance, the
values of Af.,.x would be about half as great as previously given in Sec-
tions 5.1 and 5.2, for a single repeater as considered here.

VI REPEATER CHAINS
6.0 General

In the previous section, a single self-timed repeater was considered,
from the standpoint of fixed and random timing deviations, as deter-
mined by various repeater design parameters. In a repeater chain there
will be some cumulation of random timing deviations as the number of
repeaters in tandem is increased, and a resultant reduction in the
tolerance to noise of repeaters toward the end of the chain. Exact evalua-
tion of such cumulation is rendered difficult by the circumstance that
timing deviations from various sources may not follow the same law of
combination along the repeater chain. In the following, expressions are
given based both on root-sum-square and direct addition of random
timing deviations, which can be regarded as lower and upper limits.

6.1 Combination of Random Timing Deviations

To determine the rms value of random timing deviations at the end
of a repeater chain, it is necessary to combine random deviations from
various repeaters. Random deviations from various sources at a repeater
do not necessarily follow the same law of cumulation along a repeater
chain. Since there is no correlation between timing deviations caused by
noise in various repeater sections, these can he combined on a root-sum-
square basis. This, however, may not be appropriate as regards the
combination of timing deviations resulting from imperfections in the
timing wave. Thus, with perfect tuning of all resonant circuits, the
timing waves at various repeaters would have virtually identical ampli-
tude variations, but no phase deviations. While in this case there would
be complete correlation between the timing wave variations at the
repeaters, it does not follow that the resultant timing deviations should
be combined directly rather than on a root-sum-square basis along the
repeater chain. The timing deviations at the end of a chain of N re-
peaters resulting from amplitude variations in the timing wave of the
first repeater will be modified by N intermediate resonant circuits. Those
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resulting from amplitude variations at subsequent repeaters will be modi-
fied by N-1, N-2 etc. intermediate resonant circuits. The situation is
similar to that of applying identical noise waves at the input of each of
N resonant circuits in tandem. At the output the N noise waves will have
different shapes owing to restriction of the band and increasing phase
distortion as the number of resonant eircuits in tandem increases. For
this reason combination on a root-sum-square basis appears justified also
in this case, particularly with various degrees of mistuning of the res-
onant circuits, so that the amplitude variations in the timing waves
will differ in phase among repeaters.

6.2 Propagation of Timing Deviations

To determine the cumulation of timing deviations along a repeater
chain, it is convenient to first consider a single repeater as a source of
timing deviations, and to determine the propagation of these timing
deviations along a repeater chain. In the following, v, will designate the
rms propagation factor for n repeaters in tandem; lLe., the factor by
which the rms timing deviations at the end of a chain of n repeaters is
smaller than at the first repeater, with timing deviations originating at
the first repeater only.

Let the rms timing deviation at the output of the first repeater as
given by (5.14) for convenience be taken as unity. At the output of the
second repeater the squared rms timing deviation is then reduced by the
factor

vs = p. + a’re, a1 = a. (6.1)

As indicated symbolically in Fig. 8, the first term represents the reduc-
tion owing to partial retiming. The second term is the additional devia-

REPEATERS
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oy Pr
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Fig. 8 — Propagation of random timing deviations along repeater chain.
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tion resulting from the effect on the timing wave of unit rms deviation
in the received pulse train at the second repeater.

At the output of the third repeater, the squared rms deviation is
smaller than at the output of the first repeater by the factor

v = 4 a’rd)p” + opla’rt + a'r e (6.2)
= pr4 + 2212191'2"1'2 + Q12Q227'14- (6'3)

As indicated in Fig. 8, the first term in (6.2) represents the reduction
owing to partial retiming of the received pulse train at the third repeater.
The second term, (p.ayr,)’, is the additional rms deviation resulting from
the effect on the timing wave at the third repeater of an rms deviation
p- in the received pulse train. The third term (a7, - @or,)® is the additional
deviation caused by the effect on the timing wave of an rms deviation
a7, in the received pulse train. The factor gor, represents the modifica-
tion in the rms deviation @7, by a second resonant circuit, with a. de-
fined as in Section 4.3.

At the output of the fourth repeater, the rms timing deviation is
reduced by the following factor, obtained in the same manner:

2

v = p’ + 3a’pr” + Balern St + el (6.4)

At the output of repeater n, the squared rms timing deviation is
smaller than at the output of the first repeater by the propagation
factor

’Yﬂ‘! = 'p.rz(n_l) + 11 r Tr le
n—1D0m—2) 20 4 2 2
+ —2'——*' Pr Tr Q1 a2 (6.5)
v — D — 2)(n — 3)  sm—ay
+ (' )( 37 )( )prun 4)3"-,-1(;12(-_'!22!23—
+ -+ Trz("f”fllgg'fo e anlzs
where p. and r», are defined as in Section 2.2, and a1, a2 - -+ a, as in

Section 4.3.

In the above formulation the rms deviation at the output of the first
repeater was assumed given by (5.14), which is an approximation of
(5.12) in which the term ¢’r,’7,” was neglected. This term will have a
different propagation factor p, , the expression for which differs from
that for v, as given by (6.5) in that the subscripts of the factors a; are
raised by one unit. Thus,
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2 2(n—1 (n—l) 2n—2) 2 2
Pn = Pr (n=n + *‘“"‘1—"— Pr o Tr @2

(6.6)
+ . + T‘rﬁ(u—])gzﬂgaﬂ . f_!;‘z.
The rms deviation at the output of repeater n thus becomes
Al = (A + 097" 4 o e (6.7)

In the case of repeaters with partial retiming the last term in (6.7) can
be neglected, in which case the cumulation of timing deviation will be
virtually the same when the timing wave is derived from the regenerated
as when it is derived from the received pulse train.

The above expressions apply for resonant circuits consisting of a coil
and capacitor which have a gradual cut-off. If resonant circuits with a
flat pass-band and sharp cut-offs were used, @z = a3 = a» and (6.5) can
be simplified to

vl = (1 — e’ p """ + &(pF 4+ rH" . (6.8)

6.3 Cumulation of Timing Deviations

The cumulation of random timing deviations from various repeaters
in a chain can be determined from the propagation constant given above
for any prescribed law of combination of timing deviations from various
repeaters. When equal rms deviations are contributed by each of N
repeaters, and they are combined on a root-sum-square basis, the rms
deviation at the end of a repeater chain is greater than for a single
repeater by the cumulation factor

N 1/2
O = (Z 7,,2) . (6.9)

n=1

An upper limit to (' is obtained by taking g» = a3 = @, = 1lin (6.5)
in which case v, is given by (6.8); (6.9) then becomes for N = =

4 2 1 2 1 1
C = (l_gl)l—p,2+gll—pf2—rrz (6.10)

1 1/2
()"

where the terms in a," have been neglected in (6.11), since o' = o8 K 1,
about 0.03 for @ = 100.

From Fig. 5 it will be seen that when ¢ < =60°, p, < 0.6. Hence
(' < 1.25. Cumulation of random timing deviations can thus for practical
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purposes be disregarded, with root-sum-square combination as assumed
above. The value of €' obtained from (6.11) will differ from that obtained
from (6.9) when v, is given by (6.5), by a small fraction of one per cent.

Although root-sum-square combination appears justified for reasons
given before, it is of interest to determine an upper limit to the cumula-
tion based on direct addition of random timing deviations. The maxi-
mum cumulation factor thus obtained is

N
Conax = 22 - (6.12)
Employing (6.8) for v, and neglecting the terms in g,’, the upper limit
to the cumulation factor for N = <« becomes
Coae = — (6.13)
max 1 — pT‘ .
With p. < 0.6 for ¢ < £60° Chnax < 2.5.

If the above maximum cumulation factor is applied to random timing
deviations resulting from amplitude variations in the timing wave, as
given in Table IV of Section 5.4, the resultant rms phase deviation at
the end of a long repeater chain could be as great as 25°, rather than 10°
for a single repeater, when ¢ = 60° and @ = 100. To attain satisfactory
performance it would in this case be necessary to limit the maximum
fixed phase shift to substantially less than =+60°, which would entail
greater frequency precision than indicated in Sections 5.1 and 5.2.

Ify < +15° p, < 040 and (., < 1.7. In this case the rms phase
deviation as given in Table I for a single repeater is @ =2 4°, and the
rms phase deviation in a long repeater chain would be less than 7°. In
a long repeater chain the rms phase deviation resulting from pulse dis-
tortion would be greater than given in Table II by an rms cumulation
factor €' = 1.08 for p, = 0.4, and would thus be about 8° when ¢ <
+15°. The total rms phase deviation would thus be about (7° + 8%)"* =~
11°. Random phase deviations exceeding 4 times the latter value, or
about 45°, would be rather unlikely. The sum of the fixed and random
phase deviations would thus be limited to about 60° so that satisfactory
performance would be expected when the fixed phase deviation is
limited to about 15°.

With the approximations for v, employed above, the rms cumulation
factor for a chain of N repeaters as obtained from (6.9) is less than for
N = = by the factor (1 — p,*")""* 22 0.99 for p, = 0.5 and N = 3. The
maximum cumulation factor obtained from (6.12) is less than for N = =
by the factor 1 — p," = 0.99 for N = 6. Thus, cumulation of random
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timing deviations is virtually completed in a chain of 3 to 6 repeaters,
so that for experimental determinations of the degree of cumulation it
suffices to operate a few repeaters in tandem.

6.4 Repeaters with Complete Eetiming

In the particular case of complete retiming, p, = 0 and 7 = 1in
(6.5) and (6.6) so that

Yn = @1@@3 * " @n—1, (6.14)
Pn = Qa3 """ @n . (6.15)

For n >> 1, approximation (4.16) can be employed, in which case

1 174 1 1/4
Yn = Q(W—?‘z) y P = (;E) - (6.16)

In this case (5.14) simplifies to
Ay + A =8, (6.17)
since ps = 0,7, = 0, p. = Oand r, = L.
Hence (6.7) becomes
A = oMy + Todon - (6.18)
With approximations (6.16),

2 s o 1Y
A = (ﬁr + 7 )Q — . (6]9)
T
At the output of the first repeater,
Af =8 + a7y (6.20)
For n > 1 the squared propagation factor is accordingly
2 2 1/2

2,00 28 + Ty i) .

An /Al =« ér—2 + 221_'1,2 (ﬂ'n . (()21)

The squared rms cumulation factor for N 3> 2 repeaters becomes

2 -2 N 1/2
=144 o T f (_1_) dn
2

8, + o'7,? Tn

SRR 3 k.Y 4N>“2_ §)“‘j
=+e i (0) -0

In the particular case of perfect tuning of all resonant circuits g = 0
and

(6.22)
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1/2
(An/21)* = (Tln) , (6.23)
s () (9"
™ m
1/4
(>~ (g) ) (6.24)

The last expression gives the factor by which the rms timing devia-
tion at the output of repeater N is greater than at the output of the first
repeater. The rms deviation at the output of the first repeater is greater
than at the input by the factor . The rms deviation at the output of
repeater N is thus greater than at the input of the first repeater by the

factor,
4 1/4
Cy =« (ﬂ) . (6.25)
m
For this particular case (§, = 0) expressions equivalent to those

above have been derived in unpublished work by H. E. Rowe of Bell
Telephone Laboratories.

In accordance with (6.22) and (6.24) the cumulation of random timing
deviations increases indefinitely with N when retiming is complete. The
cumulation factor as given by (6.24) is in fact the same as would be ob-
tained if a timing wave were transmitted on a separate pair, with a
resonant cireuit at each repeater to limit noise and with amplification of
the timing wave at each repeater to obtain the same amplitude of the
timing wave as when it is derived from the pulse train. With partial
retiming cumulation is limited, for the reason that there is partial re-
generation of both the pulse train and the timing wave.

Although with complete retiming the cumulation factor increases
indefinitely with N, this is of but little practical significance, because of
the slow rate of cumulation. At the output of a chain of N repeaters an
rms deviation approximately equal to that at the input of the first re-
peater could be tolerated, in which case C; 22 1. On this basis the per-
missible number of repeaters would be

~Tl 7 (9) (6.26)

=~ 800 when @ = 100.

This assumes exact tuning of all resonant circuits. With mistuning of
the resonant circuits, the permissible number of repeaters in tandem
for a specified rms deviation at the output of the final repeater can be
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determined with the aid of the cumulation factor given by (6.22). For
example, if the rms deviation at the output of repeater N is assumed the
same as at the input of the first repeater, the permissible number of
repeaters in tandem is less than given by (6.26) by the factor (1 —m%/
(1 + m)’, m = &/7, . When the fixed phase shift is 30°, m == 0.5 and
N =2 300.

6.5 Self-Starting of Self-Timed Repealers

With self-timing it is necessary that repeaters be self-starting if the
timing wave should be absent for any reason. If each repeater is self-
starting, this will also be the case for a repeater chain, since starting will
be progressive along the chain. Initially, before the timing wave has
reached the appropriate amplitude at all repeaters, there will be a high
rate of digital errors.

With timing from the received pulse train, the resonant circuit will be
excited by every pulse and the timing wave will reach its normal ampli-
tude in about n = Q pulses. With timing from the regenerated pulse

TIMING
WAVE

Fig. 0 — Progression of repeater starting in absence of timing wave when

timing is derived from regenerated pulse train.

o Triggering points with timing wave absent. Noise prevents triggering at cer-
tain points, n. Timing wave reaches fraction of normal value, R, .

A Triggering points with timing wave R,. Timing wave increases to normal am-
plitude K.

® Triggering points with normal timing wave.
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train the resonant circuit will not be excited by every pulse, unless the
shape of the received pulses is such that there are virtually no overlaps
between pulses so that the triggering level will be penetrated by each
pulse.

With a pulse shape as assumed in the previous analysis, the amplitude
of a pulse train midway between pulses is half the peak amplitude of the
pulses, as indicated in Fig. 9. In the presence of noise, triggering will in
this case oceur on the average for every second pulse, as indicated in the
above figure. If it is assumed that the resonant circuit has the maximum
permissible phase shift of about 20° allowed with timing from the output,
the amplitude of the timing wave with excitation from every pulse will
be virtually equal to the peak pulse amplitude. With excitation from
half the pulses, the amplitude of the timing wave will rapidly reach half
the peak amplitude of the pulses. When this initial timing wave is com-
bined with the pulse train, triggering will occur for virtually all pulses,
as indicated in Fig. 9. It will thus reach its normal value. If the phase
shift is greater than 20° as assumed above, say 60°, the initial amplitude
of the timing wave will be  the peak pulse amplitude. Combination of
this initial timing wave with the pulse train will increase the number of
pulses exciting the resonant circuit, which in turn increases the amplitude
of the timing waves, ete.

Self-starting with a pulse shape as assumed in this analysis is thus
insured.

VII SUMMARY

In self-timing regenerative repeaters as considered here, a timing
wave is derived from either the received or regenerated pulse train with
the aid of a simple resonant circuit tuned to the pulse repetition fre-
quency. This timing wave is combined linearly with received pulse trains
as indicated in Fig. 1, and pulses are regenerated when the combined
wave penetrates a certain triggering level.

It is concluded that if these timing principles are implemented by
appropriate repeater instrumentation, a performance can be realized
that approaches that of ideal regenerative repeaters. To this end it is
necessary to meet certain requirements with regard to the loss constant
() of the resonant cireuit, its frequency precision, the shape of received
pulses and the amplitude of the timing wave in relation to that of re-
ceived pulses.

Equalization of each repeater section should preferably be such that
the received pulses have a shape and duration in relation to the pulse
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interval as indicated in Fig. 3, and the peak amplitude of the timing
wave should be about equal to that of the received pulses. Under these
conditions the pulse repetition frequency will be present in the received
pulse train in sufficient amplitude to permit derivation of the timing
wave from the received pulse train, and to permit rapid self-starting in
the absence of a timing wave if it is derived from the regenerated pulse
train.

A loss constant of the resonant circuit @ = 100 appears desirable.
This value is sufficiently low to be readily realized with simple resonant
circuits consisting of a coil and capacitor in series or parallel, without
unduly severe requirements on its frequency precision. It is also ade-
quately high from the standpoint of avoiding excessive random timing
deviations in regenerated pulses from amplitude and phase deviations
in the timing wave.

The tolerable deviation in the resonant frequency from the pulse
repetition frequency with @ = 100 is about 0.2 per cent when the
timing wave is derived from the received pulse train, and about 0.06
per cent when it is derived from the regenerated pulse train. These
frequency precisions correspond to a maximum fixed phase shift of 15°
in the timing wave, and allow for the possibility that random timing
deviations resulting from amplitude variations in the timing wave may
cumulate directly along a repeater chain, rather than on a root-sum-
square basis. With root-sum-square cumulation of timing deviations
from all sources, the frequency deviations could be about twice as
great.

When the above requirements are met the reduction in the tolerance
to noise owing to timing deviations in a repeater chain is limited to
about 2 db. If the requirements on frequency precision of the resonant
circuit are met, substantial degradation or improvement in performance
would not be expected as a result of moderate changes in the other
design parameters.
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APPENDIX
IX RESONANT CIRCUIT RESPONSE TO RANDOM BINARY PULSE TRAINS
1 General

In the following analysis of the response of a resonant circuit to a
binary “on-off” pulse train, the pulses are assumed of sufficiently short
duration to be regarded as impulses. This is a legitimate approximation
when the duration does not exceed about half the interval between
pulses.

The pulse train is regarded as made up of three components, as indi-
cated in Fig. 10. The first is a systematic component consisting of pulses
of amplitude §. This component gives rise to a steady state response at
the fundamental frequency of the pulse sequence. The second com-
ponent consists of pulses of amplitude =-%, with random = polarity.
This component gives rise to a random eomponent in the resonant eir-

| |
| | i

4[!-'% m r] m | rh FIRST CO?APONENT

| A=B+C
|
|

LJ SECOND CgMPONENT

D
I THIRD COMPONENT

|7 F=A+D

Fig. 10 — Components of random binary on-off pulse train. A. — Transmitted
“on-off”’ pulses. B.— Steady state pulse train of fundamental frequency f = 1/7'.
C.— Random pulse train with zero mean value. D. — Random pulse train with
displacements +4. F. —“On-off”’ pulse train with displacements =+8§ from av-
erage pulse interval 7'.
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cuit response; i.e., a fluctuation about the steady state value derived
from the first component.

The third component consists of a train of dipulses. Each dipulse
consists of a pair of pulses of amplitude 1 and —1, displaced by an
interval =8. The response of the resonant circuit to this component
gives the effect of random displacements =446 in the original “on-off”
pulse train.

2 Impedance of Resonant Circuil

The impedance of a resonant circuit consisting of R, L and C in
parallel is

Z(iw) = Z(iw)e™, 1)
26) = [ Ty = oy = B ®
tan ¢ = Qw/wo — wo/w), (3)
where
() = wkRC = Loss constant, (4)
and
wo = (1/LC)" = Resonant frequency. (5)

The above expressions also apply for the admittance of a resonant
circuit consisting of R, L and (' in series, except that in this case @ =
QJ[)L/ R .

3 Impulse Response of Resonant Circuil

When a rectangular pulse of unit amplitude and sufficiently short
duration & is applied to a resonant circuit, the impulse response for
@Q >> 11is of the form

P(t) = P(0) cos wle “*™¢, (6)
where
P(0) = wdoR/Q. (7)

P(t) designates voltage in response to an impulse current in the case
of a parallel resonant circuit, or the current in response to an impulse
voltage in the case of a series resonant circuit.
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4 Response to Steady Stale Impulse Train

Let a long sequence of impulses of amplitude  and the same polarity
impinge on a resonant circuit at uniform intervals 7. The response after
N impulses is then

A1) ——Z:OP(t~n ") (8)
= gg.’l > cos wlt — nT)e 0t (9)

The subscript s indicates a systematic component.
The above series is conveniently summed by taking the real part of
the series

N i .
‘4!1(1) — P(QO) Zﬂ ezwn(t—nT)e—wn(t-—nT)J‘EQ. (10)
Witht = NT + 6,0 <t < T:
P(O) u. ty —woly/2Q 'uu t(N—=n) —w I(N—n),f"Q
1 1) = 0 n oto 0 0 11
0 = 5, (an

When N — =, the steady state responses becomes

4 ([) _ P(O) wnla(}-—“‘nfomq 1 (12)

1 — eiwnte—uol,’ﬂa'

The interval between pulses can be written
T = 2r/w, (13)

where « is the fundamental frequency of the impulse train, or the pulse
repetition frequency.
Let
w = w — Aw,

so that
2
wo = },—w (1 — Aw/w). (14)

The following approximations then apply:

. Sri —2wid o
(’.+on = Figmi wlo _ ¢ 27r1Aw.'m, (15)
>~ 1 — 2miAw/w;

C*WuWEQ C“foc+(ffO)Aw.’m’

(16)
=~ 1 — 7/Q when /Q < 1.
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With these approximations

| _ gleeT ueTi2 g%[l + iy, (17)
where
Y = 2_A_w Q, (18)
w

will be recognized as the phase shift of the resonant current at the fre-
quency w, as obtained from (3) with @ = wy + Aw.
A further approximation that can be introduced in (12) is

e\'wotgevwnlolﬂq — eiwlog—fﬁwtge-—wﬂtoﬂQ

3

IR

e, (19)

gince to < T and Awty and wte/2Q < 1.
With the above approximations (12) becomes

A = P——E)O) Q gite o5 v (20)
Z ™
The real part of this expression is
A, = 539)- g cos (wly — ) cos ¢, 21

which is the response to the steady state component of the pulse train.

& Response to Random Component of Impulse Train

Let a sequence of impulses of amplitude 4 and randomly positive and
negative polarity impinge on the resonant circuit at intervals 7. The
response is then,

N
= P(0) > =+ cos wlt — nT)e w0 mmiRe (22)

‘4 ! ( 0 2 n=0

This expression for the random component differs from (9) for the sys-
tematic component in that the impulses have random == polarity. If
all signs are chosen the same, the values of 4.(t) will be either — A,(t)
or +A,(f). The resultant response of the resonant circuit, i.e. 4,(t) +
A,(t), can thus vary between the limit 0 and 24.(t). A,(t) represents a
random fluctuation about A,({) as a mean value. In the following the
rms value of this fluctuation is evaluated.

In order to determine the components of A,(f) in phase and at quadra-
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ture with the steady state response as given by (21), it is convenient to
write
w) = 0w — Aw,

cos [w(t — nT) — ¢ + ¢ — Aw(t — nT)]

cos [w(t — nT) — ¢] cos [y — Aw(t — nT)] (23)
— sin [w(t — nT) — ¢] sin [ — Aw(t — nT)].

Witht = NT + &, and wT = m, (22) can be written:

cos w(t — nT)

N
A, (D) = cos (wly — ¢) 2 = cos [y — AwT(N — n)]e w0 PN/
n=0
N (24)
— sin (wio — ‘b) Z —+ sin [llq _ A(JJT(N _ n)}e—uole(N—nHEQ

n=0

L .
where Yy = ¢ — Awly = ¢ (1 - ;—Q") =~ y, since wl/2Q < 7/2Q < 1.

With equal probabilities of a plus or a minus sign in the summations,
the rms value of the in-phase component becomes

o

12

N .
A, = l:z cos’ [y — AwT(N — n)le—wurw—an:l
n=0
] o (25)
= |:Z 5 (1 + cos 2[y — AwT(N — n)]e~wort~—n):o)] )
n=0
The rms value of the quadrature component becomes
~ ) 1z
A" = l: sin” [ — AwT(N — n)]e—wuﬂ.\ﬁn);q:l
n=0
(26)

2

n=0 &

N 1 1/2
= I:Z (1 — cos 2[y — AwT(N — -n.)]e_“"T(N_"”O)] .
These expressions can be transformed into sums of geometric series
by writing
cosx = 3" 4+ ¢),  x=2Y— dTI — n).
Evaluation of (25) and (26) by this method gives

Lo PO) 1 1 N

A =% om [f oo T B} : @7
»  PO) 1 1 N )

4. = (2) 22 [1 — g Tl 1—)} ' (28)
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where
N = cos 2¢(1 — cos 2AwTe ") + sin 2y sin 2AuTe “""*° (20)
D =1+ e 27? — 274072 ¢o5 28T (30)

With the same approximations as used previously in connection with
(12) and with

cos 28T = 1 — 2(AwT)’,  sin 2007 = 20T,

e
N = 0 (31)
27\ 9

D (6) 1+ v, (32)
1 — " = 22/Q. (33)

With these approximations in (27) and (28),

1/2
4! = PO (&Y -y (34)
™
- P(0) "yl ,

Ar = 2 (2#) ‘)I!" (55)

which apply when ¢ is small and (27/Q) < 1.

6. Response to Random Dipulse Train

Each dipulse is assumed to consist of two impulses of unit amplitude
and opposite polarity, displaced by an interval 8, which in general will
be a function of the pulse position; i.e., § = &(n). The response of the
resonant circuit to a train of such dipulses, obtained by taking the dif-
ference in response to the two impulses, is given by

As() = P(0) [Z cos wolt — nT)e w1

(36)
— cos wilt — nT + E(n)]c_"’"“"”5(")”29].

In determining the response, mistuning of the resonant current can be
disregarded; i.e., wy = w. Furthermore, in the second term of (36) it is
permissible to take

exp [—wod(n)/2Q] = 1.
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With the following further approximations
cos wo(t — nT) — cos wl[t — nT + 8(n))
= sin wolt + 8(n)/2] 2 sin [wd(n)/2], (37)
= wyb(n) sin wol,
expression (36) becomes:

N
As(f) = P(0)wo sin wot 2, 8(n)e 0t
n=0
(38)

N
P(0)wo sin woly 2, 8(n)e “oTN ™12

n=0
where the substitution { = NT + i, has been made as in previous ex-
pressions.

The above expression shows that the resonant circuit response will be
at quadrature with the steady state timing wave cos wf, .

In the above expressions, the dipulses are assumed to be present at
intervals 7', whereas in a random pulse train they will be present at
average intervals 27. The rms value of the quadrature component with
randomly positive and negative dipulses at intervals 27, with an rms
displacement §, is

” d —2wg T(N—n)/Q 1
A7 = PO | 2 ¢

n=0

PO (Q\"
= g wd (;) :

(39)

In (38) the function ¢~ “**? will be recognized as the impulse response
function of a circuit with impedance

Z(iw) = H;w 8 = w/20Q, (40)

= Z(iw)e ™, (41)

Z(iw) = l[ﬁlf—]m, (42)
8L ¥ /P

tan g = w/p. (43)

It will also be recognized that (39) corresponds to the rms response of
such a eircuit, when impulses §(n) of random amplitude with an rms value
§ are applied to average intervals 27. Thus (39) can alternately be ob-
tained from
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Al = (O)wua[ LL [ ey dw}m

37 2x
POwh | 4 (tan"w/ﬁ)f_,]m (44)
~ roma(gh)"
- %O) wd (g)m. (45)

Let the output of the first resonant circuit be applied to a second
resonant circuit, and in turn to n successive resonant circuits, with an
amplitude amplification g between successive resonant circuits. At the
output of the n'® resonant circuit, the rms amplitude of the response
is then obtained from

g =v e 12
a7 = POws | L [ 2oy ao |
_ ) dw 1/2
r0es [ [ 7] 4o
1/2
= @ WOQ (g) H In = Aﬂ”Iﬂ 3
2 T
where
| dw
L'==| w4 47
B e T+ /E 0
=1, n =1,
_2n -3 2
e 22 ()
Y SRS S
= 1 (1~ g 5)
=1-3 I = (1 - DI, IP = (1 — YL
Thus (46) can be written:
Ay = A"z -+ @n s (49)
where
a =1 - —1‘, (50)
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e () [ (S P e mL

_ 1-3:5-7 -+ 2(n — 1) — 1]

2-4-6-82(n — 1) (52)
(2n)! .
When n >> 1, (51) approaches the value
., . 1\
aray cccoan = (R) . (54)

The latter approximation is based on the following expression, for
x = —3, given in Whittaker and Watson’s: “ Modern Analysis” page 259:

. . n
lim O+ 2+ 2/2)A 4+ 2/3) - A+ a/n) = Nk
where I' is the gamma function, (=% + 1) = »'".

The above analysis assumes that the timing wave at each resonant
circuit is applied directly to the next resonant circuit, except for the
amplification between resonant circuits. This would be the case if the
timing wave were transmitted on a separate pair, in which case A%,
would be the rms quadrature component owing to noise in the timing
cireuit.

In regenerative repeaters, deviations in the timing wave resulting
from the quadrature component are imparted at intervals T into the
next repeater section as deviations in the spacing of pulses. These
timing deviations occurring at intervals T' will have a certain random
amplitude distribution, which can be regarded as having a certain
frequency spectrum. When the deviations are discrete and occur at inter-
vals 7', the spectrum will extend to a maximum frequency fi.. = 1/27,
Or wnax = 7/T = wo/2. In this case the upper and lower limits of the
integrals above would be replaced by Zw./2, except for the first repeater
section. The recurrence relation (48) is then no longer exact, but the
resultant modification is insignificant and can be disregarded. This will
be seen when the value wy/2 is inserted for w in the integrand of (47),
which then becomes 1/(1 + %), as compared with 1 for @ = 0. Thus
the contribution to the integrals for w > we/2 can for practical purposes
be disregarded.

(55)






