Fluctuations of Telephone Traffic
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(Manuscript received November 9, 1956)

The number of calls in progress in a simple telephone exchange model
characterized by unlimited call capacity, a general probability density of
holding-time, and randomly arriving calls 1s defined as N(t). A formula,
due to Riordan, for the generating function of the transition probabilities
of N(t) is proved. From this generating funclion, expressions for the co-
vartance function of N(t) and for the spectral density of N(t) are determined.
1t is noted that the distributions of N(t) are completely specified by the co-
variance function.

I INTRODUCTION

The aim of this paper is to study the average fluctuations of telephone
traffic in an exchange, by means of a simple mathematical model to
which we apply concepts used in the theory of stochastic processes and
in the analysis of noise.

The mathematical model we use is based on the following assumptions:
(1) requests for telephone service arise individually and collectively at
random at an average rate of a per second; (2) the holding-times of
calls are mutually independent random variables having the common
probability density function h(u); and (3) the capacity of the exchange
is effectively unlimited, and no call is blocked or delayed by lack of
equipment. This telephone exchange model has been described by J.
Riordan.?

As a measure of traffic, it is natural to use the number of callsin prog-
ress in the exchange. We are thus led to consider a random step-function
of time N(t), defined as the number of calls in progress at time ¢. N(¢)
fluctuates about an average in a manner depending on the calling-rate,
a, and the holding-time density, h(w).

II PROOF OF RIORDAN’S FORMULA FOR TRANSITION PROBABILITIES

Let P,..(t) be the probability that n calls are in progress at ¢ if m
calls were in progress at 0. Define the generating function of these prob-

965



966 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1957

abilities as

Pm(t, &€ Z m, n

nz0

and let
1) = f " @) de,

so that the average holding-time, h, is given by

= L ) flu) du.

Riordan’® has given the following formula for P..(2, x):
P.(t,2) = 1 + (@ — Dg®)]" exp {(@ — Dak[l — ¢@®)]}, (@)
with

o) =1 [ 0 du.

For exponential holding-time density, this formula had aheady been
derived (as the solution of a differential equation) by Palm.

In private communication, J. Riordan has suggested that his proof of
(1) is incomplete. We therefore give a new proof of (1).

We seek the generating function of N(¢), conditional on the event
N(0) = m. We obtain it by first computlng the joint generating function
of N(0) and N(2); that is,

E{yN(m:EN(ﬂ}- (2)

The desired conditional generating function is then the coefficient of
y™" in (2), divided by the probability that N(0) =

To obtain a formula for (2), we exhaust the mterval (— :o 0) by
division into a countable set of disjoint intervals, 7, , the ! ha,vmg
length T, > 0. Let S, be the sum of the first n lengths, T;. Let £.(2),
for ¢t > —S._1, be the number of those calls which arrive in I, and are
still in progress at {. And let 4(t) be the number of calls arriving during
(0, 1), t > 0, and still in existence at ¢. Then

N(0) = ,§1 £.(0), (3)
N(t) = () + Eﬁ £(1), t>0. (4)

Since calls arriving during disjoint intervals are independent, we know
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that »(¢) is independent of all the #s, and that £,(¢) is independent of
£:(r) if n # j. Of course, £,(f) and £.(7) are not independent. It follows
that if the infinite product converges, then for ¢ > 0

ElyN(O}mN(l)} — E{.’E"“]] fIE{?jE”(D)JUE"“}}- (5)

n=1

We now compute the terms of the product. If a call originates in in-
terval 7, , it still exists at 0 with probability

T, Sa
Q=g [+ S du = o [ 16 .

Hence if k& calls arrived in 7, , the probability that m of them are still
in progress at 0 is

pr{£.(0) = m |k calls arrive in 1,,}
= (’;) @1 - Q), msk

Similarly, if a call originates in /, and exists at 0, it also exists at ¢ > 0
with probability

Ty
K, = (@.T)™ fo Fu 4 €+ Su) du

Therefore

E{z™" | £,(0) = m and k calls arrive in I,

1+ (z — DK,

and so

E{y=Y2% | I calls arrive in 7,

{14+ @l + (& — DK, — 1)Q.}"

The number of calls arriving during I,, has a Poisson distribution with
mean a7, ; hence

E{yfﬂ(o)xfn(f)l = exp {aT,.(Q _ 1)}

(6)
exp {aT.Q.{y[1 + (= — 1)K,] — 1)}.

By reasoning like that leading to (6), it can be shown that
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E{2""] = exp {a,t(:r - 1) l%j{;t)"(u) du}

= exp [ah(z — 1)1 — g(D]}.

@)

Now

S aluQn = a fo " i) du = ah,

nzl

> al.Q.K, = a ), f ' flu + t + Saa) du,

nz=1

a fwf(u) du = ahg(t).

Therefore the infinite product is convergent, and
Bly" 2"} = exp {ah(z — 1)[1 — g(0)]
+ 2 aTu@ayll + (@ — D] = D} 8)

= exp {ah((z — D[1 — g®)) + (y — 1) + y(x — Dg()}.

Thus the generating function of the joint distribution of N(0) and N(Z)
is independent of the division of (— =, 0) into intervals I,, . By letting
x approach 1 in (8) and finding the coefficient of 3™ in the resulting limit,
we find that
—ah m

m!

pr{N(0) = m} =

The coefficient of y™ in (8) itself is

e—uh (ﬂ.h) m

o 1+ (x — Dg®)" exp {(x — Dahll — g1},

and so using (9) we find that the required conditional generating function
of N(t), given N(0) = m, is given by Riordan’s formula (1).
III THE AUTOCORRELATION

In terms of N({) one can define various stochastic integrals which
will be characteristic of the process. A simple one which has been ex-
tensively treated in connection with estimating the average traffic is

s _ 17
M_T'./; N(?) dt,
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the average of N(f) over an interval (0, T). The chief references in the
literature on M are References 3 and 5. If we consider N(¢) during an
interval (0, T 4+ ), a measure of the coherence of N(¢) during this in-
terval, i.e., of the extent to which N(¢) hangs together, is given by the
integral

U(T, 7) = IT f "NO NG+ ) d,

depending on values of N(f) taken 7 apart. When the limit y(7) of u as
T approaches = exists, it is usually called the autocorrelation function;
most statisticians, however, reserve the term ‘‘correlation” for suitably
normalized, dimensionless quantities. It can be shown that this limit
exists and is the same for almost all N(f) in the ensemble. It then coin-
cides with the ensemble average, i.e.,

¥(7) = lim U(T, 7), almost all N(z),

T—00
= E{N({ON( + )}.
The function, ¢, for the system we are discussing is derived by Riordan,’
and we reproduce his argument for ease of understanding. For equilib-
rium, and b = ah, we have

m= !

& e" o
E!N(t)N(t + T)} = Z m— m aPm(T, x)]x—l-

Now

ox z=

9 por, 1-)] = mg(r) +blL — g(r)],

so that

w —bym

> emb! mi{mg(z) + b[l — g(o)1},

m=0

b + bg(r).

v(r) (10)

(Cf.5 p. 1136)

The limiting value of ¢(7) for 7 approaching = is the square of the
mean occupancy, b, and the limiting value of ¥(r) for r approaching 0
is the mean square occupancy, b° + b, the second moment of the Pois-
son distribution with mean b.
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IV THE COVARIANCE AND SPECTRAL DENSITY

The average value of N() isb = ah. One way to study the fluctuations
of N({) about its average is by means of the power spectrum used in the
analysis of noise. (Cf. Rice.") We resolve the difference [N(t) — b] into
sinusoidal components of non-negative frequency, and postulate a noise
current proportional to this difference dissipating power through a unit
resistance. The spectrum w(f) is then the average power due to frequen-
cies in the interval (f, f + df).

More formally, we consider the Fourier integral

S, T) = f: N — bl dt,

and we recall, for completeness, the relationship between S(f, 7') and
the covariance function, R(r), of [N(t) — b]. If

= lim 2186, S(g.,’ T)|2,

T—c0

w(f)
then
w(p) =4 [ " R() cos 2ufr dr,
. (11)
R(r) = fn w(f) cos 2xfr df.
(Cf. Rice," p. 312 ff.)
At the same time, we have
R(r) = E{[N@®) — bJIN(t + 7) — b}
=y(r) = V*
= bg(7).

Let X () be any stochastic process which is known to be the occupancy
of a telephone exchange of unlimited capacity, having a probability
density of holding-time, and subject to Poisson traffic. From the pre-
ceding result it can be seen that the covariance function of X(t) deter-
mines the distributions of the X () process completely, since

a=- —@}
drj]i=d’
(=) =f h(w) du =. — ﬂ%.

If the holding-times are bounded by a constant, %, then readings of
N(t) taken further apart than % are uncorrelated. In fact, such values
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are independent, because no call which contributes to N(f) can survive
until (¢ 4+ &), with probability 1.
Using (11), we see that

w(f) = 4 fo " cos 2nfrR(x) dr
= 4b fo i cos 2rfrg(r) dr

= 4a j:o cos 2rfr j:w j:ﬂ h(u) du dy dr (12)

2a [* . ®
= =3 sin 21rfr[ h(uw) du dr

= rg_f'” [1 - ]; B cos 21rfrh(r) dr]

Equation (12) expresses the mean square of the frequency spectrum of
the fluctuations of the traffic away from the average in terms of the call-
ing-rate and the cosine transform of the holding-time density, h(u).
The calling-rate appears only as a factor, and so does not affect the shape
of w(f). The function w(f) is what Doob' (p. 522) calls the ‘“spectral
density function (real form).”

V EXAMPLE 1. N({) MARKOVIAN

Let the frequency h(u) be negative exponential, so that
h(u) = %e_"ﬂ', (13)

where h is the mean holding-time. It is shown in Riordan® p. 1134,
that N(¢) is Markovian if and only if h(u) has the form (13). From page
523 of Doob' we know that the covariance function of a real, stationary
Markov process (wide sense) has the form

R(r) = R(0)e”™,  « constant. (14)

Under the assumption (13), the covariance of N(¢f) is

R(r) = bg(7) = % j:” j;m h(u) du dy

o« unl b
= b_[, fy i du dy
e b

b —7lh
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in agreement with (14). The spectral density can now be obtained from
(11) or (12); it is
4bh
1 + 4x¥fh*
This is the same as would be obtained for a Markov process that alter-

nately assumed the values ++/ah, —+/ah at the Poisson rate of (2h)™!
changes of sign per sec. (Cf. Rice’ p. 325.)

w(f) =

VI EXAMPLE 2. HOLDING-TIME DISTRIBUTED UNIFORMLY IN (a,B)

Let h(u) be constantly equal to (8 — «)”" in the interval (e, 8), and
constantly 0 elsewhere. Then by (12),

w(f) = 2 [1 - —-l—afﬂ cos 2nft dt]

wf? B -
_a [1 __ sin 27/ — sin 21rfa]
= 27f(8 — a) '

Now we see that

f(y)=f W) du = P =Y for a<y=8
v B —a
0 for y= 48
so that
8 — «
a[a—7+ 5 ] 0=r=a«a
a(@—1)° (15)
R(T)_Q—,G——;z— a=1t=§
0 Tz B

is the covariance function of the process N(t) when holding-time is dis-
tributed uniformly in (e, 8).

If, formally, we let (8 — «) approach 0 while keeping 1(a 4+ B) fixed,
then the holding-times become concentrated in the neighborhood of the
mean, h; in the limit, as k(u) tends to a singular normal distribution
with mean, h, and variance zero, we obtain

a

= [1 — cos 2xfh] (16)

w(f) =
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as the spectral density function for the N(¢) process with constant hold-
ing-time, h = }(a + B). Similarly, from (15), we note that as the hold-
ing-times become singularly normal with mean, %, and variance zero,
the covariance function becomes

=ah — 1) 0
P

1A
-'

IA
=

k(r) =

v
=

We can express (16) as

_ 2 ((sin wfh\*
w(f) = 2ah ( 7 ),

and note that this is exactly like the power spectrum of a random tele-

graph wave constructed by choosing values ++/ah, —+/ah with equal
probability and independently for each interval of length, A. (Cf. Rice,'
page 327.)
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