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This paper considers a simple telephone exchange model which has an
infinite number of trunks and in which the traffic depends on two parameters,
the calling-rate and the mean holding-time. It is desired to estimate these
parameters by observing the model continwously during a finite interval,
and noting the calling-time and hang-up time of each call, insofar as these
times fall within the interval. It is shown that the resulling information may,
Jor the purpose of this estimate, be reduced without loss to four statistics.
These statistics are the number of calls found at the start of observation, the
number of calls arriving during observation, the number of calls lerminated
during observation, and the average number of calls existing during the
interval of observation. The joint distribution of these sufficient statistics is
determined, in principle, by deriving a generating function for it. From this
generating function the means, variances, covartances, and correlation co-
efficients are obtained. Various estimators for the parameters of the model
are compared, and some of their distributions, means, and variances pre-
sented.

I THEORETICAL PROBLEMS AND METHODS OF TRAFFIC MEASUREMENT

FFour important kinds of theoretical problems arise in the measurement
of telephone traffic. These are: (1) the choice of a mathematical model,
containing parameters characteristic of the traffic, to serve as a descrip-
tion; (2) the devising of efficient methods of estimating the parameters;
(3) the determination of the anticipated accuracy of measurements;
and (4) the assessment of actual accuracy, after measurements have
been made.

The present paper deals with aspects of the second and third kinds of
problem, for the simplest and least realistic mathematical model of tele-
phone traffic. Specifically, for this model, we treat the problems of (i)
complete extraction of the information from a given observation period,
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without regard to costs of observation, and (ii) determination of the
anticipated accuracy of certain methods of estimation which arise natu-
rally from the discussion of complete extraction.

The method by which we attack problems (i) and (ii) in this paper
has three stages. First we choose a small number of significant properties
of, or factors in, the physical system we are studying. Then we abstract
these properties into a mathematical model of the physical system. Fi-
nally, from the properties of the model, we derive results which may be
interpreted as answers to the two problems treated. The advantage of
this method is that we can use the precise, powerful apparatus of mathe-
maties in studying the model; its limitation is that it yields results which
are only as accurate as the model in describing reality.

A method similar to the above forms the theoretical underpinning of
telephone traffic engineering itself. To design equipment effectively, the
traffic engineer needs a description of the traffic that is handled by central
offices. He decides what properties of the entire system of telephone
equipment and customers will be most useful to him in describing the
traffic. He then designates certain parameters to serve as mathematically
precise idealizations of these properties, and in terms of these parameters
constructs a model of the traffic, upon which he bases much of his engi-
neering.

In choosing a mathematical model for a physical system, one is con-
fronted with two generally opposed desiderata: fidelity to the system
described, and mathematical simplicity. The model may involve impor-
tant departures from physical reality; a model that is sufficiently amena-
ble to mathematical analysis often results only after one has introduced
admittedly false assumptions, ignored certain effects and correlations,
and generally oversimplified the system to be studied. However, the
abstract model will be an exact and simple tool for analysis.

We can construct a simple mathematical model for the operation of
a telephone central office by leaving out of consideration many impor-
tant facts about such systems, and by concentrating on factors most
relevant to operation. Since we are interested in telephone traffic and
in the availability of plant, it seems natural to require that a realistic
model take account of at least the following five significant factors: (1)
the demand for telephone service; (2) the rate at which requests for
service can be processed and connections established; (3) the lengths of
conversations; (4) the supply of central office equipment; and (5) the
manner in which the first four factors are interrelated. Unfortunately,
the mathematical complexity of such a realistic model precludes easy
investigation. Therefore, the model used in this paper is based only on
factors (1) and (3).
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The demand for telephone traffic is usually made precise by describing
a stochastic process which represents the way in which requests for tele-
phone service oceur in time. A realistic deseription will take account of
the facts that, the demand is not constant, but has daily extremes, and
that in small systems, the demand may be materially lessened when
many conversations are in progress. Since taking account of the first fact
leads to a more complicated model in which our investigations are more
difficult, we ignore it, with the proviso that the results we derive are
only applicable to systems and observations for which the demand is
nearly constant. The second kind of variation in demand becomes insig-
nificant as the number of subseribers increases and the traffic remains
constant. Hence, we further confine the applicability of our results to
systems with large numbers of subseribers, and we assume that the de-
mand does not depend on the number of conversations in existence.

With these assumptions, a mathematically convenient description of
the demand is specified by the condition that the time-intervals between
requests for service have lengths which are mutually independent posi-
tive random variables, with a negative exponential distribution.

A telephone central office contains two kinds of equipment: control
circuits which establish a desired connection, and talking paths over
which a conversation takes place. The time that a request for service
occupies a unit of equipment, be the unit a control circuit or a talking
path, is called the holding-time of the unit. A request for service affects
the availability of both kinds of equipment but, except for special cases,
the holding-times of talking paths are usually much longer than the
holding-times of control units such as markers, connectors, or registers.
In view of this disparity, we assume that the only holding-times of con-
sequence are the lengths of conversations; ie., the holding-times of
talking paths. We assume also that these lengths are mutually inde-
pendent positive random variables, with a negative exponential distribu-
tion.

For the simplest mathematical model of telephone traffic, we may
consider the arrangement of switches and transmission lines which con-
stitutes a talking path in the physical office to be replaced by an abstract
unit called a “trunk”. A trunk is then an abstraction of the equipment
made unavailable by one conversation, and we may measure the supply
of talking paths in the office by the number of trunks in a model. The
word “trunk” is also used to mean a transmission line linking two central
offices, but as long as we have explained our use of the word there need
be no confusion. Often the number of transmission lines leading out of
an office is a major limitation on its capacity to carry conversations,
and in this case the two uses of the word “trunk’ are very similar. Un-
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fortunately, we do not take advantage of this similarity, since we make
the mathematically convenient but wholly unrealistic assumption that
the number of trunks in the model is infinite.

The model we investigate thus depends on only two of the factors
previously listed as essential to a realistic model: namely, (1) the demand
for service, and (3) the lengths of conversations. In view of the simplicity
and inaceuracy of this model, the question arises whether much is gained
from a detailed analysis. Such scrutiny may indeed reveal little that is
of great practical value to traffic engineers. It is important methodologi-
cally, however, to have a detailed treatment of at least one approximate
case. We undertake this detailed treatment largely for the insight that
it mdy give into methods which could be useful in dealing with more
complex and more accurate models.

Once a designer has chosen a model and has specified the parameters
he would like to have measured, it is up to the statistician toinvent effi-
cient means of measurement, by choosing, for each parameter, some
function of possible observations to serve as an estimate of that parame-
ter. One measure of efficiency that is of mostly theoretical interest is the
observation time required to achieve a given degree of anticipated ac-
curacy ; the most realistic measure of efficiency is in terms of dollars and
man-hours. It may often be more efficient, in the sense of the latter
measure, to spread observation over enough more time to compensate
for the inability of an intrinsically cheaper method of measurement to
extract all of the information present in a fixed time of observation. For
example, periodic scanning of switches in a telephone exchange is usually
less costly than continuous observation. As a result, telephone traffic
measurement is usually carried out by averaging sequences of instan-
taneous periodic observations of the number of calls present, rather than
by continuous time averaging, although it can be shown that continuous
observation is more efficient at extracting information. Thus statistical
efficiency, which may be expensive in terms of measuring equipment,
can be exchanged for observation time, which may be less costly. This
exchange brings about a reduction in cost without impairing accuracy.

Our concern in this paper is with the less practical problems of com-
plete extraction, and of the anticipated accuracy of estimation methods
based on complete extraction. Let us consider how our mathematical
model can shed light on these problems. A mathematical model may or
may not be a faithful description of the behavior of real telephone sys-
tems. Nevertheless random numbers, with or without modern computing
machines, enable one to make experiments and observations on physical
situations which approximate, arbitrarily closely, any mathematical
model. Thus we can speak meaningfully of events in the model, and of
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making measurements and observations on the model. The mathematical
model elucidates our problems in the following ways: (1) it enables us
to state precisely what information is provided by observation; (2) it
enables us to explain what we mean by complete extraction of informa-
tion; and (3) it enables us to derive results about the anticipated ac-
curacy of measurements in the model. These results will have approxi-
mately true analogues in physical situations to which the model is
applicable.

The calls existing during the observation interval (O, T') fall into four
categories: (i) those which exist at O, and terminate before T'; (ii) those
which fall entirely within (0, T'); (iii) those which exist at O and last
beyond T'; and (iv) those which begin within (0, T') and last beyond T.
For calls of category (i), we assume that we observe the hang-up time
of each call; for category (ii), we observe the matching calling-time and
hang-up time of each conversation; for category (iii), we observe simply
the number of such calls; and for category (iv), we observe the calling-
times. Table I summarizes the kinds of calls and the information ob-
served about each.

What we mean by the complete extraction of information is made
precise by the statistical concept of sufficiency. By a statistic we mean
any function of the observations, and by an estimator we mean
a statistic which has been chosen to serve as an estimate of a particular
parameter. Roughly and generally, a set S of statistics is sufficient for a
set. P of parameters when S contains all the information in the original
data that was relevant to parameters in P, If S is sufficient for P, there
is a set I of estimators for parameters in P, such that the estimators in
E depend only on statistics from S, and such that an estimator from &
does at least as well as any other estimator we might choose for the same
parameter. Thus we incur no loss in reducing the original data (of speci-
fied form) to the set S of statistics. It remains to state what it means for
S to contain all the relevant information. We do this in terms of our
model.

The mathematical model we are adopting contains two distribution

TABLE I — INFORMATION OBSERVED

Types of Calls Start in (0, T) Start before O

End in (O, T)| (ii), matching calling-times and | (i), hang-up times known, num-
hang-up times known, num- ber of calls known
ber of calls known

End after T (iv), calling-times known, num- | (iii), number of calls known
ber of calls known
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functions, that of the intervals between demands for service, and that
of the lengths of conversations. We have supposed that these distribu-
tions are both of negative exponential type, each depending on a single
parameter. Thus we know the functional form of each distribution, and
each such form has one unknown constant in it. Since the mathematical
structure of the model is fully specified except for the values of the two
unknown constants, we can assign a likelihood or a probability density
to any sequence X of events in the model during the interval (0, T).
This likelihood will depend on the parameters, on =, and on the number
of calls in existence at the start O of the interval. If the likelihood L(Z)
can be factored into the form L = F-H, where F depends on the param-
eters and on statistics from the set S only, and H is independent of the
parameters, then the set S of statistics may be said to summarize all the
information (in a sequence Z) relevant to the parameters. If L can be
so factored, then S is sufficient for the estimation of the parameters.

The mathematical model to be used in this paper is described and
discussed in Sections IT and III, respectively. Section IV contains a
summary of notations and abbreviations which have been used to sim-
plify formulas.

In Appendix A we show that the original data we have allowed our-
selves can be replaced by four statistics, which are sufficient for estima-
tion. In Appendix B and Sections V-VIII we discuss various estimators
(for parameters of the model) based on these four statistics. To determine
the anticipated accuracy of these methods of measurement, we consider
the statistics themselves as random variables whose distributions are
to be deduced from the structure of the model.

A primary task is the determination of the joint distribution of the
sufficient statistics. In view of the sufficiency, this joint distribution tells
us, in principle, just what it is possible to learn from a sample of length
T in this simple model. By analyzing this distribution we can derive
results about the anticipated accuracy of measurements in the model.

The joint distribution of the sufficient statistics is obtainable in prin-
ciple from a generating function computed in Appendix C, using methods
exemplified in Section X. This generating function is the basic result of
this paper. The implications of this result are summarized in Section
IX, which quotes the generating function itself, and presents some
statistical properties of the sufficient statistics in the form of four tables:
(i) a table of generating functions obtainable from the basic one; (ii) a
table of mean values; (iii) a table of variances and covariances; and
(iv), a table of squared correlation coefficients. (The coefficients are
all non-negative.)
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II DESCRIPTION OF THE MATHEMATICAL MODEL

Throughout the rest of the paper we follow a simplified form of the
notational conventions of J. Riordan’s paper! wherever possible. A sum-
mary of notations is given in Section IV. The model we study has the
following properties:

(i) Demands for service arise individually and collectively at random
at the rate of a calls per second. Thus the chance of one or more demands
in a small time-interval At is

all + o(Al),

where 0(At) denotes a quantity of order smaller than At. The chance of
more than one demand in Af is of order smaller than Af. It can be shown
(Feller,’ p. 364 et seq.) that this deseription of the demand is equivalent
to saying that the intervals between successive demands for service are
all independent, with the negative exponential distribution

1 — e
This again is equivalent to saying that the call arrivals form a Poisson
process;2 i.e., that for any time interval, ¢, the probability that exactly n
demands are registered in { is

c_at(at)n

n!

Thus the number of demands in ¢ has a Poisson distribution with mean
at.

(ii) The holding-times of distinct conversations are independent vari-
ates having the negative exponential distribution

i
1 —e ",

where v is the reciprocal of the mean holding-time . This description of
the holding-time distribution is the same as saying that the probability
‘that a conversation, which is in progress, ends during a small time-
interval Af is

vAl + o(At),

without regard to the length of time that the conversation has lasted
Feller, p. 375).

(iii) The model contains an infinite number of trunks. Thus, at no time
will there be insufficient central office equipment to handle a demand
for service, and no provision need be made for dealing with demands that
cannot be satisfied.
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The original work on this particular model for telephone traffic is in
Palm,” and Palm’s results have been reported by Feller’ and Jensen.'
The results have been extended heuristically to arbitrary absolutely con-
tinuous holding-time distributions by Riordan," following some ideas of
Newland® suggested by 8. O. Rice.

Let Py;(t) be the probability that there are j trunks busy at ¢ if there
were 7 busy at 0. And let P,({, x) be the generating function of these
probahilities, defined by

Pl 2) = 2 2P (1),

Then Palm® has shown (pp. 56 et seq.) that
Pit,z) =1+ @ — 1 e exp {(x — Dah (1 — e ™)}

This is formula (12) of Riordan with his g replaced by ¢ . It can be
verified that the random variable N(¢) is Markovian; the limit of P.(t, x)
ast — o 18

exp {(x — 1) ah},

so that the equilibrium distribution of the number of trunks in use is a
Poisson distribution with mean b = ah. The shifted random variable
[N(t) — b] then has mean zero, and covariance function be ™

Tor additional work on this model the reader is referred to . W.
Rabe,” and to H. Stormer."” '

1II DISCUSSION OF THE MODEL

Let us envisage the operation of the model we have described by con-
sidering the random variable N () equal to the number of trunks busy
at time ¢. As a random function of time, N (t) jumps up one unit step each
time a demand for service occurs, and it jumps down one unit step each
time a conversation ends. If N (f) reaches zero, it stays there until there
is another demand for service. If N(f) = n, the probability that a con-
versation ends in the next small time-interval Af is

nyAt + o(Al),

because the n conversations are mutually independent. A graph of a
sample of N(f) is shown in Fig. 1.

The model we described departs from reality in several important
ways, which it is well to discuss. First, the assumption that the number
of trunks is infinite is not realistic, and is justified only by the mathe-
matical complication which results when we assume the number of trunks
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Fig. 1 — A graph of N ().

to be finite. It can also be argued that unlimited office capacity is ap-
proached by offices with adequate facilities and low calling rates, and
therefore, in some practical cases at least, the model is not flagrantly
inaccurate,

Second, the choice of a constant calling rate for the model ignores the
fact that in most offices the calling rate is periodic. Thus, the applica-
bility of our results to offices whose calling rates undergo drastic changes
in time is restricted to intervals during which the normally variable
calling rate is nearly constant. Finally, although the assumption of a
negative exponential distribution of holding-time affords the model great
mathematical convenience, it is doubtful whether in a realistic model
the most likely holding-time would have length zero, as it does in the
present, one.

IV SUMMARY OF NOTATIONS

a = Poisson calling rate

h = mean holding-time
v = h~' = hang-up rate per talking subscriber
b = ah = average number of busy trunks
N(t) = number of trunks in use at ¢

(0, T) = interval of observation
n = N(O) = number of trunks in use at the start of observation
A = number of calls arriving in (0, T)
H = number of hang-ups in (0, T)

K=A+H
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= fﬂrN(t) dt

M = Z/T = average of N(t) over (0, T)

{p.} = the (discrete) probability distribution of n, the number of
trunks found busy at the start of observation

An estimator for a parameter is denoted by adding a cap (*) and a
subscript. The subscripts differentiate among various estimators for the
same parameter. We use 4. = A/T, . = H/Z, & = K/2T,

= K/2Z,and ~: = A/Z.

Also, it is convenient to use the following abbreviations: r for y7', and
O for (1 — ¢ ") /r, where r is the dimensionless ratio of observation-time
to mean holding-time. The symbol E is used throughout to mean mathe-
matical expectation.

V THE AVERAGE TRAFFIC

We have adopted a model which depends on two parameters, the
calling rate a, and the mean holding-time A, or its reciprocal y. Before
searching for a set of statisties that is sufficient for the estimation of
these parameters, let us consider the product ah = b. This product is
important because, as we saw in Section II, the equilibrium distribution
of the number of trunks in use depends only on b, and not on a and i
individually. Indeed, the equilibrium probability that n trunks are busy
is '

e—bbn

n!

b

and the average number of busy trunks in equilibrium is just b.
The average number of trunks busy during a time interval 7" is

1 T
= Tfo N() dt;

i.e., the integral of the random function N (t) over the interval 7', divided
by T. This suggests that for large time intervals T, M will come close
to the value of b, and can be used as an estimator of b. Since M is a ran-
dom variable, the question arises, what are the statistical properties of
M? This question has been considered in the hteratule the prlncnpal
references being to I'. W. Rabe'® and to J. Riordan." Riordan’s paper is
a determination of the first four semi-invariants of the distribution of 3/
during a period of statistical equilibrium, but without restriction on the
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assumed frequency distribution of holding-time. It follows from Rior-
dan’s results that M converges to b in the mean, which is to say that
lim £ {|M —b|*} =0.
T
It also follows that M is an unbiased estimator of b;i.e., that E{M} = b
and that M is a consistent estimator of b, which means that
limpr{|M —b|>¢} =0

T+

b

for each € > 0.

VI MAXIMUM CONDITIONAL LIKELIHOOD ESTIMATORS

As shown in Appendix A, the likelihood L. of an observed sequence,
conditional on N(0), is defined by

InL.=Alma+ Hlny —vZ — aT.

According to the method of maximum likelihood, we should select, as
estimators of a and v respectively, quantities d, and 4. which maximize
the likelihood L. . Now a maximum of L. is also one of In L, , and vice
versa. Therefore a. and v, are determined as roots of the following two
equations, called the likelihood equations:

a .8 B
EEIH L, = 0; aln L. = 0.

The solutions to the likelihood equations are

a _4 g =2
€ Tl Tc Z-

These are the maximum conditional likelihood estimators of a and ¥.
The estimator @, is the number of requests for service in T divided by T';
this is intuitively satisfactory, since d. estimates a calling rate.

Sinece maximum likelihood estimators of functions of parameters are
generally the same functions of maximum likelihood estimators of the
parameters, we see that AZ/HT is a maximum likelihood estimator of b.

VII PRACTICAL ESTIMATORS SUGGESTED BY MAXIMIZING THE LIKELIHOOD
L, DEFINED IN APPENDIX A

We obtain as likelihood equations

a d
% In L 0, F In 0
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These may be written as

a=nt4
h+ T
and
H+ <
Y= o
Z + -
¥

The first of these shows the estimated calling rate as a pooled combination
of the conditional estimate A /T, considered in the last section, and an
estimate n/h based on the initial state. This latter estimate has the form

calls in progress
mean holding time’

and so is intuitively reasonable, since b/h = a. The second equation
exhibits our estimate of v as a pooled combination of the conditional
estimate H/Z and the ratio a/n. This ratio is acceptable as an estimate
of v, since a/b = v and b = K {n} is the average value of n.

If we substitute, in the right-hand sides of these equations, the condi-
tional estimators A /T, H/Z, and Z/H for a, v, and h, respectively, we
obtain simple, intuitive estimators which include the influence of the
initial state n, and show how it decreases with increasing T'. Thus

n+ A

Z
gt T

estimates a,

AZ
H+ g

—— 7 estimates ~.
Z + Nd

VIII OTHER ESTIMATORS

Additional estimators may be arrived at by intuitive considerations,
or by modifying certain maximum likelihood estimators. Some estimators
o obtained are important because they use more of the information
available in an observation than do the conditional estimators d. and
¥., without being so complicated functionally that we cannot easily
study their statistical properties.
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It seems reasonable, and can be shown rigorously (Appendix C), that
for an interval (O, T) of statistical equilibrium, the distribution of A
and that of H are the same. Thus we can argue that, for long time inter-
vals, A and H will not be very different. This suggests using

_A+H_K
Y Y|

=

as an estimator of a. This estimator does not involve v, and it uses not
only information given by 4, but also information supplied by arrivals
occurring possibly before the start of observation.

Similarly, since b = a/y, and M is a consistent and unbiased estimator
of b, we may use

» _K 1

ks 57 ﬁl
to estimate v, and its reciprocal to estimate A. Finally, since for long (0,T")
we have A ~ H, we may try

LA 1

g = —

Z fe
as an estimator of v, and its reciprocal as an estimator of A.

IX THE JOINT DISTRIBUTION OF THE SUFFICIENT STATISTICS
The basic result of this paper is a formula for the generating function
E{2"z Pwu"e ) 9.1)

for the joint distribution of the random variables n, N(T), 4, H, and Z.
This formula is derived in Appendix C, by methods illustrated in Section
X. I'or an initial » distribution {p.}, the generating function is

W[ + ye — yw)e 7 + 'yu]"'
X, 7 |: c+

aw(ir + yr — yuw)l — ¢ 7 aywuT }
o — aT}.
EYP{ &+ )2 +s“+7 ¢

It is proved in Appendix A that the set of statisties {n, A, H, Z} is
sufficient, for estimation on the basis of the information assumed, which
was deseribed in Section I. Thus the generating function (9.2) specifies,
at least in principle, what can be discovered about the process from an
observation interval (0, T), for which N(0) has the distribution {p,}.
All the results summarized in this section are consequences of (9.2).

nz=0

(9.2)
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TasLe IT
X In E{X)
g—ET r!(l — e"({+1-]!')
1. etz b| —¢T -
‘ [" Trre T G+ ]
2 ;2(1 — e—(;‘+r))
2. M b| — -
‘ [er €+ 0 ]
3. y¥ 2aTC(y — 1) +aT{1 — O)(y2 — 1)
4. eth 2aTC(e 52T — 1) + aT(1 — C){(e¥!T — 1)

e 2 0972
5. yKetM b (1 - i) [et G — 1] — r(l . )
¢+ ¢+

By substitution, and by either letting the appropriate power series
variables — 1, or letting { — 0, or both, we can obtain from (9.2) the
generating function of any combination of linear functions of the basic
random variables n, N(T), A, H, and Z. Some of the generating func-
tions thereby obtained are listed in Table II, in which the entries all
refer to an interval (O, T) of equilibrium.

Sinee, for equilibrium (0, T), the generating functions are all exponen-
tials, it has been convenient to make Table II a table of logarithms of
expectations, with random variables X on the left, and functions In
E[X]} on the right. C as a function of r is plotted in Fig. 2.

Entry 1 of Table II is actually the cumulant generating function of
Z for equilibrium (0, T); similarly, Entry 2 is that of M, and depends
only on the average traffic b and the ratio r. The form of the general
cumulant of M is

R L I D
JTL,, = bT jﬂ (F ﬂ)l € dx.

This result coincides with a special case (exponential holding-time) of
a conjecture of Riordan." This conjecture was first established (for a
general holding-time distribution) in unpublished work of S. P. Lloyd.
The cumulant generating function permits investigation of asymptotic
properties. We prove in Section X that the standardized variable

v = (yT/20)"* (M — b)
= (r/20)"* (M — b)

is asymptotically normally distributed with mean 0 and variance 1.
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Fig. 2 — C as a function of r.

From Entry 3 of Table II it can be seen that K is distributed as
2u + », where « and » follow independent Poisson distributions with the
respective parameters a7'(1 — ) and 2aT'C. The probability that K =
n for an interval of equilibrium is

7)™ (aT — aTC)’
- 27! J! ’
where the sum is over j’s for which 0 = 25 < n.

The estimator d, for a is equal to K/2T, and has mean and variance
given by

. = exp {aT(C — 1)} X ((T

E{dl} = a,
a
var {6} = o7 2 - 0.

The distribution of d; is given by
pridg, <z} = > 7.,

the summation being over n = 27z

From (9.2) one can obtain, by substitution of the stationary = distribu-
tion for {p.}, and subsequent differentiation, the means, variances,
covariances, and correlation coefficients of the sufficient statisties, for
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! " A H K Z
1 1 b aT aT 2aT b
n b(1 + b) baT aT(C + b) aT(C + 2b) bT(C + b)
A aT(l 4 aT) | aT(1 — C + aT) aT(@ — C+al) bT(1 — C 4 aT)
H aT(l + aT) aT(@ — C + al) bT(1 — C + aT)
K 2aT(2 — C + 2aT) 2b7(1 — C + aT)
Z bTh(2 — 2C 4 aT)
TasLE IV—cov{X,Y}
n l A | H K z
n b 0 aTC aTC brC
A aT aT(l — C) aT(2 - C) bI'(1 — C)
H aT aT(2 - C) bT (1 — C)
K 2aT(2 — C) 271 - ©)
Z 2bTh(1 — C)

equilibrium intervals (0, T). It has been convenient to display these in
three triangular arrays, the first consisting of expectations of products,
the second comprising the variances and covariances, and the third
exhibiting, for simplicity, the squared correlation coefficients, since the
correlation coefficients are never negative for these random variables.

In Table 111, the entry with coordinates (X, Y) is {X Y} for equilib-
rium (O, T). All three tables are expressed in terms of a, b, T, h, r, and
C, the last of which is plotted in Fig. 2.

The variances and covariances of the sufficient statistics are listed in
Table 1V; the entries are of the form:

cov {X, Y} = E{XY| — E{X|E{Y}.
Table V, finally, lists the squared correlation coefficients; i.e., the
quantities
cov’ | X, Y}
var {X} var [V}’

P (X, V) =

For any time interval (0, T), A has a Poisson distribution with param-
eter aT, so that T'd. does also. Therefore the distribution of 4. is given
by

E efaT(ﬂ-T) "

i, = ) =
pr {d. = =} n!

)

where the summation is over n £ 27'. Evidently
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Eld.} = q,
and
. a
var {d.} = 7

so that d. is an unbiased and consistent estimator of a. We now compare
the variances of estimators d. and d,. FFrom Table IV we have

a C a
i) == (1 =2 £ — var ld.
var {d} T( 2)<T var {d.},
so that &, is a better estimator of a for any 7' > 0, in the sense that its
variance is less.

X THE DISTRIBUTIONS of Z AND M

Since we have defined
T
Z = f N(t) dt,
0

we can regard Z as the result of growth whose rate is given by the ran-
dom step-function N(¢); when N({) = n, Z is growing at rate n. An idea
similar to this is used by Kosten, Manning, and Garwood®, and by Kos-
ten alone.” Now the Z(T') process by itself is not Markovian, but it can
be seen that the two-dimensional variable {N(t), Z(¢)} itself is Marko-
vian. Let F,(z, t) be the probability that N(f) = n and Z(f) £ 2. Since
the two-dimensional process is Markovian, we can derive infinitesimal
relations for F,(z, t) by considering the possible changes in the system
during a small interval of time At.

TasLe V— p(X,Y)

n A H ‘ K z
! . rC? rC?
n . 1 0 I 1 —e¢ Cp—y 20 = 0)
2 —C 1-¢C
1 1 1-cC 5 2t
H ) 2 -C 1-¢
p) D)
. 1—-¢C
K 3=¢C
Z 1
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If N(t) = n, then the probability is [l — ynAt — aAt — o(At)] that
there is neither a request for service nor a hang-up during Af following
t, and that Z(t + At) = Z(t) + nAt. Therefore the conditional proba-
bility that N(t + Af) = n and Z({ + Af) = ¢z, given that no changes
occurred in Af, is

Fuz — nAt, t).

For N(t) = (n + 1), the probability is y(n + 1)At + o(Af) that one
conversation will end during At following ¢. The increment to Z(f)
during At will depend on the length 2 of the interval from ¢ to the point
within A¢ at which the conversation ended. The increment has magni-
tude (n + 1)z + n(At — ) = x + nAl, as can be verified from Fig. 3,
in which the shaded area is the increment. Since x is distributed uniformly
between 0 and A¢, the increment » + nAt is distributed uniformly be-
tween nAt and (n + 1)At. Therefore the conditional probability that
N(t + At) = nand Z(t 4+ Al) £ z, given that one conversation ended
in At is

1 (n+1)At

- Foplz — u, t) du.
Al Juar wle =, 1) du

By a similar argument it can be shown that the probability that one
request, for service arrives in At is aAf + o(Af), and that the conditional
probability that N(t + Af) = n and Z(t + Al) < #z, given that one
request arrived during Af, is

1 nAt

- Foi(z — u, t) du.
Al J(n—1)at '1( 0

Define F,(z, t) to be identically 0 for negative n. Adding up the probabil-

' |
n+2f I 7
x | 1

n+i - |
At -x | i

n -

n-t 7
n—a|~ | §

|

At l

t t+At

Fig. 3 — Inerement to Z in Af.
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ities of mutually exclusive events, we obtain the following infinitesimal
relations for F,(z, t):
(n+D AL

Fo(z,t + At = y(n 4+ 1) Fon(z — u, 1) du

nAt

nat
+ a,f Fo_i(z —u,t) du + F,(z — nAt, f)
(n—=1)At

-[1 — At(yn + a)] + o(At), for any n.
Expanding the penultimate term of the right side in powers of nAf,
and the left side in powers of Af, we divide by At, and take the limit as
At approaches 0. Now

(n+1)At
lim —f Foo(z — u, b) du = Foa(z, t).

At—o At Juat

Thus, omitting functional dependence on z and ¢ for convenience, we
reach the following partial differential equations for F,(z, ¢):

ia‘Fu =yn 4+ DF s + aF 5 — n%}?n

at (10.1)

— [yn + alF., forany n.
Since Z(0) = 0, we impose the following boundary conditions:
F.(0,t) =0 for n>0andt > 0,
Fo(z,0) = p, for z =0, (10.2)
F.(z,00 =0 for z <0,

where the sequence {p,} forms an arbitrary N(0) distribution that is
zero for negative n.

To transform the equations, we introduce the Laplace-Stieltjes in-
tegrals

E]

enl(f, 1) = j e dl, (2 1), =0, Re (f) > 0,

in which the Stieltjes integration is understood always to be on the
variable z. We note that

j' e F (2, 1) dz = %go.,(s‘, 1),

n g ] - 1 L ] 3 n ] .
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Applying now the Laplace-Stieltjes transformation to (10.1), we obtain

0pn —
5 = v(n 4 Deni1 + @on—1 — nien + n{F.(0,0) (10.3)

— [yn + dlea,
in which we have left out functional dependence on ¢ and ¢ where it is
unnecessary. By the boundary conditions (10.2), n{F,(0, {) = 0 for
n = 0and (> 0;in (10.3) we may therefore omit this term in the region
t > 0. Let ¢ be defined by
oz, 0,0 = 2 a"ea(t, 0.

n=0
The series is absolutely convergent for |2 | < 1, since
| ea(t, ©) | = 1, for all .
The following partial differential equation for ¢ is obtained from
(10.3):
de de
o T e+ v = DIg0 = ale — De. (10.4)

If we integrate out the information about Z by letting ¢ approach 0 in this
equation, we obtain the equation derived by Palm (loe. cit.) for the gene-
rating function of N(f). Therefore our equation has a solution of the
same form as Palm’s. For the boundary conditions (10.2), this solution is

—({+y)t
@ = exp {il-l—] [tz 4+ y(@@ — D] — aft }

t+7v)? ¢+ (105)
i p ]:k“a: + yl@ — D + 7]" '
n=>0 " (‘ + Y ’

Actually ¢ contains more information than we want since it yields the
joint distribution of N and Z. We may integrate out the former variable
by letting  approach 1 in 10.5. Then,

atb(l — ¢ 47 atT }

Efexp (—{2)} = exp{

C+v: it
. 0 ;.ef(hL'r)T + 7]"
gl P [ E+

is the Laplace transform of the distribution of Z for an arbitrary N(0)
distribution {p,}. This result is not restricted to an interval (0, T)
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of statistical equilibrium; however, if the sequence {p,} does form the
stationary distribution discussed in Section II, then
> a"p. = exp {b(x — 1)}, (10.6)

and

B b (e TT — 1) atT }
v - e { C+v t-n
is the Laplace transform of the distribution of Z for an interval (0, T')

of statistical equilibrium.
The Laplace transform is & moment generating function expressible as

— % (_f)nmn
n=0 n!

(10.7)

v

)

where m, is the »'* ordinary moment of Z. Differentiation of 10.7 then
gives a recurrence relation for the moments upon equating powers of

(=¢). Thus,
o3
¢+ ( a;)
=y {201 — ¢ T) + (¢ + vyal + BT,
and
Y Mns — 3v'nm, + 3yn(n — Dm,y — n(n — 1)(n — 2)ma—s
= ay'Tm, — (2a + ayT)nma—y + 2ane ""(m + T)"' +n (10.8)
s(n—=1DaTe (m+ T)"" —nln — 1)(n — 2)bTe ""(m + "
where (m + T)" is the usual symbolic abbreviation of
z: (n) ij,,_j .
i=0 \J
From the recurrence (10.8) it is easily verified that
m = bT,
my = (bT)* + ?l;_T -
from which it follows that the variance of Z is

var (Z) = %TTH —a.
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Since ¢ is the Laplace-Stieltjes transform of the distribution of Z
over an interval of equilibrium, In ¢ is the cumulant generating function,
and has the following simple form:

b [s‘z(e_(”ﬂr —1) wT :|
&+ )2 &+

Iny
(10.9)

Il

g—zT ‘(-2(1 _ e-(f'+1’)T):|
Ft+vy G +2 '

M is a linear function of Z, so we may obtain the cumulant generating
function of M in accordance with Cramér' (p. 187). This function is

b [—rT +

2

_ ¢ a = e"e“)]
R L | (1010

and depends only on b and r.
The mean and variance of M for an interval of equilibrium are respec-
tively given by

E{M}

b,

var (M} =201 —¢], with ¢ =129

r 7

results which were first proved in Riordan." A normal distribution having
the mean and variance of M has the cumulant generating function

b[—r+r—+r(e—;1)], (10.11)
T r

which is to be compared to (10.10). Since var {M} goes to 0 as T ap-
proaches =, we may expect that a suitably normalized version of Z will

be asymptotically normally distributed as T' approaches «. The cumu-
lant generating function of the normalized variable (26hTY M*(Z — bT)

is
26\
o] el
9 \172 i 1+ op\ 172 ’
f(Z) + (%) "+
which approaches {*/2 as 7' — . It follows that the normalized variable

is asymptotically normal with mean 0 and variance 1, and that
(r/26) (M — b) is also asymptotically normal (0, 1).
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APPENDIX A

PROOF THAT {n, A, H, Z} 18 SUFFICIENT.

We observe the system during the interval (0, T'), and gather the in-
formation specified in Section I, and summarized in Table I. From this
information we can extract four sets of numbers, described as follows:

S. the set of complete observed inter-arrival times, not counting

the interval from the last arrival until T

Si the set of complete observed holding times

S: the set of hang-up times for calls of category (i)

Sy the set of calling-times for calls of category (iv)

In addition, our data enable us to determine the following numbers:
7 the number N(O) of calls found at the start of observation
k  thenumber of calls of category (iii); i.e., of calls which last through-
out the interval (0, T')
x the length of the time-interval between the last observed arrival
and T

In view of the negative exponential distributions which have been
assumed for the inter-arrival times and the holding-times, and in view
of the assumptions of independence, we can write the likelihood of an
observed sequence of events as

L = G—k-y‘]'—uzpn . H ae—uu_ H 78_72' H g—-rw_ H e—'r( ’1"——11),

ueSy zeSy wesS) yeSy
so that
InL = —vkT —ar +Inp, + Alna — > au
ueSy
+ Hlny — E‘yz— ES’Y’w* ZS:‘Y(T—?J)
zeSp weSy VeSS,

It is easily seen that the summations and the two initial terms can be
combined into a single term, so that we obtain

InL=Inp,+Ana+ Hlny —yZ — aT.

This shows that L depends only on the statistics n, A, H, and Z; it
follows that the information we have assumed can be replaced by the
set of statisties {n, A, H, Z}, and that these are sufficient for estimation
based on that information.

The likelihood is sometimes defined without reference to the initial
state, by leaving the factor p, out of the expression for L. Strictly speak-
ing, this omission defines the conditional likelihood for the observed
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sequence, conditional on starting at n. We use the notation:
L.=L1.
Pn
A definition of likelihood as L. has been used by Moran.” Clearly
mL,=Alnha+ Hlny —vZ — aT.

ArpENDIX B

UNCONDITIONAL MAXIMUM LIKELIHOOD ESTIMATES

The definition of likelihood as L leads to complicated results which
are of theoretical rather than practical interest. For this reason these
results have been relegated to an appendix.

The results of setting 8/dy In L and d/da In L equal to zero lead, re-
spectively, to the likelihood equations

a—y(n—H) —+vZ=0,
o —a+y4d — ayT = 0.

Considered as a system of equations for ¥ and @, this pair has the non-
negative roots
., H—n—M+ {(H—n— M +4MK}'"
B 27 ’

Q=g — AN

These are the unconditional maximum likelihood estimators for y and a.
Although d, depended only on A and 7, and 4. only on H and Z, the
unconditional estimators depend on all of n, A, H, Z, and T. We may
obtain a maximum unconditional likelihood estimator for b as well,
either by considering L to be a function of b and v, or from general
properties of maximum likelihood estimators. Since b = a/y, we expect
that b = &/%, as can be verified by an argument similar to that used
above for 4 and 4.

The estimators d, b, and 4 obtained in this Appendix may turn out to
be useful in practice, but their complicated dependence on the sufficient
statistics n, A, H, and Z makes a study of their statistical properties
difficult. As a first step along such a study, we have derived the gen-
erating function of the joint distribution of the sufficient statistics in
Appendix C. The greater simplicity of the conditional estimators of
Section VI makes it possible to study their statistical properties. This
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fact gives them a practical ascendancy over the unconditional estimators,
even though the latter may be more efficient statistically by dint of
using all the information available in an observation.

ArpExDIX C

THE JOINT DISTRIBUTION OF N(f), n, A, H, AND Z

By methods already used in Section X one can obtain a gen-
erating function for the joint distribution of all the random variables n,
N(@), A, H, and Z. Let

® = Ela"“wue %Y.
Then & satisfies the differential equation

% + [tx + yo — yul g—@ = alwz — 1)%,
r

whose solution has the form
b = R{u’ﬂ‘ + yr — ,Y.u]e—(f""‘.r)l}

o fawlfr + yx — yul[l — e aywul )
e“p( = i)

where the function R is determined by the initial distribution {p.}
through the relation

&+ IJ

RiE) = X p. [ﬁtl]

nZ0 t+
IFrom these results it follows that the generating function
Ig{zumﬁ(ﬂwduﬂe*rzl
is given by
a4 y2 — ywe T 4 qu\"
3 poz (( E — v ¥
¢+
aw(tz + yr — vl — ¢ 7 aywuT )
QX - aT .
P ( &+ )? + ¢+
It {p.} forms the stationary distribution, this reduces to
. . —(4N T
exp [b(z(fa + yr — yu)e + yuz 1)
t+
’ . oy _ @4 ;
aw(fr + vy -yu)[i e ] n aywul aT:|.
&+ F+r

n=0

+
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If, in this last expression, we let x approach 1, z approach 1, and u ap-
proach 1, we obtain

o yw (b — 1) ):'
P [(1 " ’r)( Tt o1 ©

=

as the generating function K {w'e for an interval of equilibrium.
Alternately, if instead we let x approach 1, z approach 1, and w ap-
proach 1, we obtain (C) with u substituted for w; this implies the not-
surprising result that for an interval of equilibrium, the two-dimen-
sional variables {4, Z} and {H, Z} have the same distribution. From
this and (C) it follows that for equilibrium (0, T), (i) A and H both
have a Poisson distribution with mean a7', and (ii) the estimators he and
f2 have the same distribution.
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