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(Manuscript received June 5, 1957)

This paper is an altempt to formulate a comprehensive theory with which
the forces and molions of a submarine cable can be determined in typical
laying and recovery siluations. In addition to the fundamental case of a
cable being laid or recovered with a ship sailing on a perfectly calm sea over
a horizontal bottom, the effects of ship motion, varying botlom depth, ocean
cross currents, and the problem of cable laying control are considered. Most
of the results reduce to simple formulas and graphs. Their application is

illustrated by examples.
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(GLOSSARY OF SYMBOLS

A Amplitude of harmonic ship motion

1,2, 0 Longitudinal wave velocity; trans-
verse wave velocity in air and water

C»r, Cy Transverse and tangential drag co-
efficients

d Cable diameter, also distance be-

hind the ship at which the cable
enters the lower stratum

Dy, Dy Normal and tangential unit drag
forces

e Sidewise distance from the laid cable
to the ship

EA Extensile rigidity

R Ocean depth

h= wh Dimensionless ocean depth

EA

H Hydrodynamic constant

L Inclined cable length from surface to
bottom, also from ship to surface

Nz Reynolds number

D, q Longitudinal and transverse devia-
tional cable displacements

Py, Qo Longitudinal and transverse ship

displacements
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Deviation from mean pay-out or
haul-in rate

Arc length and horizontal distance
from the touchdown point to the ship
Dimensionless forms of S and X
Time

Dimensionless time

Cable tension at an arbitrary point,
at the ship, and at the bottom

Dimensionless forms of T, T, and T,

Cable tension due to longitudinal and
transverse ship motion

Ship speed, pay-out or haul-in rate

Normal and tangential velocity of the
water relative to the cable configura-
tion

Tangential veloecity of the water rela-
tive to a cable element

Submerged and in-air unit cable
weight

Critical angle, approximate ecritical
angle

Cable angle at the surface
Descent angle, cross current orienta-
tion (Section 7.1)

Constant, also ascent angle

Slack
Orientation of a cable element

Spherical polar coordinates for the
three-dimensional model

Constants (see Appendix C)
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_ CppdV* _cosa

A 5 = gt Constant

M, v Constants

v Kinematic viscosity

£ ¢ Rectangular coordinates for the three-
dimensional model

P Mass density of water

Pe s Pu Mass per unit length of cable in air
and water

& Deviation from the stationary &nglg,

also angle between ¢ axis and V
(Section 7.1)

I. INTRODUCTION

In the summer of 1857, the first attempted laying of a transatlantic
cable ended dismally when, after only a few hundred miles had been
laid, the cable broke and fell into the sea. Although fouling of the pay-
out gear caused by a negligent workman was the principal suspected
reasons for the failure, its occurrence aroused great interest in the de-
tailed dynamics and kinematics of the laying of submarine cable, and
leading British scientists such as Kelvin and Airy published analyses of
this problem in late 1857 and early 1858.!- 2. 8. 4. 8

However, after this initial activity, interest in submarine cable dy-
namics and kinematics evidently waned for there appear only sporadic
subsequent investigations in the literature.f:7: 8.9 1 Jurther, the re-
sults of the early and subsequent analytical investigations have been,
by and large, little utilized in cable laying and recovery practice. One
can conjecture several reasons for this. For one, because the early ana-
lytical work was done before the advent of modern hydrodynamic theory,
it did not rest on a secure base. Thus, as late as 1875, one finds vigorous
debate over the nature of the tangential resistance of water to the cable.®
For another, the results of the analyses could not all be expressed in
terms of elementary functions and required the numerical evaluation of
some definite integrals. In the 1850’s this was a tedious and laborious
process. However, these are probably secondary reasons. I'or, after
another failure in the early summer of 1858, a transatlantic cable was
successfully laid in August of that year. The mechanical problem of de-
positing a cable was thus proved surmountable without complicated
mathematical analyses, and the marriage of analysis and practice was
never fully realized.
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However, a present-day submerged-repeater transoceanic cable is a
delicate and expensive transmission system. Reducing the amount of
cable deposited by as little as one per cent can result in a substantial
saving in the first cost of such a system. Its repair is a costly operation
requiring the sustenance of an ocean ship and its crew. Therefore, it is
important to lay the cable without wasteful excess and with minimum
chances for failure after laying. Further, it is important that repair, if
necessary, be as efficient as possible. To accomplish these things, an un-
derstanding of the dynamies and kinematics of cable laying and recovery
is essential.

The purpose of this paper is to provide some of this understanding in
as straightforward a way as possible. To this end concepts and results
are stressed in the main part of the paper, mathematical details being
given in the appendices. Moreover, we hope to show that the results of
the analysis can provide a numerical basis for decision making in many
of the laying and recovery operations. Most of these results can be ex-
pressed in the form of simple formulas and graphs. Several numerical
examples are included to illustrate concretely how the results can be
applied in practice.

The general plan of the paper is to proceed from simple to more re-
fined models of the laying and recovery processes. Thus, we discuss first
what we have called the two-dimensional stationary model. This model is
appropriate for laying and recovery on or from a perfectly flat bottom
while sailing on a perfectly still sea. As a preliminary to this discussion,
we consider in some detail the hydrodynamic behavior of typical deep
sea submarine cable. We then take up the effects of the ship motions
which are induced by wave action and the effects of a bottom of varying
depth. These considerations are followed by a short discussion of the
problem of controlling the cable pay-out properly during laying and the
associated problem of the accuracy of the present taut wire method of
determining ship speed. Finally, we consider the three-dimensional sta-
tionary model and the effects of ocean cross currents.

II. BASIC ASSUMPTIONS

Our analyses, like most analyses of physical problems, are based on
idealizations or mathematical models of the actual physical system. The
extent of validity of these models must be ultimately determined by ex-
periment. and experience. However we shall try to give the reader an
idea of when they are clearly applicable and when they are not.

All of the models we consider contain two basic idealizations, namely,

(1) No bending stiffness in cable, ie., it is a perfectly flexible string,

(2) The average forward speed of the ship is constant.
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Bending effects are caused by locally large curvatures, and are significant
mainly where the cable leaves the pay-out sheaves and at the ocean
bottom. However, for a cable with a steel strength member, bending
even to the small radius of the pay-out sheave typically does not ma-
terially reduce the tension required to break the cable. Hence, in these
cases we can expeet an analysis based on the first idealization to give a
reasonable idea of when cable rupture will occur. In laying, ship speeds
are normally steady and, with the exception of the fluctuations caused
by wave action which we consider later in the paper, the second idealiza-
tion is reasonable also. In recovery, on the other hand, ship speeds are
apt not to be steady, and the second idealization is more tenuous. But
because of the very slow speeds usually employed, this idealization may
in fact be meaningful in recovery as well.

III. TWO-DIMENSIONAL STATIONARY MODEL
3.1 General

Assume that the cable ship is sailing at a constant horizontal velocity,
that the cable pay-out or haul-in rate is constant, and that the drag of
the water on the cable depends only on the relative velocity between
the water and the cable. Further, assume that in a frame of reference’
translating with the ship the cable configuration is time-independent
or stationary. This idealized model of the cable laying or recovery pro-
cess we call the two-dimensional stationary model.

This is the model which has been considered in the previous analytical
studies.!"'® As the early investigators quickly pointed out, when the
tension at the bottom of the cable is zero, the cable, according to this
model, can lie in a straight line from ship to ocean bottom. During lay-
ing, when slack is normally paid out, the zero tension condition actually
occurs, and hence this case is of considerable practical importance.

The straight line can in fact be shown to be the only solution which
can satisfy all the observed boundary conditions. This point is discussed
in detail in Appendix A. That the straight line is a possible configuration
can be seen from Fig. 1. In the vector diagram the velocity of the water
with respect to the cable is resolved into a component Vy normal to the
cable and a component V tangential to it. Associated with Vy and Vr
are normal and tangential water resistance or drag forces Dy and Dy .
In the straight line configuration, the cable inclination is such that Dy
just balances the normal component of the cable weight foreces. The
situation is thus analogous to that of a chain sliding on an inclined plane,
with the forces Dy corresponding to the normal reaction forces of the
plane. Summing forces in the normal direction, we get, therefore,
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weos o = Dy, (1)

while the summation in the tangential direction gives for 7', the ten-
sion at the ship,

T, = wl sin « — DyL. (2)

Here w is the weight per unit length of immersed cable, « is the cable's
angle of incidence, Dy and Dy are the normal and tangential drag forces
per unit length respectively, and L is the inclined length of the cable.
For most submarine cable used eurrently the force Dl is negligible
and we arrive at

T, ~ wlL sin ¢ = wh, (3)

where h is the ocean depth at the eable touchdown point. Hence, during
slack laying the cable tension at the ship is very nearly equal to the
weight in water of a length of cable equal to the ocean depth.

Fig. 1 — Forces acting on a cable in normal laying.

The straight-line solution is the simplest and probably the most im-
portant result to be obtained from the stationary two-dimensional model.
We shall derive results for other important situations from this model
also. As a preliminary, we study first, however, the nature of the normal
and tangential drag forces Dy and Dy .

3.2 Normal Drag Force and the Cable Angle o

The resistance at sufficiently slow speeds to the flow of a fluid around
an immersed body varies as the square of the fluid velocity. This relation-
ship is usually written as*

< ()

* For towed stranded wire experimental verification of this relationship is
reported in Reference 11.
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Tig. 2 — Experimental and theoretical variation of critical angle with towing
veloeity for cable No. 1,

where Dy is the normal drag force per unit length, €' is the so-called
drag coefficient, p is the mass density of the fluid, and d is the diameter
of the cable. FFor the straight-line configuration, the vector diagram in
Iig. 1 shows that '

VN = V S]l,l'l o. (5)
Substitution of (5) and (4) into (1) yields in turn
/v2
W eos o = QD'.%E sin’ a. (6)

Equation (6) suggests how the value of the drag coefficient Cp can be
obtained experimentally. By towing a length of cable in water at a con-
stant velocity, one can establish the straight-line configuration. The
angle a can then be measured as a function of velocity, from which Cp
can be computed by (6).

Figs. 2 and 3 show the results of such tests together with plots of (6)
for the indicated values of C'p . These results are taken from an analysis
by A. G. Norem of experimental data obtained by H. N. Upthegrove,
J. J. Gilbert, and P. A. Yeisley. The properties of these cables are listed
in Table L.* To eliminate end effects different lengths of cable were towed,

* Cable No. 2 is very similar to present type D transatlantic telephone cable.
For engineering calculations, type D can be considered the same as cable No. 2.
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TaBLE I — ProrerTIES OF CaBLES No. 1 anp No. 2

Cable No. 1 No. 2
Diameter (inches)................. 0.75 1.25
Wt. in water (lbs/ft.).............. 0.243 0.705
Outer covering. ................... Polyethylene Tar impregnated jute
Surface condition.................. Smooth Rough
A (twist restrained)...... ... .. .. — 4 % 10° lhs
A (twist unrestrained) ... ... .. .. — 1.2 X 10° 1bs

as is indicated by the plotted experimental points. It is seen that (6)
gives a good fit to the experimental data over the entire velocity range.
If the cable has a smooth exterior, an estimate of the drag coefficient
(' can be computed from published values of resistance to flow about
an immersed cylinder. This computation is described in Appendix B,
where we have also tabulated computed values of €', . For the smooth
cable No. 1, the value of (', obtained from Appendix B is 1.00 which is
in fair agreement with the experimentally determined value of 1.11,
Although the drag coefficient €', is a fundamental hydrodynamic para-
meter, it is not the most convenient description of the effect of the nor-
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mal component of water velocity. For small values of the incidence
angle a

cos a =1,

sin o & a,

and (6) is approximately

2w \'"*
7 =
anI (CDP d) ; (7)

where ap is the approximate value of a. The quantity (2w/C ood)} is a
constant for a given cable. It brings together all the cable parameters
which influence the magnitude of the incidence angle a. If the angle «
for a given speed is determined accurately, as can be done in a towing
test or with a sextant during over-the-stern laying, this quantity is easily
computed. Because of its importance, we shall call it the hydrodynamic
constant of the cable and denote it by H, namely,

1/2
By virtue of (7) and (8) we may write
wV = H. (9)
The constant H rather than the drag coefficient C'p will be used from this

point on.
When the approximate relationship (9) is not valid,  can be obtained
by solving (6). This gives

cos a = /‘/1 + i (%)4 - %(‘g)ﬂ, (10)

where V is in knots and H in radian-knots. In terms of a; we obtain in
turn

1
c05a=,‘/1+iao“—§aug. (11)

This relationship is shown in Fig. 4, where the incidence angle « is plotted
as a function of the approximate incidence angle a . It is seen that for
a < 20° the difference between aq and « is negligible.

Physically « as given by (10) is the angle the cable assumes in the
straight-line shape for the velocity V. However, in addition, (10) shows
that « can be thought of as a dimensionless parameter which embodies
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both the hydrodynamic properties of the cable and the ship speed. Thus,
even when the configuration is not a straight line, we shall find it con-
venient to express results as a function of the single parameter o, rather
than as a function of the two parameters H and V. For this reason,
following Pode,"™ " we call « the critical angle.

3.3 Tangential Drag Force

Over the range of velocities encountered in laying and recovery the
drag coefficient C'p in equation (6) is essentially constant. However, the
corresponding coefficient for the skin friction force associated with Vi,
the component of flow along the cable, is not constant. For the cable of
smooth exterior (cable No. 1), the expression

Dr = CAoVir d, (12)

with €; = 0.055/(Nx)"", was found to give good agreement with the
experimental data, as is shown by Fig. 5. Here Dy is the skin friction or
tangential drag force per unit length; V, is the relative velocity of the
water with respect to a cable element given for straight-line laying by

Vi=V.— Vcos g (13)

where V., is the cable pay-out rate; p is the mass density of water; and
N isthe Reynolds number defined as N = V, L/», where » is the kine-
matic viscosity of water. The data of Fig. 5 are for 100 foot lengths of
cable towed in fresh water at a temperature of 60°F.
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Trom (12) we find

0055 SNV
T 9 P om

This expression indicates that Dr for smooth cable depends on the in-
clined length of the cable as well as the relative tangential velocity V..
The form of (13) suggests that the flow tangential to a smooth cable is
similar to flow past a smooth plate. In such flow a turbulant boundary
layer develops which grows in thickness with distance from the leading
edge, resulting in a length dependence of the type shown by (14). Since
Fig. 5 refers to 100 foot cable lengths, (13) is probably not accurate for
the magnitudes of L occurring in deep-sea laying, and should be used
only to obtain the order of magnitude of C; .

Dy md. (14)

9

8
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6 /
] /1
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b
l/ o
3 L
1 }/‘g
o] MT
o] 1 2 3 4 5 6 7 8 9 10
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W SIN &

Fig. 5 — Experimental values of the tangential drag force for cable No. 1
compared with those obtained by equation (12).

For the cable with conventional jute outer covering, (cable No. 2),
it was found that

Dy = 001V (15)

fits the experimental data obtained by towing test (Fig. 6). Whereas in
(15) the constant 0.055 is dimensionless, the constant 0.01 in this equa-
tion has the dimensions necessary to give Dy in units of pounds per foot
when V, is in feet per second. We note that for this cable Dy is inde-
pendent of the length of the cable.



DYNAMICS AND KINEMATICS OF SUBMARINE CABLE 1141
8

7 Vi
o TOWING TEST VALUES

1%
EQUATION (15) —k‘p/
3

Dr
W SIN &
IS

o] M
o] 1 2 3 4 5 6 7 8 9 10
TOWING VELOCITY IN KNOTS

Fig. 6 — Experimental values of the tangential drag force for cable No. 2
compared with those obtained by equation (15).

The ratio of Dy to the tangential component of the cable weight force
is given by Dr/w sin «. Equations (14) and (15) indicate that even for
small values of « of the order of twelve degrees, Dy/w sin « is of the order
of 6 per cent for relative tangential velocities 7, of 1.0 feet/sec. In many
situations V, will be less than this value, and we can neglect Dy compared
to w sin a. As we shall see later, this approximation greatly simplifies
the differential equations of the two-dimensional stationary model.

Historically, the question of the variation of Dr with V7, is of some
interest. In one of the early papers of 1858 Longridge and Brooks’ as-
sumed a velocity squared dependence. In 1875, W. Riemens’ attacked
this assumption stating that Dy actually varied linearly with V, . There
ensued a debate in which many bitter words but few experimental data
were displayed.’ In view of our present knowledge that the skin friction
force, even in the simplest case of flow past a smooth plate, is the result
of complicated boundary layer phenomenon, the existence of this con-
fusion is not surprising.

3.4 Sinking Velocities and Their Relationship to Drag Forces

The studies of submarine cable forces in 1857 and 1858 preceded
modern fluid mechanies by many years. To characterize the hydrody-
namie forees acting on cable the early investigators used sinking or
sellling velocities rather than the more recently conceived drag coeffici-
ents. The transverse sinking velocity u, was defined as the terminal ve-
locity attained by a straight, horizontal length of cable sinking in water.
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Similarly, the longitudinal sinking veloeity v, was the terminal velocity
of a cable length sinking with its axis constrained to be vertical. If for
a given cable the drag forces are functions only of velocity, the pa-
rameters w, u, , and v, , together with the laws of variation of the drag
forces with velocity, completely define the hydrodynamic behavior of
the cable. Since sinking velocities are still used in submarine cable tech-
nology, it is of interest to relate them to the more modern drag coeffici-
ent viewpoint.

In the case of transverse or normal flow around the cable, the variation
of Dy with the square of the relative transverse velocity gives (Vu/u,)’ =
Dy/w, since at a transverse velocity equal to the sinking velocity the
unit transverse drag force is w. Substituting for Dy from (4) we find

2w\
Uy = (C,,pd) = H. (16)

Thus, the transverse sinking velocity u, is identical with the hydrody-
namic consant H. We can therefore alternatively write the approximate
relationship (9) as

aV = us, (17)

where « is in radians and w, and V are in knots.

For the tangential or skin friction flow along smooth cable, the sinking
velocity concept is inadequate because the unit tangential drag force
Dy varies with length as well as with the relative tangential velocity
V.. However, for cable with the conventional jute exterior (cable No.
2), we have (V,/v,)’ * — Dy/w and from (15) the vertical sinking velocity
v 18 05 = (46.1w)"""*, where v, is in knots.

We note in passing that the cable does not, as is sometimes supposed,
sink vertically to the bottom at the transverse sinking velocity w, .
Actually, the term “vertical cable sinking rate’ is ambiguous. There are
in fact two vertical sinking rates which may be important. Although
both these rates are normally approximately equal to u, neither is identi-
cal to it.

Relative to the earth, the resultant velocity Vz of a cable element has
two components: a horizontal component of the magnitude of the ship
velocity, and a component inclined at the angle « of the magnitude of
the cable pay-out rate V,. These are shown in Iig. 7. The component
Vet of Vi, given by Viw = V. sin @, is the rate at which a cable
element sinks vertically. For a laying depth k, the time r 1t takes for a
cable element to sink to bottom is therefore + = h/V, sin «. This time
would, for example, tell one how long it takes a lightweight repeater,
integral with the eable, to reach the ocean bottom.
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Fig. 7 — Illustration of vertical cable sinking rates.

On the other hand, consider the intersection of the cable configuration
with a vertical line (Fig. 7). In the time £, as the ship sails a distance
Vi, the intersection moves from A to A’, a distance V¢ tan «. Hence the
cable configuration in this sense sinks vertically at the rate V tan a,
and the time 6 for the configuration to reach bottom in a depth & is
6 = h/V tan . One may be interested in how long it takes after the ship
has passed over an ocean bottom anomaly P’ (Fig. 7) for the cable con-
figuration to reach the anomaly. This is just the time 4.

Hence, the vertical sinking rates V. sin @ and V tan « can both be of
interest. At the usual ship speeds, sin @ & tan a & a &~ w,/V. Further
V. normally differs little from V. Hence, both these rates are indeed
normally approximately equal to u, .

3.5 General Solution of the Stationary Two-Dimensional M odel

Assume that each cable element is traveling along the stationary cable
configuration with the constant speed V. . Starting at the ocean bottom
let s be the arc length along the stationary configuration. We define s to
be positive in the direction opposite to the direction of travel of the cable
elements. So, as I'ig. 8 indicates, in laying, positive s is directed from the
ocean bottom toward the ship, while in recovery the situation is reversed.
We let 8 be the angle between the positive s direction and the direction
of the ship velocity.

RECOVERY

Fig. 8 — Definition of coordinates for the two-dimensional stationary model.
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Fig. 9 shows the forces acting on an element of the cable, with tension
at the point s being denoted by 7. The normal drag force per unit length
Dy may, by virtue of (4) and (5), be written in the form ’

_ CppV* d
2

Dy sin 4 | sin @ |.

Tt is necessary to introduce here | sin 8 | in order for Dy to have the proper
sign for all 8. We note, however, that if V. = V, we have from (13)
Vi=V.— Vecos = 0.

Hence in normal laying and recovery the unit tangential drag force
Dy is always in the positive s direction.

wAS

Tig. 9 — Diagram of forces acting on a cable element.

The forces acting on an element produce a centrifugal acceleration
V.2d@/ds. Hence, summing forces along the directions ¢ (tangential) and
n (normal), dividing by As and sending As to zero, we obtain

2
(T — pV.o?) gg + CDPQV d sin@|sing| — wecosf = 0, (a)
(18)

T + Dy —wsin @ = 0, (b)
ds

where p. is the mass density per unit length of cable.

It is seen at the outset that # = « is a solution of (18a). It is in fact
the important straight-line solution which has been discussed in Sec-
tion 3.1.

If 6 # a and Dy varies only with V, we may divide (18b) into (18a)
and integrate to obtain the solution for 7' in the following form:

(T - Pclfcz) _ fa (’LD Si”—E - DT) df (a)
0 ?

In ———= = - s T d
Ty — p Ve w(cos £ — A sin & |sin £1)
( p ) u' ( ‘f £ t £ (19)
p = Qoo dV_cos @ (h)
2w sin® o

where T is the tension corresponding to the angle 6, .
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At the cable touchdown point on the ocean bottom only two conditions
are possible. If theangle # isnot zero or 7 there, the cable tension 7' must
be zero. Otherwise a finite tension would act on an infinitesimal length
of cable, producing an infinite acceleration. Hence, either the tension 7'
must be zero or the angle § must be zero or 7. The first case normally
implies a straight-line configuration (see Appendix A), which has al-
ready been discussed. In other cases, we define T} as the tension at the
touchdown point, and we let 6, be zero or =, whichever is appropriate.

If x, y are coordinates in the translating (x, ¥) frame of a point along
the cable configuration, then

dx = ds cos 6,

dy = ds sin 6.
Combining these relations with (18a), we have
0 . 2
s = Y

0, W(cos £ — A sin £ | sin £ |)

. ! (T - PcVnz) cos E
=y, wlcos £ — A sin & [sin £ |) dg, (b) (20)

dt. (c)

@ 2 .
_ (T — pVe) sin &
vy = j;ow(cosf— A sin ¢ | sin £ )

Equations (19) and (20) are an integral representation of the complete
solution of the basic two-dimensional model. In general, the integrals
appearing in these equations cannot be evaluated in terms of elementary
functions, and the solution must be obtained by numerical integration.
For towing problems where the pay-out velocity is zero, Pode' has tabu-
lated these numerical integrations using the approximation that Dy has
certain constant values. However, in towing problems the direction of
Dy is opposite to what it is in normal laying and recovery problems. Be-
cause small magnitudes of Dy were used, these tables nevertheless usually
give adequate results in laying and recovery situations as well. At the
same time, for submarine cable problems, other approximations allow
more convenient ways of evaluating the integrals of (19) and (20).

For example, it is more accurate simply to assume that Dz is zero. As
we indicated in Section 3.2, this approximation gives a negligible devia-
tion from the exact solution if the relative tangential velocity ¥V, is small.
Furthermore, in this situation we obtain from (18b)

dr dy

— =wsinf = w2
ds ds’



1146 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1957

and hence the tension at the ship 7', is very nearly
T, = Ty + wh, (21)

where h is the depth at the touchdown point. Thus, if the tangential drag
force is negligible, the tension at the ship is essentially the bottom ten-
sion plus wh, regardless of the nature of the normal drag forces. This is
in fact a form of a well-known theorem which, as we shall see in Section
7.1, applies in the three-dimensional case as well.

In the next sections we make further simplifications of the general
solution for the specific cases of laying and recovery.

3.6 Approximate Solution for Cable Laying

On long cable lays ship speeds are normally of the order of 4-8 knots,
with accompanying values of the critical angle a of the order of 10°-30°.
For these small values of o, the assumption of zero tangential drag to-
gether with some mathematical approximations allow further simplifi-
cations of the general solution. These simplifications are derived in de-
tail in Appendix C; here we indicate the results. The angle 6 which the
configuration makes with horizontal is closely given by

tang = tan & 1 — [To/(To + I .
L+ [To/(To + §)I" tant 5 |

2 2 (22)

where 7 and Ty are dimensionless depth and bottom tension defined by
7 =y/h,
T(] = Tn/’ﬂ)h.

Here we use the cable angle « in the sense of Section 3.2, namely, as a
parameter characterizing the hydrodynamic cable properties and the
ship speed. The constant v is in turn defined by
@2 - sin® )
sinfa

(23)

For small o, tan" («/2) is negligible and v is large. Further

0< o o
Tn+'y ’

Hence, the denominator in (22) is very nearly unity and 6 approaches
the critical angle a at small values of §, even for relatively large values
of T, of the order of three or four. Thus in the laying case, the cable
configuration is very close to a straight line except for a short distance
at the ocean bottom.
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In Appendix C it is further shown that for small «
S =1L + KT(]/'UJ,

(24)
X = Lcos a + A'y/w.

Here S and X are the distance along the cable and the horizontal dis-
tances respectively from the touchdown point to the ship (Fig. 11),
L and L cos a are the corresponding distances for straight-line laying at
the same ship speed, and « and A are functions of the eritical angle o
which are plotted in Fig. 10. To illustrate the use of (24) we consider the
following.

Ezxample: Cable No. 2 is being laid without slack onto a rough bottom
from a ship moving at six knots. If the pay-out rate is decreased so the
slack is 1 per cent negative, what is the subsequent rise of the tension
with time at the ship?

This is really a transient problem. However, we shall try to get an idea
of the average behavior of the cable by assuming it passes through a se-
quence of stationary configurations. Also, we assume that because of
the rough bottom there is no slippage of the cable along the ocean floor.

If 6 is the amount of negative slack and V the ship speed, then in a
time £ an amount V(1 — 8)¢ of cable will have been paid out. This amount
plus the inclined length L will equal the amount contained in the curve
AOC (Fig. 11). We then have

L4+V(Q—-8t=S8S4+7Vi— (X — Lcosa). (25)
Substituting (24) into this equation and solving for Ty we find T, =
(w/(A — x))8Vt and that by (21) the tension at the ship is given by

T, = wh + —°— §V1.
A— kK

0.4 T 0.016
(a) (b) /
0.3 ! // 0.012
K i ¥ /
0.2 | 0.008
// < /
7 /
0.1 0.004
/ //
o 0
0 5 10 15 20 25 0 5 10 15 20 25
o IN DEGREES ot IN DEGREES

Fig. 10 — Variation of x and A with the eritical angle.
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Fig. 11 — Cable geometry at a time ¢ after the onset of negative slack.

For eable No. 2 a ship speed of six knots corresponds to a = 11.7 de-
grees. By Fig. 10, this corresponds to A — « = 1.4 X 107, Also w =
0.705 1bs/ft by Table I. We get therefore

T, = wh + 3000 (Lhi) L.
min.
Thus, according to this calculation the tension in this example rises at
the extremely rapid rate of 3000 lbs/min. We note also that the rate of
tension rise is here independent of the depth h.

In the model which has been postulated, the cable is inextensible; that
is, it is assumed not to stretch under load. Because the difference between
the lengths of AOC and the sum of the linear segments AD and DC (Fig.
11) is small, one might suspect that the effect of cable extensibility in
the present example is important. We can account for this effect in a
crude way by assuming that the curve A0C has an additional length cor-
responding to the stretching caused by the load 7' acting over the length
L. For a cable made of a single material, the stretching would be ToL/EA,
where E is the Young’s modulus of the material and A is the cross-sec-
tional area of the cable. In analogy to this we denote the extensile rigidity
of the cable by EA, using the bar to indicate that £4 is actually a single
number obtained directly by measuring the extension of a length of cable
loaded in tension. With this notation (25) becomes

ToL
A

L+V(1—6)1+F- =8 4+ Vt — (X — L cos a),

and repeating the previous computation we find

w

T. = ’LUh + wh Vt.
]

FA sin a

It is to be noted that in this computation, unlike the inextensible case,
the rate of tension rise depends on the depth h.
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TFor conventional helically armored cable, one cannot define a single
extensile rigidity because of coupling between pulling and twisting. Thus,
how such a cable extends under tension depends on how it is restrained
from twisting at the ship and at the ocean bottom. Instead of trying to
determine these end restraints, we consider the limiting cases of no re-
straint and complete restraint to twisting. Data supplied by P. Yeisley
indicate the values of £A4 for cable No. 2 in these conditions to be those
given in Table I (Section 3.2). If we take b = 6,000 and 12,000 feet, we
find with these values that

h = 6000 feet:
T,

It

wh 4 220 (lb/min)¢ (twist unrestrained),
wh + 640 (lb/min)¢ (twist restrained),
h = 12,000 feet:
T, = wh + 120 (Ib/min)¢ (twist unrestrained),
= wh + 360 (Ib/min)¢ (twist restrained).

Comparing with the inextensible computation, we see that the extensi-
bility markedly reduces the rate of tension build-up. Nevertheless, even
for the case of no restraint to twisting at a depth of 12,000 feet the rise
rate is a relatively high 120 1b/min. Hence, at least over a rough bottom,
the tension would quickly indicate the onset of negative slack, although
the sensitivity of this indication would decrease with increasing depth.

3.7 Approximate Solution for Cable Recovery

Tig. 8 illustrates how cable is in present practice recovered from the
ocean bottom. The cable is in front of the ship as it is brought in over the
bow, and the ship pulls itself along the cable. In this process the cable
tends to guide or lead the ship directly over its resting place on the ocean
bottom.

It is clear that during recovery by this procedure the tension at the
ocean bottom is not zero and the cable configuration is not a straight line.
TFurthermore, in this situation the normal component of the water drag
force Dy pushes down on the cable instead of buoying it up as in the case
of laying. This in turn implies a higher tension at the ship during re-
covery than during laying.

1f the tangential drag is neglected, the tension at the ship 7', during
recovery is given in dimensionless form by (see Appendix C)

T. — 1 ™
_ [m,ln ., Cos @ + cos a, ] (26)

T, 1 — cos a cos a.
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Fig. 13 — Variation of exact and approximate tension factors for recovery
of cable No. 2.
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where T, is the tension factor defined by T, = 7T',/wh and v is given by
(23). Equation (26) is plotted in Fig. 12 in the form of T, versus « for
various surface incidence angles a, (Fig. 8). It is seen that the recovery
tensions are in fact considerably higher than the laying tension of approx-
imately wh.

To illustrate the smallness of the error of neglecting the tangential
drag forece in this computation, we have plotted the approximate and
exact curves of T, versus ship velocity for cable No. 2 in Fig. 13. The
dotted curves have been computed from (26), while the solid curves have
been obtained by substituting Dz from (15) into (19) of the general solu-
tion and integrating numerically.* (The curve labeled Shea’s recovery
method is discussed in the next section.)

The distance along the cable S and the horizontal distance X from the
touchdown point to the ship cannot be expressed in a simple form as in
the case of laying. However, they can be obtained by numerical integra-
tion from (20). The results of this computation for Dy = 0 are shown
in Figs. 14 and 15.

How Figs. 12, 14 and 15 can be used is illustrated in the following ex-
ample.

* The standard form of Simpson’s rule was used for all the numerical integra-
tions mentioned in the paper. In each case the interval of integration was chosen
fine enough to obtain at least three significant figure accuracy.

5
4 \\
\ § \\\
3\\§.\\ —r— 0lg = 40°
NN S e i i
2 %\\\: i —— 50°
QQ:\:A‘-——-_ sof
‘ IS -
=
R
010 20 30 40 50 60 70 80 90

& IN DEGREES

Fig. 14 — Variation of the horizontal distance to the touchdown point during
recovery with the critical angle.
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Fig. 15 — Variation of the distance along the cable to the touchdown point
during recovery with the eritical angle a.

Ezample: A cable weighing 0.7 1b/ft in sea water and having a hydro-
dynamic constant H of 70 degree-knots, is to be picked up from a depth
of two thousand fathoms. If the ship speed is one knot what is the cable
tension at the ship for surface angles a, of 40°, 60°, and 90°? How far in
front of the ship and how far along the cable will the touchdown point
be for these values of a, ?

As indicated by (9), an H value of 70 degree-knots together with a ship
velocity of one knot yields e = 70 degrees. Fig. 4 yields in turn a =
60 degrees. Entering Fig. 12 with this value of a, we can obtain 7'/wh.
In this example the wh tension for a depth of two thousand fathoms is
8 400 Ib, and hence the values of T';/wh and T, are as follows:

g T,/wh T.-

40° 485 40,700 Ibs
60° 2.58 21,700 Ibs
90° 1.53 12,900 1bs

From Fig. 14 we get in turn for the horizontal distance from the ship to
the touchdown point

a, X/h X
40° 2.65 5300 fathoms
60° 1.56 3120 fathoms

90° 0.66 1320 fathoms
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Finally, from Fig. 15 we get for the distance along the cable to the touch-
down point

as S/h S

40° 2.88 5760 fathoms
60° 1.95 3900 fathoms
90° 1.33 2660 fathoms

3.8 Shea’s Allernative Recovery Procedure

The high tensions which result in the usual recovery operation require
slow ship speeds of the order of one knot or less if the cable is not to be
broken. One wonders if it is possible to mitigate these tensions and thus
speed the recovery process. J. F. Shea discovered that this can theo-
retically be done by allowing «, to exceed 90°, thus establishing the
straightline configuration (Fig. 16). As in laying, the normal drag forces
in this scheme support the cable, rather than push down on it as in con-
ventional recovery. However, in contrast to the laying situation we have
Vi=V,4+ V cos a. Thus V, is the sum of V, and V cos « instead of
their difference and Dy is not necessarily negligible. 'urthermore, the
direction of D7 is now such as to increase rather than decreasethe tension
over the wh value. Hence, instead of (2), a summation of forces along the
cable yields T, = wh 4+ DL, and the tension at the ship can be consid-
erably higher than wh. A curve of 7', as a function of ship speed for cable
No. 2 is shown in Fig. 13 with the label “Shea’s recovery method”. This
has been computed for the case of haul-in speed equal to ship speed by
means of the above equation and (15). It is seen that the tensions com-
puted for this method of recovery, at least for the cable No. 2, are never-
theless considerably smaller than those which occur in the usual recov-
ery procedure. It would seem that the straight-line recovery technique
could fruitfully bear further examination, especially for application to
the recovery of long stretches of cable.

__-PRESENT

ROPOSED
g -~ 4+~ PRACTICE

BY SHEA

‘;

Fig. 16 — The present and Shea recovery methods.
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IV. EFFECTS OF SHIP MOTIONS
4.1 Tensions Caused by Ship Motions

In the basic stationary model a perfectly calm sea is postulated.
However, in reality, wave action gives rise to a random motion of the
ship which in turn induces variations in cable tensions around those cor-
responding to the basic model.

To analyze this effect, we assume that the mean forward velocity of
the ship and the mean pay-out or haul-in rate are constant and that the
mean tension at the ship and the mean direction of the cable as it enters
water are those given by the stationary model. In a reference frame mov-
ing with the mean velocity, we resolve the ship displacement into a
longitudinal component Py (Fig. 17) along the mean or stationary direc-
tion and a transverse component @, perpendicular to the stationary di-
rection.

Fig. 17 — Longitudinal and transverse components Py and Qo of the ship
displacement.

Intuitively, one might expect the tensions caused by the transverse
displacement Qo to be negligible compared to those caused by the longi-
tudinal displacement P, . An analysis we have carried through in fact
yields this conclusion. Because of its complexity and length, this analysis
and the model upon which it is based are given in Appendix D. The re-
sults for the case of harmonic variation of §p with time indicate, at least
for cable No. 2, that the tension associated with the transverse com-
ponent @, is indeed negligible for all except ship motions so extreme as to
rarely occur.

In addition, this analysis indicates that for the transverse disturbance
Qo , the amplitude of the responding transverse cable motion decreases
exponentially after the cable enters the water because of the damping
action of the water drag forces. The ‘“half-life” distance for cable No. 2,
that is, the distance along the cable at which the amplitude of a harmonic
transverse motion is damped to one-half its surface value, is plotted in
Fig. 18 as a function of the period of the motion for various depths h and
ship velocities V. The striking feature of these figures is the rapidity of
this damping. The analysis thus shows for cable No. 2 that the eflect of
a transverse disturbance penetrates only a short distance into the water.
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Fig. 18 — Variation of half-life distance of eable No. 2 with the period of
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As far as cable tensions are concerned, the important ship displacement
then is the longitudinal component P, directed along the stationary
direction of the cable. The analysis of Appendix D leads to the basic
one-dimensional wave equation

p 1

9r_ 298 _ 27

dx? ¢ o 0 27)
for the description of the longitudinal motion. In this equation p is the
deviation in longitudinal displacement from the mean pay-out or haul-in
displacement, and the remaining symbols are defined as (Fig. 17)

distance from the mean ship position along the stationary cable

:r =
configuration,

t = time,

&' = EA/pe .

The additional tension 7', due to ship motion is in turn given by
— 0
T, = EAE. (28)
dx

As in the example of Section 3.6, we have again assumed that by using
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in (28) the limiting values of 774 obtained by complete restraint to twist-
ing and no restraint to twisting during pulling, one can obtain bounds
on the actual displacements and tensions.

The solution of (27) under arbitrary boundary conditions can be ob-
tained from standard textbooks. Probably it is most representative to
assume the cable is semi-infinite. That is, although damping of the cable
is normally so small that we neglect it in (27), we may assume, because
of the cable’s great length, that the damping is sufficient to cause com-
plete decay of a disturbance initiated at the ship, and that such a dis-
turbance is not reflected from the ocean bottom. Under this condition
the additional tension T, is given by

——dP
Ty = =V EAp, a’ (29)

where P = Py + P, with dP,/dt beingin turn the increment in pay-out
rate or decrement in haul-in rate from the mean. For cable No. 2, Table I
(Section 3.2) indicates that

vV EAp, = 220 Ib/ft/sec (twist unrestrained),
= 400 1b/ft/sec (twist restrained).

Two examples will make clear the application of (29).

Ezample 1: Steady-Stale Laying or Recovery in a Regular Seaway.

Assume that in a frame of reference traveling at the mean horizontal
ship velocity ship surging (to and fro forward motion) is zero and the
combined heave and pitch motion is normal to the ocean surface and is
given by

w =Asin21rt—.
T

If the period  is 6 seconds and the amplitude A is 15 feet find for cable
No. 2,

8) (T,)max for laying at a constant pay-out rate and at a ship speed of
6 knots,

b) (T,)max for recovery at a constant haul-in rate and with a surface
incidence angle of 60°.

In both cases (a) and (b), the deviation P, in pay-out or haul-in rate is
zero, hence P = Py = W sin a, , and (dP/dt)mex = (27/7) A sina, . Since
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cable No. 2 has a hydrodynamic constant H of 70 degree-knots, we have
in case (a)

a, = 11.7 degrees and (%) = 2.12 ft/sec.

From (29) we get therefore
(T'p)max = 466 1bs (twist unrestrained),
848 lbs (twist restrained).
In case (b) we have a, = 60°, (dP/dt)max = 13.6 ft/sec, and hence
(Tp)max = 2,990 lbs (twist unrestrained),
= 5,430 lbs (twist restrained).

I

During recovery by conventional methods the surface incidence angle
a, is in general much larger than that which occurs during laying. The
above example points up that one can expect correspondingly larger
ship motion tensions during recovery than during laying in the same
sort of seas. Since the stationary tensions are also much larger during
recovery, recovery is the condition for which the strength of the cable
should be designed.

In this example we have considered a regular seaway, something which
does not exist in nature. Recent work in the application of the theory of
stochastic processes to the study of ocean waves and ship dynamics
promises to develop into a realistic deseription of the behavior of ships
at sea."” When such a description becomes available, we shall be able to
obtain a better estimate of the magnitudes of ship motion tensions.

As far as data presently available are concerned, the maximum storm
condition vertical velocity at the bow or stern recorded by the U/.S.S.
San Francisco during her research voyage of 1934 was 22 feet/sec.”
Since this ship was roughly the size of a cable ship such as the H.M{.S.
Monarch, this figure might indicate the order of the maximum velocities
to be expected in cable practice. In terms of our example, for six knot
laying this vertical velocity would imply

T,

980 lbs (twist unrestrained),
1,780 1bs (twist restrained).

Il

For recovery at a surface incidence angle of 60°, it would imply in turn
T, = 4,200 lb (twist unrestrained),
= 7,600 Ib (twist restrained).
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However, it is to be cautioned that these numbers are merely indicative
and might differ considerably from those which occur on a particular
cable ship.

Example 2: Brake Seizure

While laying cable No. 2 at six knots ina perfectly calm sea, a sudden
seizure of the brake occurs. What is the resulting initial rise in tension?
Because of the calm sea we have Py = 0. Therefore
dP
v Py = —V cos a, .
With the value of V = 6 knots and a corresponding o, of 11.7° (see Ex-
ample 1) we have dP/dt = 9.9 ft/sec and hence from (29)

T, = 2180 Ibs (twist unrestrained),
= 3970 lbs (twist restrained).

These values of 7', pertain only to the transient values occurring while
the tension wave is being transmitted to the ocean bottom. If the seizure
in this case occurred at a depth of three thousand fathoms, the time of
transit to the ocean bottom would be only of the order of nine seconds.
After reaching bottom our initial assumption of no reflection from the
hottom would be violated and (29) would no longer hold. In reality the
cable tension would continually increase at the ship and reversing ship
engines or some other action would be required to avoid rupture of the
cable.

V. DEVIATIONS FROM A HORIZONTAL BOTTOM
5.1 Kinematics of Laying Over a Bottom of Varying Depth

Ocean bottom topography is not everywhere flat and horizontal as
postulated in the basic model. In the Mid-Atlantic ridge, for example,
there exist bottom slopes of thirty or forty degrees. In other places sub-
marine canyons with almost vertical sides have been found. Further-
more, where the bottom is steepest it is most likely to be rocky and
craggy since erosion tends to smooth out a sandy or muddy bottom.
Therefore, it is important to know how the cable should be paid out to
cover a bottom of varying depth. To help determine this, we extend
here the stationary model to the case of a non-horizontal bottom.

In Section 3.1 we indicated that if the cable tension at the touchdown
point is zero the configuration according to the basic model is a straight
line, regardless of how the cable is paid out. If the cable is paid out with
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slack with respect to the bottom, the zero touchdown tension condition
is fulfilled. Hence, under the proper slack pay-out, the cable geometry
and, as we shall see, the cable kinematics are particularly simple.

Essentially, we must consider two deviations from the horizontal
bottom, namely, downhill or descent laying and uphill or ascent laying.
We consider these situations in turn, confining ourselves to bottoms of
constant slope since any bottom contour can be approximated by
straight-line segments.

To cover a descending bottom, the cable pay-out rate must exceed the
ship speed, Fig. 19(a). To cover an ascending bottom, the angle of in-
cidence « of the cable, which as we have seen in Sections 3.1 and 3.2 de-
pends only on the ship speed, must exceed the ascent angle v, Fig. 19(b).
Otherwise, the situation shown in Fig. 19(c) develops. Hence the critical
parameters are pay-out speed and ship speed.

e Sl —

() pescent

i —>

(b) ascent(a> )

e Sl —>

(C) ASCeNT (7 >a)

Fig. 19 — Cable geometry during straight-line descent and ascent laying.

During descent laying we see from Fig. 20 that in a time ¢ an amount
of cable equal to @ + b must be paid out. Hence the required pay-out
rate V. is (a -+ b)/t. But by straightforward trigonometry
a+b sina+sing

{ sin (e + )

where 3 is the angle of descent and « is the straight-line incidence angle.

V.= v, (30)
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Fig. 20 — Kinematics of straight-line descent laying.

In accordance with usual terminology we define the slack e as
e= (V. — V)/V. (31)

We shall think of the slack as being composed of two parts: a fill f, which
is the amount of slack required for the cable to cover the bottom, and an
excess, equal to e — f, which will normally be laid to provide a margin of
safety. Substituting V. from (31) into (30) we get the expression for the
fill f. The result can be transformed to the form

8_ f
2 24f

The quantities «, 8 and f are normally all small quantities and we may
make the approximations

tan = tan (32)

2

Q

2

—
£
=1
ol IR

Q

WKi— NI IR

™)
-
—~

TFor @, 8 < 30° and f < 0.06, the error in each of these approximations
is less than 3 per cent. Hence, with good accuracy we write (32) as

(33)

where a and 3 are expressed in radians. Further, we have from (9) that
« in radians is very nearly « = H/V, where H is in radian knots. Sub-
stituting this expression into (33), we get for the fill
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_Hs
Finally, using this expression for f in (31), we arrive at*
. H
ve-v =3, (35)

Thus, the tnerement in required pay-out rate is essentially a function
only of the descent angle 8 and is independent of ship speed.

In the case of an ascending bottom for which & > v, Fig. 19(b), posi-
tive bottom slack may be obtained with a pay-out of less than the ship
speed. The allowable decrement in pay-out rate is given by
Hy
? b
that is, the same as the required increment for ascent laying. Likewise,
the fill f in this case is simply f = — (Hy/2V).

The only way to avoid the situation shown in Fig. 19(c) where o < v
is to sail slowly enough to maintain an incidence angle « greater than
the angle of rise v. By (9), we have for most laying speeds aV = H.
With good accuracy the condition & > y thus implies

H

Vo< =. 37
¥

V-V.,= (36)

Therefore, for a given rise vy the limiting ship speed is simply H /v.

5.2 Time-Wise Variation of the Mean Tension in Laying Over a Bottom
of Varying Depth

In the cases where the cable is paid out with excess onto a bottom of
constant slope, the variation of the mean tension at the ship with time
is easily computed. During descent laying the increase in depth & after
a time ¢ is by elementary trigonometry (Fig. 20)

_ sinasing Vi
sin (e + B8)
Hence, the rate of rise of the mean shipboard tension is

dl  wé _ sinasinf wV .

dt t  sin (a4 8) (38)

Similarly, during an ascent lay for which the bottom is less steeply

* Note that in (33), (34) and (35), H may be replaced by the numerically identi-
cal transverse settling velocity wu, (see Section 3.4).
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inclined than the cable (« > %), the rate of decrease in shipboard ten-
sion is

aT sin « sin 7y

dt sin (a —'y)wv'

Like negative slack laying on a flat bottom, the variation of tension
with time depends greatly on the frictional characteristics of the bottom
in cases other than the above. We therefore limit ourselves to situations
where the cable does not move with respect to the ocean floor. This case
might be approximated by rough bottoms, where the cable might wedge
itself between rocks.

A nomograph giving a rough estimate of the rise of mean tension with
time when a cable becomes completely suspended is worked out in Ap-
pendix E. In deriving this nomograph it is assumed that the cable takes
on a sequence of stationary configurations. This assumption is probably
reasonable if the time span of the tension rise is large compared to the
time of passage of a tension wave from the ship to ocean floor and return,
which as mentioned in Section4.1 is of the order of 18 seconds. However,
because of this assumption and others mentioned in Appendix E, we
regard the tension variation computed by the nomograph only as a crude
approximation.

Fig. 21 shows the mean ship-board tension versus time computed by
means of the nomograph for various slacks ¢, where e is defined by (31).
The values which were used for the other parameters entering the calcu-
lation were

wh _ 31 %107
EA
a = 12°

Also shown on this curve is the tension rise computed for the case of
laying down a vertical slope without excess. The rise for this case is given
by (38) with 8 = 90°. It is seen that as the slack e is increased the curves
for a complete suspension approach the 8 = 90° curve. Indeed, it can be
shown that under the assumptions made in computing Fig. 21 the g8 = 90°
curve gives a lower bound on the tension rise with time in the case of a
complete suspension. A tension rise rate greater than the 8 = 90° rate
is thus an indication of unsatisfactory covering of the bottom.

In the case of too rapid a ship speed resulting in a < y (Fig. 19¢) re-
straint of movement of the cable along a rough bottom would cause the
tension on the high side of the crest to be zero. There would thus be a
sudden drop in tension corresponding to the sudden decrease in depth
at the touchdown point after the cable was laid over the crest of the hill.
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F(igd 21 — Variation of tension with time when cable No. 2 is completely sus-
pended.

On the other hand, in the case of a frictionless bottom, the removal of
the supporting water drag forces would cause the cable to seek a catenary
equilibrium position on the low side of the crest. But in doing this, the
cable would drag itself over the crest, with an accompanying increase in
shipboard tension.

Thus for the case of a bottom rise steeper than the cable inclination
(e < %) either an increase or a decrease of tension with time is possible,
depending on the nature of the bottom.

5.3 Residual Suspensions

If the cable is not paid out rapidly enough, or if the ship speed is ex-
cessive, the cable will be left with residual suspensions after it has been
laid. To get an idea of the possible magnitudes of the tensions accom-
panying these suspensions, we consider here some numerical examples
pertaining to cable No. 2. As before, we assume for definiteness the ex-
treme case of a bottom rough enough to prevent movement of the cable.

In Fig. 22 is shown the profile of a 35 fathom (210 feet) increase in
depth with a maximum slope of 45°. This profile was obtained from
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fathometer records of the Mid-Atlantic Ridge provided by Professor
Bruce C. Heezen of the Lamont Geological Observatory. Laying down
this slope at a ship speed of six knots requires a slack of 8.5 per cent (see
Section 5.1). If the slack were only 5 per cent, the successive cable con-
figurations as calculated by the methods of Appendix E would be those
shown in Fig. 22(a).* The cable would touch bottom after 2.6 minutes,

t IN MINUTES: —_—

(b) ascent

Fig. 22 — Successive cable configurations during a 35-fathom descent and as-
cent %ﬁ.y of ecable No. 2 at a 6,000-ft depth with an assumed 5 per cent slack and
6-knot ship speed.

leaving a residual suspension with a half-span of 480 feet and a tension
of 525 lbs. The mean tension at the ship would correspondingly increase
by 525 lbs during the 2.6 minute time interval. In even moderately
rough seas, this tension change could be obscured by the ship motion
tensions.

Consider this profile next to represent an ascending lay under a ship
speed of six knots. Fig. 22(b) shows the initial ({ = 0) and residual cable
configuration. Because of the small incidence angle of the initial straight-
line shape, the residual half-span of the catenary is a quarter of a mile
(1320 feet) long, and the accompanying residual tension is 2,710 lbs, or
roughly that which normally occurs in laying at a depth of ¢ of a nautical
mile. At the ship, there would be a decrease in the mean tension of 130
1bs. corresponding to the 35 fathom decrease in depth. Again, a tension
change of this magnitude would be difficult to discern because of ship
motion tensions.

* We have further taken the ratio wh /EA tobe3.1 X 10-? in this computation.
However, the results are very insensitive to change in the wh /EA ratio.
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If the above 35 fathom change occurred at a depth of say three thous-
and fathoms, a very sensitive fathometer would be required to detect it.
Thus, although complete restraint of cable movement along the bottom
is an extreme and unlikely condition, the above examples indicate that
long residual suspensions can oceur with essentially no manifestation at
the ship, especially in deep water.

VI. CABLE LAYING CONTROL

6.1 General

We have seen that the mean cable tension at the ship reflects the
amount of slack which is being paid out and how the cable is covering
the bottom. However, in most cases this reflection is not sensitive. For
example, the tangential drag force Dr varies with V., the longitudinal
velocity of the cable relative to the water. In theory, as (2) shows, one
can therefore determine the amount of slack being paid out from ship-
board tension measurements. For cable No. 2, we have plotted in Fig.
23 the variation of the mean tension at the ship as a function of slack for
a ship speed of six knots and a depth of two thousand fathoms. At three
per cent slack the tension is 8,240 pounds, while at six per cent slack it
is 8,020 pounds, a difference of only 220 pounds. This amount of tension

9000

8600 h
4w
8200

7800 [—

7400

TENSION IN POUNDS

7000
(o] 1 2 3 4 5 6 7 8 9 10

PER CENT SLACK

Fig. 23 — Variation of shipboard tension with per cent slack for laying cable
No. 2 at a ship speed of 6-knots in a depth of two thousand fathoms.

could be easily obscured by the effect of ship motion. Thus, to measure
slack accurately by relating it to cable tensions one would have to know
the depth and cable parameters very precisely and, in addition, would
need a very efficient filter to separate out the ‘“noise’ tension caused by
ship motion.

Similarly, it has been shown that residual suspensions can occur with
essentially no reflection in the tension readings at the ship. Hence, al-
though tension readings can give a valuable check on how the cable is
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covering the bottom, it would seem difficult for them to provide exact
enough data for the control of cable laying.

At the same time we have seen that if the bottom contour is known
in advance, then for a given ship speed one can compute the required
cable pay-out rate. Also with foreknowledge of the bottom, one can
anticipate steep bottom ascents and decrease the ship speed accordingly.
Such a purely kinematic attack on the cable laying problem would seem
more fruitful than an attack which depends on measurements of ship-
board cable tensions.

Possibly the simplest way of measuring the bottom contour is by
means of a fathometer located at the ship. Since the cable ship is nor-
mally far forward of the touchdown point of the cable, one could in
theory obtain in this manner the required advance knowledge of the
contour. In present practice, a taut piano wire is used to obtain the
ground speed of the ship. We examine briefly the accuracy of this method
in the next section.

6.2 Accuracy of the Piano Wire Technique

The taut wire is laid simultaneously with the cable, but under a con-
stant mean shipboard tension. If the bottom is perfectly horizontal, the
speed of the wire coincides with the ground speed of the ship. However,
when the bottom depth is variable and the wire is laid up and down hill,
the wire’s pay-out speed deviates from the ship speed. By (31), it is seen
that the error in the ship speed which is indicated by the wire is just
equal to the slack e with which the wire is paid out. This slack, which
may be positive or negative, can in turn be estimated by the methods of
the previous sections. '

Consider the beginning (denoted by (1) in Fig. 24) and end (denoted
by (2) in Fig. 24) of a downhill lay of the piano wire. As before we neglect
the tangential drag force. Then, the condition that the tension at the ship
remains constant gives, by (21),

(To)1 + why = (Ty): + why (39)

where the subscripts 1 and 2 refer to the configurations at the beginning
and end of the downhill lay. If &is the average slack or error of the piano
wire during the descent, then (1 4+ &7V is its average pay-out rate, and
we have by Fig. 24,

he — Ry

S+ 1+ 9Vt = sin B + Se, (40)
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where S; and S; are lengths along the cable from the touchdown point
to the ship. Also, from Fig. 24

X, + Vt = (he — hy)/tan B + Xo. (41)

Fig. 24 — Piano wire configurations at the beginning and end of a descent lay.

Equations (39), (40), and (41), together with the general equations
(Section 3.6)

S = .h + K?E,

sin o w
(24)

LN /)

tan o w

allow one readily to solve for the average error  in the piano wire indi-
cation of ship ground speed. The result is

_ _Sina—i—sinﬁ—xsinasinﬂ

sin (@ + B) — A sin e sin 8 (42)

For the small values of « and 8 which normally occur during the laying
of the piano wire, the terms X sin « sin 8 and « sin « sin 8 are negligible.
Hence, the average error & is thus very nearly

. _sina+sing

sin (@ + B)
which, as (30) indicates, coincides with the amount of fill which would
be required to lay downhill with the straight-line or zero touchdown

tension configuration. Equation (43) is in turn closely approximated by
(Section 5.1)

1, (43)

E = =

af )
* (44)

SIE
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Similarly, for ascent laying of the wire on a bottom which rises less
steeply than the inclination of the wire (19b), we get

sin e — sin ¥ + « sin a sin ¥ -
= : 0 B - l: (4;))
sin (¢ — ) + A sin a sin y
which is very nearly
e —ov _ _Hv (46)

2 2V

Thus, in both the above cases, the error in the piano wire technique can
be closely obtained by assuming that the configuration of the wire is a
straight line during ascent and descent laying. This is not surprising
since, as we saw in Section 3.6, the deviation from the straight-line con-
figuration during piano wire laying is normally small.

Because of its smooth exterior, the normal or transverse drag coefficient
of the piano wire probably can be obtained from published curves for
flow past a smooth right circular cylinder as shown in Appendix B. I'or
typical 12 gauge (0.0290 inch diameter) piano wire, these curves yield
a valueof C'p of 1.45 and an H value of 25.0 degree-knots. However, these
values of Cp and H must be considered tentative until confirmed expe-
rimentally. '

Knowing the wire’s H value, we can compute the error of the ground
speed caused by descent and ascent laying of the piano wire by means
of (44) and (46). The result of this computation for H = 25.0 degree-
knots is shown in I'ig. 25.

When the ascent angle of the bottom exceeds the incidence angle of
the wire, suspensions result and the error cannot be computed without

o ° | - !
i} -7 =20°
=
: e (a) E (b)
S_6
Zo -6 I
=uw
1

ZE DESCENT LAYING 15Nl ASCENT LAYING
gg 4 20° _ \]
£2 \ 10°\ \
u:s 10° \ \e-LIMITING LINE ot=
2%, . 7.5‘\ A
(V] o' \ \
5 5\ -“-—__\:-—-. 5\\
a — 23

o -‘-.._‘_

0
0 2 4 6 8 10 o0 2 4 6 8

SHIP SPEED IN KNOTS

Fig. 25 — Error during descent and ascent laying of 12-gauge piano wire.
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knowledge of the frictional properties of the bottom. For an H value of
25.0 degree-knots, (37) indicates that suspensions will occur for ship
speeds V greater than V = 25.0/y, where V is in knots and the ascent
angle v is in degrees. Hence, for a typical laying speed of 6 knots, ascent
angles greater than 4.2 degrees will cause suspensions of the piano wire.
These magnitudes indicate that suspensions of the piano wire probably
actually develop in practice.

It is seen from Fig. 25 that for the usual small ascent or descent angles,
the piano-wire technique is quite accurate, while for large bottom slopes
it can be considerably in error. Again, however, if the bottom contour is
known in advance, these errors can be estimated in the cases plotted in
Fig. 25 and therefore can be corrected for. In this manner, the piano
wire could be improved to give accurate ground speeds in all two-dimen-
sional situations, with the exception of the case of a suspension caused by
a too steeply ascending bottom. Such suspensions can be avoided only
by maintaining a sufficiently slow ship speed. However, as seen by the
small computed H value of 25.0 degree-knots, the ship speeds required
to avoid piano wire suspensions on uneven bottoms are probably pro-
hibitively slow. Hence, for steeply ascending bottoms it is likely that
some other means of determining the ship ground speed is necessary.

VII. THREE-DIMENSIONAL STATIONARY MODEL
7.1 General

Thus far we have assumed that the cable lies entirely in the plane
formed by the ship’s velocity vector and the gravity vector. Because of
the symmetry of the cable cross-section, this assumption seems reason-
able.* However in certain cases, as for example in the presence of ocean
cross-currents, the assumption of a planar configuration is clearly un-
tenable. We consider therefore the case where the cable configuration
is not necessarily planar but is still time independent with respect to a
reference frame translating with the constant velocity of the ship. In
analogy with previous terminology, we call this the three-dimensional
stationary model.

Assume there is a constant velocity ocean current in each of a finite
number of layers. Let the vector V, denote the ocean-current velocity
in a reference layer. In the stationary situation the velocity of the cable

* Because of asymmetries caused by the helical armor wire or because of minor
out-of-roundness, it is conceivable that a sidewise drag force might develop which
would cause the cable to move out of the ship’s velocity-gravity plane. For a re-

port of experimental observations of such yawing in wire stranded cables, see Ref-
erence 11.
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configuration is everywhere the velocity of the ship, which we denote by
the vector V. Hence the velocity V' of the water with respect to the
cable configuration in the reference layer is

V."= ﬁw—i_(_f}): f/:w.— 17

Further, in this layer we choose a set of coordinate axes £, , ¢ translating
at the velocity V as follows: The £ axis has the direction of — ¥/, while
n is measured vertically upward, and ¢ is perpendicular to » and £ so
that the axes £, %, { form a right-handed system. A plan view of this
configuration is shown in Fig. 26. We have denoted the angle between ¥V
and V, by 8, while the angle between the ¢ axis and ¥ is denoted by ¢.
(The distances d and e refer to a subsequent section.) To describe the
cable configuration with respect to the &, #, ¢ axes, we use the spherical
polar coordinates 8 and ¢ shown in Fig. 27. (The{,u,v» vectors are dis-
cussed in Appendix F.)

Fig. 26 — Plan view of the coordinate system for the three-dimensional sta-
tionary model.

As in the two-dimensional case, we resolve the velocity of the water
with respect to a cable element in the reference layer into a component
¥y normal to the cable and a component V', tangential to the cable, and
associate with Vy and V, the drag forces Dy and Dy . The resulting
differential equations, which are derived in detail in Appendix F, are the
following:

d

_ 2
(T Pch ) ds

+ wA'(cos® ¢ sin* @ + sin® ¥)"* cos ¢ sin® — weosf = 0, (a)
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(T — p.V.)) cos @ g—f (47)
+ wA'(cos® ¢ sin’ 8 + sin® ) sinyg = 0, (b)
£1—|—Dgy—wsinﬁi=0, (c)
ds

where A’ = CppdV"*/2, and V' is the magnitude of V.
In addition, connecting the coordinates £(s), n(s), and {(s) of a point

s along the cable with the angles 8 and ¢ we have the geometric relation-
ships

di(;) = cos 6 cos ¢, (a)

dn(s) _ Gin g, (b) (48)
ds

di(s) _ -
I = —cos gsiny. (c)

Two important general results follow from (47) and (48). For one, if
the tangential drag force Dy is negligibly small, (48b) substituted into
equation (47¢) yields upon integration

T = To+ wn (49)

where T} is the tension at o = 0. Hence, if 7 is measured from the ocean

177

cl

-
t DIRECTION OF
CABLE

—
v

¢

Tig. 27 — Definition of the spherieal polar coordinates # and ¢ and the unit
vectors ¢, u, and v.
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surface, and if at the bottom (y = —Ah) the tension is zero, the tension
at the ship is essentially wh, regardless of the nature of the normal
drag forees. Since in most laying situations for present cables, the tan-
gential drag force can be reasonably neglected, this fact provides a con-
venient over-all check on the laying process. That is, if the cable is being
laid with excess, the tension at the ship for any stationary cable con-
figuration, planar or non-planar, should be essentially wh. Any marked
increase of tension over the wh value necessarily means the bottom ten-
sion is non-zero and insufficient cable is being paid out.

The second important result is derived in Appendix F. This result is
that if the bottom ocean layer in our model is devoid of cross currents,
and if the bottom tension is zero, then, for the boundary conditions which
are normally observed, the cable configuration in the bottom layer is a
straight line. Further, this straight line is in the plane formed by the
ship’s velocity vector V and the gravity vector. Hence, for example, in
laying with excess in a sea which contains surface currents, the cable
configuration in the lower, current-free portion will be a straight line in
a vertical plane parallel to the resultant velocity of the ship. The laid
cable will be parallel to the ship’s path, but displaced a certain distance
from it. Thus, because the lower portion is a straight line, our previous
results about the kinematics of straight-line laying still apply. Only they
now are pertinent to the displaced bottom contour rather than to the
contour which lies directly beneath the ship.

7.2 Perturbation Solution for @ Uniform Cross-Current

Cross-currents are commonly confined to a region near the ocean sur-
face. It is of interest therefore to determine for such surface currents the
distance e (Fig. 26) which the laid ecable will be displaced from the path
of the ship. In Appendix I we consider the problem for a cross-current of
uniform but comparatively small velocity. In addition, we determine the
distance d (Fig. 26) back of the ship at which the cable leaves the upper,
cross-current stratum and assumes the straight-line configuration it has
in the lower stratum. Let us assume for the sake of reference that the
resultant ship velocity V' is due east, and that the cross-current V, is
inclined at an angle 8 to the north (Fig. 26). The resultant velocity V'
of the water with respect to the cable in the surface stratum has the
magnitude therefore of

V' = [(V = Vicos 8)° + (Vasin 8)°, (50)

and is inclined at the angle ¢ from due west, where
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Vesing 1)

t = -
an ¢ V — Vycos 8 ?

Associated with V’ we have a critical angle &' which is given approxi-
mately by H/V’ or exactly by (10) or (11).

In terms of ¢, o, and a the analysis of Appendix I yields the following
values of d and e.

Y ' Aa b — W 3 2““’“‘])

d=h (ctna ~ Yot a W |:1 (1 R‘) (a)
’ 1\ etn?a’

e = Wectna’ (1 _h ;, P tan! of [1 — (1 - %) ]) , (b)

where Aa = a — o is the difference of lower and upper stratum critical
angles, &' is the depth of the upper, cross-current stratum and h is the
total depth.* Curves from which d and e may be evaluated are given in
I'igs. 28 and 29 in dimensionless form. To illustrate their application we
consider the following.

(52)

12
T P
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//
10 /,
'
=== ASYMPTOTE FOR h/h—=
8
qa'i_:: o°
- = .
0% T 120
~ 12° — 142
4 —
16°
T 140 L pen p—— __:.__....
— e — S g PR g
—'—'.
2 /“4/ e—T
]
20
// //
0
0 0.1 0.2 0.3 0.4 0.5 0.6

h/ h
Fig. 28 — Distance the laid cable is offset from the ship’s path.

7:771[71772'\71);)endix F the equation of the space curve formed by the cable in the
upper stratum is also given.
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Fig. 20 — Distance behind the ship at which the cable enters the lower stra-
tum,

Frample: A ship is laying cable No. 2 at a depth of 6,000 ft at a re-
sultant ground speed of 6 knots due east. There is a one knot cross-cur-
rent 600 feet deep running 30° east of north. Iind e and d.

Here B = 60° and we obtain from (50) by a simple computation
V' = b.57 knots. Also since for cable No. 2 H = 70 degree-knots,

k'/h = 600/6000 = 0.1,
o = 70/5.57 = 12.3 degrees.
By interpolation, we find from Figs. 28 and 29

1le
oh

1 d 1
(tan o F) Ag =~ AT

Equation (51) yields in turn ¢ = 0.156 radians, and A« is given by

Ao = :/__0 — 7?0, = —0.6 degrees = —0.010 radians.

Il
[Sv]

7,

Hence, we have

e =36h'e =27 X 600 X 0.156 = 253 ft,

d=n [ﬁﬁ — 4.7/.\0:] = G000 [4.59 + 4.7 X 0.010] = 2800 ft.
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APPENDIX A

Discussion of the Two-Dimensional Stationary Configuration for Zero
Bottom Tension

We assume again that the tangential drag D, depends only on the
relative tangential velocity Vr, and we consider in a 7', 8 plane the solu-
tion trajectories of equations (18). These trajectories satisfy the equation

ar (sin 8 — Dr/w)
A0 cosf — Asin g |sing |
and are periodic in # with a period of 27. In Fig. 30 we have plotted the
solution trajectories qualitatively for (¢« — m) = 8 £ (a 4 w). It is seen
that the trajectories are either the vertical straight lines § = a, 0 = a £«
or they lie completely within one of four regions, labelled I, IT, III, or
IV, which are bounded by these vertical lines and the horizontal line
T = p, V.. The trajectory § = « corresponds to the straight-line laying
configuration, while the trajectories 8 = a == = correspond to Shea’s
straight-line recovery method.
Examine now the trajectories in Regions II and III at a point of
which 7 = 0. As J. I'. Shea has pointed out, these trajectories all lie
below the line T = p. V.. On the other hand, the trajectory # = « con-

(T — p.Vs), (53)

@

R

o -1 o o+r

_ Fig. 30 — Qualitative representation of the solution trajectories of the two-
dimensional stationary model.
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tains all values of 7'. Hence, according to the stationary model, the only
cable configuration for laying which has the value T = 0 and values of
T = p. V. is the straight line inclined at the critical angle «. The mag-
nitude of p,V.' is small. For example, for cable No. 2 paid out at six
knots p.V. is roughly six pounds, and for conditions approximating
stationary laying the observed tensions at the ship are in practice always
many times the p,V,” value. For such magnitudes of shipboard tensions
and a zero bottom tension, the two-dimensional stationary model thus
yields the straight line as the only possible cable configuration.

However, the empirical fact that 7' > p.V. does not guarantee that
the shipboard tension must be greater than p.V,". We might somehow
contrive to lay at a zero bottom tension with T < p,V.” and with the
cable in one of the non-straight line configurations of Regions IT or IIT.

Consider the eable configuration lying in Region II. From Fig. 7 it can
be seen that the vertical velocity of a cable element is given by

dy _

dit
where y is measured upward. Hence, of the possible trajectories for which
the bottom tension is zero only those for which the bottom cable angle
fo is between zero and = correspond to cable laying. For region 11, there-

fore we need consider only the trajectories in the range 0 = 6, < « at
Ty = 0. From (20c¢) the maximum value of y,. for these trajectories is

given by

o peV s jﬂ“ sin £
Y ="k \{cos& — A sin® &)

% wsin g — Dr(n)
X exp |:_' ¢ w(cosn — A sin?p) d"]} dé.

—Vyat = — V. sin 8,

(54)

Let (D1)w be the maximum value of Dy, 0 £ 4 < a. With D7 set equal
t0 (Dg)m , the right-hand side of (54) gives an upper bound on ¥, . This
substitution further allows one to evaluate the right-hand side of this
equation in terms of standard integrals. The result yields the following
upper bound on ¥m:

Y < 2.1

?

P(:Vc2 1
w 1 —7r

where

- (D T)m

wsin o
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In general, this upper bound will be much less than the laying depth.
For example, for cable No. 2 being laid with 6 per cent slack at 6 knots
¥m < 12.5 feet. That is, the cable configurations corresponding to Region
IT do not reach the ocean surface. Hence these solutions of the stationary
model do not in general satisfy all the required boundary conditions and
can be discarded.

Similarly, in Region I1I, the laying trajectories for which 7'y = 0 are
in the range @ < 6y = . Consider those for which 8, < =/2. We get for
these trajectories

Yo = oV [ sin £
Sl w Jg, |(Asin®¢ — cos§)

¢ wsin n — Dz(n)
xow [~ [ ity ey

(55)

where 7,2 1s the value of y at 8§ = x/2. Let m be the minimum value of
sin 7 — (Dr(n)/w) in the range @ < 7 = /2. If, as in the usual case,
m is positive, we can obtain an upper bound on Y., by replacing
sin 4 — (Dr(n)/w) by m in the right-hand side of (55). By this means
we find that

p Vo 2(1 + cos® @)

Y
Yz < w  mtan a/2

For cable No. 2 being laid with 6 per cent slack at 6 knots this relation
yields 7,2 < 1,100 feet. So in the usual laying depths, which are many
times greater than y,,, the configurations in Region III for which
Ty = 0 correspond to a value of @ at the surface greater than =/2, or to
cable being paid out in front of the ship during laying. It is doubtful
whether such configurations would be stable and, at any rate, doubtful
whether cable would ever be laid in such a manner. Hence, we conclude
that these Ty = 0 solutions of Regions II and IIT will in general be
mathematical curiosities, and that the only realistic laying solution of
the stationary model for which the bottom tension is zero is the straight
line 6 = a.

APPENDIX B

Computation of the Transverse Drag Coefficient and the Hydrodynamic
Constant of a Smooth Cable from Published Data

From (6) of Section 3.2 we obtain the relationship
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Viina _( 20 )"
Vicos a (Cupd =, (56)

where H is the hydrodynamic constant. Also, we define the Reynolds
number for flow normal to the cable in the usual way;

_ dV sin «

Ng=—"-—, (57)
v
» being the kinematic viscosity of water. For smooth cable we now as-
sume that the drag coefficient €', depends on Nz in the same way as for
flow around a smooth cylinder of infinite length. Experimental data for
this relationship, namely,

Cn = CD(NR) (58)

are available in the literature and have been collated by Eisner."’

Tor a given velocity V, (56) through (58) represent three equations
for the unknowns a, C'p , and Ny . In general, the solution of these equa-
tions depends on V, thus contradicting the assumption made in Section
3.2 that C'p , and therefore H, are constants independent of V. However,
for sufficiently large V we can expect the resulting « to be small so that
v/cos @ &~ 1. In this case (56) and (57) combine to give

2wd 1
01) = —F I\Tnz ] (59)
which together with (58) yields two equations for Cp and Np that are
indeed independent of V. In laying, V will normally be large enough for
this approximation to hold.

Equations (58) and (59) are in turn easily solved graphically by find-
ing the intersection on log-log paper of the curves, Cp versus Ng,
that these equations represent. Since p and » are properties only of the
water, we see that (', is a function only of the product wd of the unit
weight of the cable times its diameter. In Fig. 31 we have plotted the
resulting values of Cp for wd ranging from 1077 to 10 pounds. For this
computation we have assumed sea water at 32°F with an assumed density
of 1.994 slugs per cubic foot and a kinematic viscosity of 2.006 X 10°
ft*/sec.

For other than large values of V, (56) through (58) can be readily
solved if one interchanges the roles of « and V, that is, if one considers «
as given and V as unknown. Equations (56) and (57) can again be com-
bined in this case to give
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_ 2'wd(108ai
Pl’2 Ng’

and with wd cos a a known number, (60) and (58) can be solved for Cp
and N as before. Thus, one can obtain Cp from Figure 31 by merely
reading wd cos a rather than wd on the abscissa. Knowing C'» one can
solve for V from (56).

Co (60)

wd IN POUNDS (= ==)
3010_7 2 4 68107% 2 4 88105 o 4 6 8107 5 a4 6 8l073
\\
'ﬁ\
™
\\
2.0 <L
\~‘
C il
° L5 == St
s
— ~Ne o
1.0 4/ ~ o _
0.9 = f =4
0.8
-] 2 £
102 4 68 5 2 4 68, 4 68, 4 68

wd IN POUNDS ( )

Fig. 31 — Variation of Cp with wd for cables of smooth exterior.

The results of such a computation are shown in Table II for cable
No. 1. For V > 1.5 knots the experimentally determined H is 64.0 de-
gree-knots. The corresponding computed values of H, ranging from 67.4
to 70.0 degree-knots, compare favorably with this experimental value.
Over the entire range of V, from 0.25 to 10.00 knots, the variation in H
is about 4 per cent. This small variation makes the assumption of Section
3.2 that H is a constant for all V appear reasonable, especially since we
can only hope to use this computation in a preliminary design before
the hydrodynamic properties of a cable are established by experiment.

TasLe II — CoMmpuTED VALUES OF Npg,
Cp, axp H For CasrLE No. 1

V (knots) Np Cp H (deg.-knots)
0.25 1.25 X 108 0.935 67.5
0.50 2.50 0.922 70.0
1.50 5.20 0.965 67.8
3.00 5.80 0.985 67.5
10.00 6.05 1.000 67.4
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In Table IIT we have indicated computed high-velocity H values as
a function of the unit weight w and the diameter d of a cable. Table IV
shows the computed high-velocity C'p and H for various gauge piano
wire. The American Steel and Wire gauge scale is used in this tabulation.

TasLE III — CompuTED VALUES oF THE HYDRODYNAMIC
Constant H v DEGreE-KnoTs For SMooTH CABLE

Submerged Diameter in Inches

Weight in
Ib/1t 0.5 015 1.00 125 | 1so | 175 | zo | 25 | 30 | 40
0.1 4.5 | 44.2| 37.9 33.7 30.6| 28.1| 26.2] 23.2 21.0| 17.9
0.2 75.9 61.1 52.3 46.4 41.9| 38.5 35.8) 31.6| 28.5 24.4
0.3 91.7 73.6 62.9 55.6 50.2| 46.1| 42.8| 38.0] 34.4| 29.7
0.4 104.7 83.9 71.5 63.1 57.1| 52.5| 48.9| 43.5| 39.6| 34.3
0.5 115.9 92.6 78.9 69.8 63.3| 58.3| 54.4| 48.5| 44.3| 38.3
0.6 125.8 | 100.4 85.6 75.9 68.9| 63.6| 59.5| 53.2| 48.5| 42.0
0.7 107.6 | 91.9 81.6 74.2| 68.7| 64.2| 57.4| 52.4| 45.3
0.8 114.2 97.8 87.0 79.3| 73.4| 68.6| 61.3| 55.9| 48.4
0.9 120.6 | 103.4 92.1 84.1| 77.8] 72.7| 65.0/ 59.3| 51.3
1.0 126.5 | 108.7 97.1 88.6| 82.0| 76.6)| 68.5 62.5] 54.1
2.0 153.3 | 137.0 | 125.0] 115.7| 108.2| 96.7| 88.2| 76.3
3.0 167.6 | 152.9| 141.5| 132.3| 118.2( 107.9| 93.3

TasLe IV — ComrureEp Cp AND H VALUES oF Piano WIRE

(Am. SoIEE Wire) Dia. (inches) Cp I (deg- knots)

0 0.009 2.49 10.7

5 0.014 1.91 15.2

10 0.024 1.56 22.1

15 0.035 1.39 28.2
20 0.045 1.31 33.0
25 0.059 1.24 38.7
30 0.080 1.14 47.2
35 0.106 1.02 57.1
40 0.138 0.970 67.1

APPENDIX C
Some Approvimate Solutions for Laying and Recovery
c.1 Laying

We assume that the tangential drag and the centrifugal forces are
negligible. Then, since for laying 0 < @ < =, (18a) by virtue of (21) be-
comes

(E]—]—y)@—iwlksinzﬂ—cosG:O. (61)
w ds



DYNAMICS AND KINENATICS OF SUBMARINE CABLE 1181

Let the origin of an x, ¥ coordinate system be at the cable touchdown
point (Fig. 8). Further, let @ be the x coordinate of a point along the
cable configuration and s the corresponding distance along the cable
from the origin. If we define

A=gs—u, (62)
then
dA  ds dx 0
Eg—@—@‘—tﬂﬂi, (63)
and
dy .
g5 = Sin 6. (64)
By means of (63) and (64), (61) transforms to
=, -~ dAd'A | 1 (dA)* (@)’ 1 _ .
where we have in addition introduced the non-dimensional variables
To = T()/’w.h,
A = A/h,
¥ =y/h

Here h is the ocean depth at the touchdown point. Using the condition
that 8 = 0 at ¥ = 0, which implies dA/dy = 0 at y = 0, we get upon
integrating (65)

dA @ 1 — [To/(To + 9] 1
27— ang — p (66)
Y L+ [To/(To + )" tant 5|

where

.2
_ 2 —sin" «
sin® «

v (67)

The usual range of the critical angle « is between 10 and 30 degrees. Also
T
To+ 49~

Therefore, we approximate the denominator of equation (67) by unity.

0=
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With the boundary condition that A = s — 2 = 0 at y = 0, we thus
obtain

1
A1) =8 - X =tand [ (1= (T/To+ 910" e, (69)
where S and X are the dimensionless values of s and x at the ship.
Next we let

w=38+ 7, @ = w/h.
Then we have
& _ | /B
dj di’

and, as can be seen from (66) through (68),
1
o) =8 + X = thg j; (1 — [To/(To + E)],)_% dé. (69)

For convenience we define u and R by

— TU
YT, g

Ty
R=1+T.}'

In terms of u and R (68) and (69) become
- — a " (1 — u"’)*
A(l) = T, tan 5 fn — du, (70)

- a [* du
w(l) = To Ctn'é j; m. (71)

Further, integration by parts gives

[OT - By [ [ P

Combining the above three equations and making the approximation
(1 — R =~ 1, we find
(1 - “;) B(1) + 3 tan” 5 (1) = (1 + Th) tan 5 (72)

Thus A(1) and &(1) are related, and we need evaluate only one of the
quantities numerically by means of equation (70) or (71) in order to
compute both A(1) and &(1), and hence S and X.
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The singularity at © = 1 makes the numerical evaluation of the inte-
gral in (71) cumbersome. Therefore we consider the evaluation of A(1).
But for convenience of numerical caleulation we write (70) as

1
Al = =T, tallgf 1 - u")%d(l — u),
2 Je

u

and integrate by parts to get

- a wt Ym [fl—u  u

We note again that (1 — R")} & 1. Further, essentially all of contribu-
tion to the integral in this equation occurs near w = 1 because of the
large value of y. On the other hand, the values of T, which are of in-
terest will normally be smaller than unity. Hence R, the lower limit, will
normally be less than one-half, and thus will be outside of the region of
significant contribution to the integral. Therefore, we can take the in-
tegral to be a constant for a given a. Denoting this integral by n and
combining these considerations we obtain

Al) = tra.n% - %n tan g To. (73)

Tinally solving for S and X from (68) and (69), we find
3 1

+ «T,

sin

X= 1

+ AT,

tan «

which are a dimensionless form of (24). For brevity we have written

1(2 _TY(y _ a_7, b
x—2< ll 2( 1>n|ct112 2ntan‘),
—1 2 _ — — » J— —_— _)
A ——2(— 1 2’ (2] l)n (..tllz —i—znta.n2 .

Since the integral » and the constant v depend only on e, the constants
x and N are also functions of « only. We have evaluated n by numerical
integration and have plotted the resulting values of xand A — xin Fig. 10.

ool

c.2 Recovery

In the conventional recovery situation we have as boundary conditions
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=0 at y

I

OJ
(74)
f = —a, at y = h,
where o, is the incidence angle of the cable at the ship (Fig. 8). With
these boundary conditions, the development leading to (66) yields (26)
for the relationship between shipboard tension T, and the incidence
angle a; .

To evaluate S and X, the values of s and x at the ship, we use (19),
(202) and (20b). Again we simplify by assuming Dr = p.V,' = 0. Fur-
ther, since for recovery —r =< # < 0, we may write | sin § | = —sin £
This gives

O o ff sin ]
8= fu./; [cosf—l—Asinﬂfe}(p 0 COSn+ASin2TJdﬂ a5,

s = [T cos £ It sin g :|
Y g R T S  L. SR, P
X o [cosf—l—AsngexP o COSn-|—ASln2'qdn de
The dimensionless bottom tension Ty is computed from (26). The inte-

grals appearing in (75) have been evaluated numerically. The results
are shown in Figs. 14 and 15.

(75)

APPENDIX D
Analysis of the Effect of Ship Motion
p.1 Formulation of the Differential Equations

To analyze the effect of ship motion on cable tensions, we use the model
shown in Fig. 32. We assume the cable is a perfectly flexible and elastic
string whose motion is planar. The distance L along the cable from the
ship to the point of entry into the water is taken as constant, and the
longitudinal damping as negligible.

Qo

n q
g_HMHH«—T ot
i' X<———|

AIR

WATER

Fig. 32 — Model used for the analysis of ship motion tensions.
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Unlike the solution of the basic stationary model, the complete solu-
tion of this model is not simple. To make the problem tractable, we shall
make further simplifying assumptions. Although these assumptions may
seem reasonable, they must be ultimately justified by comparison of
experience with predicted results.

Force diagrams of a differential element of cable are shown in Figs.
33(a) and (b) for the two regions, air and water respectively. The no-
tation is

p = longitudinal displacement of a point of the cable,

¢ = transverse displacement of a point of the cable (in air),

n = transverse displacement of a point of the cable (in water),

# = the stationary angle, i.e. the angle the cable configuration makes
with the ship velocity in the absence of ship motion,

¢ = deviation from the stationary angle — positive in the clockwise
direction,

s = distance along the stretched cable,

z = distance along the unstretched cable (in air),

¢ = distance along the unstretched cable (in water),

w, = weight per unit length of cable in air.

/ \“’_"‘
4 (b) water

Fig. 33 — Diagram of forces acting on a cable element in air and in water.
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Summing forces along the directions ¢ (tangential) and » (normal) shown
in Fig. 33, dividing by Az (air) or A{ (water) and letting Az — 0 and
Af — 0, we obtain the following equations of equilibrium*
Adr:
Te, — we cos (8 — @) = p(que cOS @ — Pue 8D @),

) (76)
T, + w,sin (§ — @) = pe(gee SIn @ 4+ pu COS @),
Water:
Ter + Dys; — wcos (6 — @) = pu(qu cos ¢ — Py sin @), a7
Ty + wsin (6 — @) = pc(qu sin ¢ + qu c0s ).

Here, p. denotes the mass per unit length of the cable in air. As is known
from hydrodynamic theory, in order to accelerate a body through a
fluid, one must change not only the momentum of the body but that of
some of the surrounding fluid as well. Thus the body has a virtual or ap-
parent mass in addition to its intrinsic mass. In the first (77), the equa-
tion of equilibrium in the normal direction in water, we accordingly use

ow , given by

Pu =pc+gdzp

as the intrinsic plus virtual mass per unit length of cable moving through
water. The quantities d and p are the outer diameter of the cable and
mass density of the water, respectively, and the quantity (r/4)d’p is
the virtual mass of a unit length circular eylinder moving transversely
through water.

We take for the normal drag force per unit length

— Cppd

Dy 3

Va | V. (78)

Here Vy is the normal component of velocity of the water relative to
the cable, i.e.,
Vw = Vsin (§ — ¢) + u;sin ¢ — 5 cOS ¢, (79)

and Cppd/2 is a constant.
The quantities s and ¢ are given by the following geometric relations
which can be obtained from Fig. 33:

* We use the subscript notation for differentiation throughout this section,
e.g., ¢z =dp/dx.
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5= [0+ )+ 2)) (80)
tan ¢ = ny/(1 + =), (81)

with similar expressions obtaining for the eable in air.
The tension 7' in turn is given by the Hooke’s Law or stress-strain re-
lation

1
T

T
T

EA{[A + p.)" + @1 — 1},  (air)

— ) - (82)
EA{(1 4+ p)" 4+ o] — 1}. (water)

As we indicated in Section 4.1, we shall assume that the extensile rigidi-
ties EA corresponding to complete restraint and no restraint to twisting
will give the limiting values of the ship motion tension.

Equations (76) through (82) form a complete system in terms of the
independent variables x or ¢ and {. Formulating boundary conditions in
terms of the coordinate x (or {) is awkward. This coordinate is measured
along the unstretched cable so that a disturbance applied at the ship is
applied at different x’s as the cable is paid out. At the same time, if the
velocity of the pay-out is small compared to the significant wave veloeity
of the cable then we can plausibly neglect the paying out effect. As will
be shown subsequently, in the problem at hand there are two significant
wave velocities, roughly corresponding to transverse and longitudinal
motion. The first of these is of the order of 200 ft/sec, while the second
is of the order of 5,000-10,000 ft/sec. On the other hand, the pay-out
velocity is of the order of 10 ft/sec. Hence, we take the pay-out velocity
to be zero. This allows us to use (76) through (82) without further trans-
formations and to identify z and ¢ as coordinates fixed in the translating
reference frame.

p.2 Perturbation Equations

We assume that the motion is a small perturbation about the undis-
turbed configuration of our model. To determine which terms of the
differential equations are important in this case, we adopt the following
procedure. Let

M = max[(Ps + P1)* + Q'

where Py and @, are displacements of the cable at the ship, and P, is the
variation of the pay-out displacement from the mean. The quantity
e = M /L will normally be less than unity, and for no ship motion will be
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zero. We write
P0+P1=df(f),
Qo = bg(t),

where f(t), g(f) are some bounded functions of time and a and b are
constants. We assume that for given f(¢) and ¢(¢), T, p, and ¢ vary
analytically with e, namely

T=T0+€T1+82T2+ ttty
g =eqn+cpt+ -, (83)
Yy =pu+6p1+ezpz+ ey,

with counterparts for the submerged cable. The stationary transverse
deflection is further assumed zero, and therefore the series for ¢ contains
no ¢ term. Substituting, for example, (83) into (82) for air and equating
like powers of ¢, we find

Ty = mpu: f (3)
Tl = le: ] (b) (84)
2
T A qlz
Tz = A [ph + —-‘——‘1 + pngl . (C)

Equation (84a) of this sequence shows that only longitudinal displace-
ments are associated with stationary tensions, while (84b) indicates that
for small ship motions cable tensions are independent of the transverse
component of ship motion. To compute the effect of transverse motion,
(84¢) shows that terms of the order ¢ in p and e in ¢ must be considered.
We assume further that 1 + p. = 1, since py. is the order of magnitude
of a strain.

Equations (83) and (84) substituted into (76) yield with this approxi-
mation

weecosa =0, (a)

_ . (85)
EA Pozz — Pa Pott + Wy 51N @ = 0; (b)
1
ez — (_3;2 Qret = 0, (a')
1
Plzz — 0—12 Dt = 0, (b) (86)

1 1
Pozz — — P = — Qeifies — Qreizz , (C)
C1 Cy
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where

2

Cy

Il

:E;i/ﬂﬂ )
622 = To/pa.

For non-zero w, and a # w/2, (85a) cannot be satisfied. This is a conse-
quence of the assumption of o = 0. With po,, = 0, equation (b) implies
in turn that Ty = constant, which agrees with our model. For the sub-
merged part of the cable, the equations do not yield a constant Ty and
thus contradict the assumed model. However, on the assumption that
the transverse motion is confined to a region near the surface, we con-
sider T to be constant in the submerged part of the cable as well. We
thus arrive at

1
e — O — yme — ek 0 (a)
1
Pur = o3 pre = 0, (b) (87)
1 1
Poar — - Pae = —5 My — My, (c)
C1 Cy
where
522 = Tﬂ/pw ]
72
é = Cn—pdl—cosasin a,
Ty
2
Yo GV

as the differential equations governing the motion of the submerged
cable. The constant ¢; is the velocity of propagation of a longitudinal
wave in the cable, while the constants ¢, and & represent the propagation
velocities of a transverse wave in air and water respectively.
D.3 Solution of the Perturbation Equations
We write
p(0, 1) = Po(t) + Pa(d),
Q‘(OJ t) = Qo(t)7

and take as boundary conditions
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m(0, ) = M, (a)
pa(0, 1) = 0, (b) (88)
ql(or t) = QU/B- (C)

That is, we apportion all of the longitudinal boundary motion to py,
and all of the transverse boundary motion to g, . Equations [(84b), (86h)
and (87b)] then give the complete tension due to the longitudinal com-
ponent of ship motion to first order. As mentioned in the text, this ten-
sion 1s easily obtained from standard references, and is also the greater
part of the ship motion tension.

To determine the tensions due to transverse ship motion, we solve
(86¢) and (87c) for boundary conditions (88b) and (88c). In addition,
we have the transition conditions

q (L) = m(0, 1), (a)

g (L, 1) = 11(0, 1), (b) (89)
P (2 = L,8) = pl§ = 0,0), (e)

P (L, 1) = px(0, 1), (d)

which follow if we assume that at the point of entry into the water the
cable is continuous and the tensions are finite and continuous.

We consider only the problem of the tensions associated with a har-
monic steady-state transverse disturbance. Equations (86a) and (87a)
show the transverse response to this disturbance to be independent of
the longitudinal motion to first order. The first-order transverse motion
in turn can be thought of as a forcing action on the second order longi-
tudinal motion, as (86¢) and (87¢) indicate. This suggests the program
we follow to compute tensions. Namely, we first determine the first-
order steady-state transverse response, then the second-order steady-
state longitudinal response which is excited by the first-order transverse
oscillation, and finally, by (84c) the resulting tension caused by trans-
verse motion.

.4 Transverse Response
At the ship we assume a harmonic forcing function
Qo) = A cos wt, (90)

and we introduce complex exponential representation
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¢ = Re Qi(z) e,
m = Re Hy(f) ¢,

where the factor ¢™* will be henceforth suppressed.

The solution of (86a) and (87a) for the steady state may then be
written
B; exp “E B, exp (— @),
Co C

2

(o) (37)

Hi(7)

where the B’s and F’s are complex constants and ¢, and ¢. are the roots
of the quadratic

Iy exp (@) + Fsexp (gof),

2
¢ — 6q — iwy + = = 0.
Co~

Throwing away the root of this equation which corresponds to the in-
coming wave in water, we get

Hy(§) = F exp (q:f).

where ¢ is the root corresponding to the outgoing wave. The three com-
plex constants B; , B: , and F can now be determined from (89a), (89h)
and (90)

B] + Bz = A/B,

Blexpu:—L—i—Bzexp(— u;;L) —F =0,
2

2

(91)

il I:Bl expz‘;-;"£ — B, exp (— 33%)] — qf = 0.
2

Co 2
We note that B; , By and F are proportional to the amplitude A of the

foreing motion.

D.5 Second-Order Longitudinal Response

From the preceding results, the right-hand sides of the equations of
longitudinal motion (86¢) and (87¢) can be computed. This computation
for (86¢) results in
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2 3
1 1 Ca w
— Vel — Viedli: = 5\ 5 T 1)\ -
1~ 2 C1 Co

X |:(11 sin L + 72 cos —m) cos 2wl
Ca C

2

oot (92)
+ (rd cOs 2;"—3: — 74 8In ——) sin 2wt

2 Ca

. 2w Zwr
+ 75 sin —— + racos — |,
2 ¢

2

where the 7's, which are proportional to the square of the amplitude 4,
are

rn = Re (-812 + B22)s
re = Im (B — By),
Re (B — BY),

s =
ry = Im (312 + Bzz),
rg = 2Re Blgz y
827' ?
Te = Ty + —44—2.

|The quantity rs will be used subsequently.] Similarly, for the right-hand
side of (87¢) we get

1 — .
e ( M — m“) = ¢ *[(ay cos 20¢ 4+ az sin 2¢¢) cos 2wt (93)

+ (@ sin 20¢ — as cos 2¢¢) sin 20t + asl,

where

= - (P + id):
o= L g [(2) eos @ 400+ 1 oos 7+ 30,

1

o= L [(2) sin @i 0) + 1 in @7 430 |

1

|r|[\ Y 10 r]s
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and

1A

[ =argF, 0=7f=2m

1A

g=arg(—q), 0=y g

It is seen that expression (92) and (93) have terms of the form

sin 2wt
F(m){cos 2wt (94)

in addition to functions of x (or {) alone. In accordance with the idea
that the first order transverse motion is a forcing action on the second
order longitudinal motion, we take as solutions of (86¢) and (87¢) funec-
tions of the form

sin 2wt
G ) {cos 2wt

to correspond to terms of the type given by (94) and functions of 2 (or §)
alone to correspond to forcing terms which are independent of time. This
again gives linear differential equations which can be readily solved. For
example, corresponding to the first term in (92) multiplying cos 2wt we
have the assumed solution

G(x) cos 2uwt,

and the differential equation

2 2 2 3
d—(f + ili,G' = lI:(g) — 1:'(2) |:7‘1 sin?iuf + 7, cos 21;1:]
da? ¢, 21 \&a Co C3 Co

This has the solution

G = I:Al cos 2% 4 Ay sin 22 4 & (-rl sin 2% + r2cos %—x)],
C1 C1 SCg Co Co
where A; and A, are undetermined constants.

In this manner, the solution for the longitudinal motion can be ob-
tained in terms of a set of constants. These in turn can be evaluated by
means of the boundary and transition conditions on p. . This evaluation,
although straightforward, is very tedious. We shall omit the details of
it here. The final result is
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Air
2 2957
esz e EA {|:r2 Sinzu—x + (7'3 + a T4 sinz—wIi

4:C1(32 C Ca C1
—C—lrﬁcos@) 2"’—x-l——qr'jICOSth—]—I:r;;sinziL

Co Cy (5]

2wl L .
—(Tz —l—cfncosi 4+ —rﬁ sin 2i)cos2m—:E —|—ﬁr{| sin 2wt
Cg C1 Ca C1 [ Ca

cz[ ( 2wz 2mL) ( . 20x . 2wL) | F lz:|}
+ Z|rsleos=— —cos— ) — rz|8iIn — — sin — | —

C1 Ca C2 Ca Ca 4 )
Water:

2 299 4
Ty = cwBEA {[— rzcoszciL + r3 a:-:inZiué

4:6102 1 C
+ €1 sin 2oL (m sin, 2co_L — 7 COS %—L)} sin 2w (t _f
2 [ C1 C1 (4]

1 Ca C1

+ 74 cos 2w_L)j| cos 2w (t — 5) —|F|*2 e""’”}
C1 (4] C .

.6 Numerical Results

—|-|:r2 smz—ciz-l—racosz—::ﬁ-}-— n2_w12(” sin%"{‘
1

Since the r's are each proportional to the square of the amplitude A4,
the above results indicate that the transverse motion tension varies as A
squared also. It is additionally a function of the frequency of ship motion
w, the forward mean ship velocity V, and the stationary tension T . The
computation of the transverse ship motion tension for the laying situa-
tion was carried out for cable No. 2. The results are shown in Fig. 34.
Here we have denoted the transverse motion tension by T, and have
plotted T,/A® against the period of ship motion r. Rather than the
stationary tension T , we have used the depth %, which during laymg is
directly related to To by h = Tn/'w Fig. 34(a) is a plot of T,/A* versus
the period r = 2r/w for kb = 4, 2 and 3 nautical miles and for V' = 6
knots. Figure 34(b) is a plot of T,,I/A2 versus 7 for V = 3, 6, and 9 knots
and h = one nautical mile.

For representative laying, for example at 6 knots with a ship period
of 6 seconds into a depth of one nautical mile, Fig. 34 gives
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T,/A* = 0.50 1b/ft* (twist unrestrained),
T,/A* = 0.93 1b/ft* (twist restrained).
For an extreme value of A = 20 feet, we get therefore that T, is be-
tween 200 and 370 pounds.
Additionally, by means of the above analysis, one can compute the
rate of damping of a transverse disturbance after it enters the water.

The results of this computation are shown in Iig. 18 and are discussed
in Section 4.1.

2.0
SHIP SPEED =86 KNOTS I OCEAN DEPTH=1000 FATHOMS
=== TWIST RESTRAINED X
A —— TWIST UNRESTRAINED \
1.6 A
. v \
‘l \‘ \‘
\ \
e \ \‘ (a) \‘ \\ (b)
w2 X R
~ Yy vy
w L \‘ AR
::)‘ \ l\\ AN
o \SE 'R
= \‘ N \ AN,
~ o8 AVHARNLY IN_FATHOMS NN N vON KNOTS:
-{1\ ’ N \ Y200 \\\ N \-2
-2 AN YN A NS,
\ \\uo \us \\\ \ > \\\ .\\
30, ISk N R
0.4 NS 1ye) O 6 J s Pe
}a\ﬁ\ T AN
05 [ — = v
l "‘-n.____- =
0
0 4 8 12 16 0 4 8 12 16

PERIOD OF TRANSVERSE SHIP MOTION IN SECONDS

Fig. 34 — Variation of the transverse ship motion tension of cable No. 2
with the period of ship motion.

APPENDIX E
Tension Rise with Time for Suspended Cable
E.1 Formulation of the Solution of the Problem

Let O be the lowest point of the cable at time ¢ after the suspension
has begun (Fig. 35). We make the following definitions:

=
I

depth at onset of the suspension,

cable length from A to 0,

ezl
Il

S, = cable length from ship at B to 0,

X, = horizontal distance from A4 to 0,
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X,

8 = vertical distance from 4 to 0,

horizontal distance from B to 0,

Ty = cable tension at 0.

If the cable is being paid out with a slack e, then conservation of the
total cable length gives the equation

S+ 8. = si:—% + (1 4+ €)Vt + cable stretching. (95)

Fig. 35 — Coordinates for the analysis of tension rise when a cable is com-
pletely suspended.

It is assumed that there is no cable pulled from the bottom. The cable
stretching we evaluate as in the example of Section 3.6, viz.,

cable stretching = (S; + S:) Ei:l
This makes (95) read
ok T,

To obtain further relations for the unknowns appearing in (96), we
assume that from the ship to point 0 the cable configuration is a station-
ary one governed by the equations developed in Section 3.6, while from
points 0 to A we assume that the cable configuration is a static catenary.
These assumptions yield the following relations:

8, = Lo ginh o, (a)
w

g =tté  To (b)
SN « w
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_htd, T

X, + A=, (C)
tan « w
5= T (cosh ¢ — 1), (d) 7)
w
X+ X, = A + Vi ()
: ' fan @ ’
_ 'le
o= To ’ (f)
T, = To + w(h + 8). (2)

Here « and A are constants, defined and plotted in Section 3.6, which de-
pend only on «, the critical angle corresponding to V. Equations (96)
and (97) form a complete set of equations in the unknowns X;, X,,
Si, S:, Ty, Ts, 6, and o. They can be reduced to a set which contain
only the unknowns ¢ and 7, :

o) sin & — epalo) sin a — E(l + "gi(i)i sin a) =0, (a)

o
hqoz( ) 98)
Ta=1+tcos a" (b)
ea(o)
where
h = wh/EA,
t = Vt/h,
T, = T,/wh,
and
¢, = sinhe — o + (coshe — 1) ta,ng — (N —x),
coshe — 1
ez tan « At
03 = (‘-»'——-—OS]), o -1 + sinh o.
sin a

A graphical iteration method will be used to solve (98). First we solve

lpl(ﬂ‘) sin e — Etpg(ﬂ') sin @ — E =0 (99)
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for ¢ by means of a nomograph to be described later. Next the quantities

cosh o oa(a)

esa) ’ ¢2(0)
are plotted as functions of ¢ for various a. These plots can then be used
as follows to solve (98) for a given Z. Solve (99) to obtain o, . From the
plot of ¢3(a)/e:(c) sin @ compute

nt = E(l + ?a(du)i sin a) .
@2(00)

sin a,

Using the value h* for h, compute o; from (99). With this value of ¢y,
compute hy* from

R Tn(l + MZ sin a) ,
wa(1)
ete. In this way a convergent sequence oo, o1, ***, 0a I8 generated.
Finally, from the plot of cosh o/i2(s) obtain T, .

The above iteration procedure sounds tedious. Actually, in most cases
the iteration is not necessary because ¢ remains essentially independent
of time. Thus, the solution of (99) by means of the accompanying nomo-
graph will usually give the complete solution of the problem.

1.2 Nomograph (Alignment Chart) for the Solution of Equation (99)

The relations

10¢:(¢) d sin «
1 4+ 10¢s(e) sin a’

€ v — ¢1(o) sin a
10° Yo =7 + 10¢s(7) sin

xr =0, $2=d, T3 =

(100)

yl=7i7 Y2 =

where d is an arbitrary constant define parametrically three curves
Y: = yl'(x!'), 1= 1: 21 3:

which we imagine plotted on a cartesian (z, i) coordinate system. A set
of values h, ¢, and o determine three points (z:, %:) (¢ = 1, 2, 3) which
lie on these curves. If these points lie on a straight line, it can be shown
that they satisfy (99).

On the left-hand sides of Fig. 36 we have plotted the curves given by
(100) for various values of the critical angle «. The values of the parame-
ters b = wh/EA and e which describe the curves 3 = wi(21) and
2 = 2(x2) respectively, are plotted on the indicated scales. Rather than
indicate the values of ¢ along the curve y; = ys(z;) we have for con-
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Fig. 36 — Nomograph for the solution of equation (99).

venience made an auxiliary plot on the right-hand sides of Fig. 36 of
ys(e) versus o, but with numerical valuesof the ordinate omitted.

In addition, we have plotted in Figs. 37 and 38 the functions
1/¢2 (cosh ¢) and (¢3/¢s) sin « for various a.

£.3 Numerical Example

To illustrate the method of obtaining the tension rise with time
described above, we consider a numerical example for cable No. 2. The
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Fig. 37 — Variation of with o.

values we assume for the parameters which enter the calculation are the
following:

e = 0.02,
V = 6 knots, (a« &~ 12°),
h = 6,000 ft,

EA = 1.2 X 10° Ibs,
h=231X10"

To solve (99), we connect on Fig. 36 the points ¢ = 0.02 and h =
wh/EA = 0.0031 with a straight edge and note the intersection with
the intermediate y3 = ys(xs) curve for @ = 12° (point A). We then locate
the point on the y; versus o curve having the same ordinate (point B).
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Finally, we obtain the root of (99), ¢ = 0.555 by reading off the cor-
responding abscissa (point ). This value of ¢ now serves as the starting
point in the iteration procedure by which we find the tension correspond-
ing to a given ¢.

For example, for = 1.0 ({ = 600 seconds) we have the following se-
quence of values

- (3 sin &)/ e: R* = Rl + (g5 sin @) Il
oy = 0.555 0.212 0.00379
a1 = 0.580 0.213 0.00380
a2 = 0.580

with ¢ converging to the value 0.580. For ¢ = 0.580, Fig. 37 gives
cosh o/@: = 0.800.
Hence, by (98b) for i = 1.0

T, = 1.80,
and 7, = 1.80 wh or 7,600 pounds.
0.6
—
0.5 - /‘/
OL=2}/
L
/ __—-'"-—""-_--

0.4 —
<l o
S |

N
gl e | —
3 03 T
z | 40| 1 —
12°
I
0.2 10°
0.1 5°
0
0 05 1.0 15 2.0 2.5
a

. . ¢ .
Fig. 38 — Variation of sin « ¢a(a) with ¢.

$ala)
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APPENDIX F
The Three-Dimensional Stationary Model
F.1 Derivation of the Differential Equations

Let 7, 3’, % be unit vectors along the £, n, ¢ axes (Fig. 26) and{ a unit
vector along the tangent to the cable configuration in the direction of
positive s. As in the two-dimensional model, we take this to be opposite
to the direction of travel of the cable elements along the configuration.
With respect to the cable configuration the resultant velocity vector of
the water is in the —7 direction. We resolve this velocity into djrections
normal and tangential to the cable in the plane formed by 7 and . The
unit vector in the normal direction we denote by n, namely,

| =7+ G-D]
In analogy to the two-dimensional model we assume the normal and

tangential drag forces depend only on the corresponding water velocity
components. Thus, we take

— —

Copd (7 2y (102)

Dy = 5

Equilibrium of the forces acting on a cable element yields the equation
7 47 D, 4+ 7Dy — jw = pa. (103)
ds ds

The vector ¢ denotes the acceleration of an element of the cable as it
moves at the constant pay-out velocity V. along the cable configuration.
It is easily shown that
2 di
Ig -
For convemence we introduce a seeond reference triad of orthogonal
unit vectors i, and » as follows. The » vector is taken in the (£, §') plane
normal to?; the u vector is chosen equal to the vector product » X 1.
'lhe angles ¢ and 8 shown in Fig. 27 describe the orientation of the (7,
w, v) triad. In terms of these angles, we read from Fig. 27 the following
table of direction cosines

- - -

1 ] k
i cos 8 cos ¢ sin —cos # sin ¢
U —sin @ cos cos 6 sin @ sin ¢
v sin ¢ 0 cos ¢
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In the (¢, u,v) system the vector n becomes for example

usinfcosy — v sinyg
[sin? @ cos? ¢ + sin? i’

-
n =

Imagine the origin of the (1, u, v) triad to traverse the cable at unit
velocity. The triad during this traverse rotates like a rigid body w1th
respect to the fixed (£, », {) frame. The rotation, which we denote by Q,
is seen from Fig. 27 to be

Q=7 +ovb="1ncos0¢+2v6+ fsingy.

Here the dot denotes differentiation with respect to time, or since
ds/dt = 1it may be interpreted as differentiation with respect to distance
along the cable. The vector { is a fixed vector of constant magnitude in
the rotating (¢, u, v) triad, hence

g—Z=§xZ=ﬁé—;}cosa¢. (105)

Trom (101), (102), (104), and (105) we obtain for (103)
(T — pVE (b — veosty) + 1 (%1 + DT>

CppdV*
2

+ (sin® 0 cos® ¢ + sin® ¢)'(u sin B cos ¢ — v siny) (106)

— w(gcosb + ¢ sin ) =0,

which gives the three scalar equations, (47).
Further, let »(s) be the cable configuration, i.e.,

r(s) =1 &) + 7 n(s) + & £(s),

where £(s), n(s), and {(s) are the £, , { coordinates of a point s of the
cable. Then

= dﬂ(S) - di(s)
ds +3 + 7 FAat

Forming the scalar product of { with 7, J, J respectively, we get (48) of
Section 7.1.

In a 6, ¢, T space the solution trajectories of (47) are given by the
solutions of

i =7 di(s)

r — pv) P dd  A(cos’ ¢ sin’ 8 + sin® ¥)} cosy sin 6 — cos @

ar ~ Dy/w — sin 6 ’
Y4 dy  A(cos’ ¢ sin® 0 + sin’ Wisinyg
Pelielgr = cos 8(Dy/w — sin 6) :
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We see that the trajectories are periodic in both # and  with a period

of 2w, and only a single region, say
048

0=y

2,
2w,

A NIA

need be considered. It is apparent that the straight lines
MHy=0, 6=a @¢=0 O0=a+m
By =m 0 = 27 — «a; 4) ¢ = m, =7 — a;
are solution trajectories which contain all values of 7'. Along other solu-

tion trajectories in this region one easily verifies that

T = PcV:2
w

% 9 (-&’ — sin 9) de
1 — exp AW : - )
8, Alcos? ¢(8) sin? 6 + sin® ¢ (6))* cos y(6) sin 8 — cos 0

where ¢ = () is obtained from the solution of

dy _ [cos & — A(cos® ¢ sin® 8 + sin® ¢)? cos ¢ sin 6] cos 6
de A(cos? ¢ sin? 6 + sin? Y)! sin '

From the definitions of ¢ and 6, it follows that the lines (3) and (4) are
physically identical with lines (1) and (2), and represent straight-line
laying and recovery respectively. Likewise, the expression for T' shows
that any non-straight line trajectory with zero bottom tension is bounded
by p.V.'/w. Hence, as in the case of the two-dimensional model, we con-
clude that if the tension is somewhere greater than p.V/w and the bot-
tom tension is zero, the only possible stationary configuration is the
straight line lying in the plane of the resultant ship velocity and gravity
vectors, and making the critical angle « with the horizontal.

F.2 Perturbation Solution for a Uniform Cross Current

At the outset we assume the tangential drag force to be zero. This
gives by (49)
T = w(h + 2), (107)

where & is the total ocean depth. Furthermore, we take p.V.’ to be zero.
If the angle ¢ (Fig. 26) is small compared to unity, we assume that 6
and ¢ will vary only slightly from the values they would have if the
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upper, cross-current stratum extended all the way to the ocean bottom.
That is, we take # and ¢ to be of the form

6 =ao + 6,
V=14,
where o is the stationary incidence angle corresponding to the velocity
V', and 6 and y are assumed small compared to unity.
Substituting (48b), (107), and (108) into (47a, b) and retaining only

linear terms in 6, ¢ and their derivatives, we get the linear first order
equations

(108)

(h + q)‘é_” + (2etn’a” 4+ 1)8 =0, (a)
g (109)
th + ) Z_: + esc’aly = 0. )

Because in the lower stratum the cable is a straight line parallel to the
path of the ship, we have as boundary conditions:

é = a — Cl’
= —I,{ - ’ 110
A (110)
where &’ is the depth of the upper, cross-current stratum and e« is the

stationary incidence angle corresponding to the velocity V.
The solution of (109) for the boundary conditions (110) is

_ h_hlll
6ﬁ(h+n)Aa’

o (111)
- T —
where

= (2ctn’e’ + 1),

v = csc', (112)

Aa = a — o',

Equation (48) for the space-coordinates £, 7, and { of the cable in turn
can be written to terms of first order in the form

= = ctna’ — fesc’a’,
(113)
== —-Jctnah
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Substituting (111) into (113) and integrating under the condition that at
n=0¢=0and{ =0, we find

— ’ (h - h’)Aa e —1—‘ - L
£ = qotna’ + W CSC a |:(h + )t hu—1:| ’ (114)
= ctna’ (= 1) [ 1 N 1#:I
RNV TS

These equations describe the space curve formed by the cable in the
cross-current stratum.

To determine the distances d and ¢ (Fig. 32), we transform (114) for
the cable configuration to coordinates ¢ and {’ oriented along the ship’s
path and normal to it respectively by means of

£ = Ecoseg — {sing,
"= Esineg + { cos e.
The result to terms of the first order is

, (h— K)Aa 2,[ 1 _1:|
netne -|—(“—_1)—csca h+ ) i

;L oo s, ctna'(h — A') 1 _ 1
¢ = ¢(ﬁ_.tna + -1 l:(h + 7)1 F]).

Letting n = —h’ and denoting the corresponding values of £ and {’
by —d and —e respectively, we obtain (52).

/

£
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