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Generalized telegraphist’s equations are derived, following Schelkunof,
Jor all modes in a curved circular waveguide containing an inhomogeneous
dielectric. Particular attention 1s paid to the coupling between the TEqy
mode and other modes in the curved guide. The results are applied to the
problem of preventing the mode conversion from TEy to TMy which nor-
mally occurs in a curved round waveguide, by partially filling the cross
section of the curved guide with a suitably shaped dielectric, such as poly-
styrene foam. Design equations are given for various compensalors, and
criteria are set up for keeping the power levels of all spurious modes low in a
compensated bend. Dielectric losses, which may be important at millimeter
wavelengths, are briefly treated. The potentialities of different compensator
designs are illustrated by numerical examples.

INTRODUCTION

It has been recognized for several years that a major problem in the
transmission of circular electric waves through multimode round wave-
guides is the question of negotiating bends. Theoretical studies’ * * have
shown that a gentle bend couples the TE;; mode to the TE,;, TE,,,
TEi, - -+ modes and to the TM;; mode. The TM;; mode presents the
most serious problem, since it has the same phase velocity as TEy in a
perfectly conducting straight guide. It follows that power introduced in
the TEy, mode at the beginning of a gradual bend will be essentially
completely transferred to the TM;; mode at odd multiples of a certain
critical bending angle ¢, . The angle &, is proportional to the ratio of
wavelength to guide radius but independent of bending radius; in other
words, power transfer cannot be avoided merely by using a sufficiently
gentle bend.

8. E. Miller' has discussed a number of methods for transmitting the
circular electric wave around bends with small net power loss to TMj, .
These methods are of two general types.

1209



1210 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1957

In the first type the TEy mode, which is not itself a normal mode of
the curved guide, is deliberately converted to a combination of TEq
and TM,; which is a normal mode, or to a particular polarization of TMy
which is another normal mode of the curved guide. After traversing the
bend the energy is reconverted to TEy . A disadvantage of the normal-
mode approach is that the mode conversions necessary at the ends of
the bend are frequency sensitive, so that bandwidths appear to be
limited to the order of 10 per cent.

A second approach to the bend problem is to break up, by some modi-
fication of the guide, the degeneracy which exists between the propaga-
tion constants of the TEy and TMj, modes in a perfectly conducting
straight pipe. The two modes are still coupled by the curvature of the
guide, but as Miller has shown, themaximum power transfer will be small
if there is sufficient difference between the phase constants or between the
attenuation constants of the coupled modes. A difference in phase con-
stants may be provided, for example, by circular corrugations in the
waveguide wall, or perhaps most easily by applying a thin layer of dielec-
tric to the inner surface of the guide.® Differential attenuation may be
introduced into the TMy mode by a number of methods, in particular
by making the guide out of spaced copper rings or a closely-wound wire
helix surrounded by a lossy sheath.® Unfortunately, the larger the guide
diameter in wavelengths the more difficult it is to get the separation of
propagation constants necessary to negotiate a bend of given radius
satisfactorily.

Still another solution of the bend problem is to decouple the TEy
and TM,; modes in a curved guide by partially filling the cross section
of the curved guide with dielectric material. The dielectric must be
arranged to produce coupling between the TEy and TMy; modes which
is equal and opposite to the coupling produced by the curvature of the
guide. This condition may be satisfied in a great variety of ways; but it
is not the only requirement for a good bend compensator. Practical re-
strictions are that the power levels of all other modes which are coupled
to TEy by the dielectric-compensated bend must be kept low, and of
course dielectric losses in the compensator must not be excessive.

Part I of this paper treats the general problem of a curved circular
waveguide containing an inhomogeneous dielectric. A convenient formu-
lation of the problem is provided by S. A. Schelkunoff’s generalized tele-
graphist’s equations for waveguides.” The field at any cross section of
the dielectric-compensated curved circular guide is represented as a
superposition of the fields of the normal modes of an air-filled straight
circular guide. A current amplitude and a voltage amplitude are asso-
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ciated with each normal mode, and the currents and voltages satisfy an
infinite set of generalized telegraphist’s equations. The coupling terms
in these equations depend upon the curvature of the guide axis and upon
the variation of dielectric permittivity over the cross section. In the
present application, the distribution of dielectric is taken to be independ-
ent of distance along the bend.*

The generalized telegraphist’s equations for all modes in a curved
cirecular waveguide containing an inhomogeneous dielectric are set up in
Section 1.1. As a special case one has the equations for an air-filled
eurved guide, or for a straight guide with an inhomogeneous dielectric.
In Section 1.2 we transform from current and voltage amplitudes to the
amplitudes of forward and backward traveling waves on a system of
coupled transmission lines and in Section 1.3 we work out in some detail
the coupling coefficients which involve the TEy; mode. An approximate
formula for dielectric loss in a compensated bend, which is valid at least
in the important practical case when the relative permittivity of the
dielectric differs but little from unity, is given in Section 1.4.

Part II applies the foregoing theory to the design of bend compen-
sators for the TEy mode. In a well-designed compensator the ampli-
tudes of the backward (reflected) waves are very low, so we shall neglect
reflections. The amplitudes of the spurious forward waves should also be
low compared to TEq , so that we may consider them one at a time. We
assume that the TEy mode crosstalks independently into each spurious
mode, and represent the interaction between modes by a pair of linear,
first-order, differential equations in the wave amplitudes. Miller’s treat-
ment® of these equations is reviewed in Section 2.1, and applied in Sec-
tion 2.2 to TEy—TMj; coupling in plain and compensated bends., Some
results of the Jouguet-Rice theory * for plain bends are confirmed by
coupled-line theory. The condition for decoupling TEy and TMy, in a
compensated bend is written down, and the consequences of imperfect
decoupling are discussed.

Three different compensator designs are deseribed in Section 2.3, and
evaluated with regard to mode conversions and approximate dielectric
losses. In the first case, which may be called the ““geometrical optics”
solution, the permittivity is supposed to vary continuously in such a way
that a bundle of parallel rays entering the bend would be bent into co-
axial circular ares all of the same optical length. This is not a perfect
solution of the problem if the wavelength is finite, but it is of some

* We shall not consider the effects of random inhomogeneities, such as bub-

bles in polystyrene foam, although these might conceivably add to the mode
conversion if their dimensions were comparable to the operating wavelength,
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theoretical interest nevertheless. In the second case, a dielectric sector of
constant permittivity is attached to the inner surface of the bend nearest
the center of curvature; the angle of the sector is determined to satisfy
the decoupling condition. Such a sector may be an effective compensator
if the guide is small enough to propagate only 40 to 50 modes at the
operating frequency, as, for example, a §-inch guide at a wavelength of
5.4 mm. Finally, we consider a compensator made of three dielectric
sectors, whose angles and spacings are chosen to decouple the modes
(TEn and TEy) with phase velocities closest to TEq . The three-sector
compensator may be necessary if the guide is large enough to propagate
200 to 300 modes, say a 2-inch guide at 5.4 mm.

In Section 2.4 we investigate the effect of increasing the attenuation
of the spurious modes generated by the compensated bend. The con-
clusion is that it is not feasible to add enough loss to the worst spurious
modes to reduce appreciably the power which they abstract from TEq .

As a sample of numerical results, it appears possible to negotiate a
90° bend of radius 20 inches in the Z-inch guide at 5.4 mm with an inser-
tion loss of about 0.3 db. This assumes a single-sector polyfoam compen-
sator with a relative permittivity of 1.036 and a loss tangent of 5 X 107°
(polyfoam with approximately these constants is currently available).
About 0.2 db of the quoted loss is due to mode conversions and 0.1 db to
dielectric dissipation. For a 2-inch guide with a three-sector polyfoam
compensator, a bending radius of about 12 feet appears feasible. The total
loss in a 90° bend should be about 0.35 db, with approximately 0.1 db
going into mode conversion and about 0.25 db into dielectric dissipation.
The dielectric loss is proportional, of course, to the total bend angle, and
for a 180° bend would be double the above figures.

CENTER OF CENTER OF ]
CURVATURE CURVATURE Z

Fig. 1 — Coordinates used in circular bend in circular waveguide.
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The appendix contains brief descriptions of three dielectric compen-
sators which can be inserted in a straight section of guide adjacent to a
bend. The first two are transducers which convert TIy to a normal mode
of the curved guide; they are subject to bandwidth limitations as men-
tioned by Miller.” The third type merely takes the output mixture of
TEy and TMy; from a plain bend with a pure TE, input, and reconverts
it all to TEy ; it is essentially a broadband device. The spurious modes
generated by a bend plus compensator have not been calculated, but it
is very unlikely that a smaller bending radius will be permitted when the
compensator is outside the bend than when it is inside.

I. THEORY
1.1 Generalized Telegraphist’s Equations

To describe electromagnetic fields in a curved circular waveguide one
is naturally led to use “bent cylindrical coordinates” (p, ¢, 2)," * * in
which the longitudinal coordinate z is distance measured along the
curved axis of the guide, while p and ¢ are polar coordinates in a plane
normal to the axis of the guide, with origin at the guide axis. The lines
¢ = 0 and ¢ = = lie in the plane of the bend. The radius of the guide
is denoted by a and the radius of the bend (i.e., the radius of curvature
of the guide axis) is denoted by b. The coordinate system is shown in
Fig. 1.

For the moment regarding (p, ¢, z) as general orthogonal curvilinear
coordinates (u, v, w), we let

u = p, v =g, w = z. (1)

The element of length in this system is

ds’ = efdu’ + e’dv" + eldw’, 2)
where
e = 1, e = p, e =1+ ¢, 3)
and
£ = (o/b) cose. (€Y

Maxwell’s equations for a field with time dependence ¢™‘ may be
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written in the form:"

1 |: (esbw) — — (GQE) = —iwuH,,
6333
1[a a ] .
e—‘ l:a- (B — ou (esz)_ = —iwuH,,
"1? [(’?‘ (32E ) - o (elEu) = _inHw,
(5)
1

€263

— l: (esHw) — —— (egH) = iwelly

1 [o d 1.
— I:% (esH,) — ET (Ean)_ = iwel, ,

€361

1 d K 1 ]
a [5’1‘5 (esz) - % (elH“)- - zweEm .

In these equations the permeability p and the permittivity ¢ may be
functions of position. If there is dissipation in the medium, either e or p
or both may be complex.

To convert Maxwell’s equations into generalized telegraphist’s equa-
tions, we introduce the field distributions characteristic of the normal
modes of a straight, cylindrical guide filled with a homogeneous dielec-
tric. The derivation follows very closely that given by Schelkunoff" for
an inhomogeneously-filled straight guide. Each mode is described by a
transverse field distribution pattern T'(w, v), where T'(u, v) satisfies

P | e dT e aT):l o
v = €162 [au (e; au) + @ v (62 ED) x T, (6)

and x is a separation constant which takes on discrete values for the
various TE and TM modes. We shall denote the function corresponding
to the nth TE mode by 7' (%, v), and the separation constant by x ,
with the subscript in brackets. The normal derivative of T'(» vanishes
on the perfectly conducting waveguide boundary. Similarly the function
corresponding to the nth TM mode is denoted by 7' (u, v), and the sepa-
ration constant by x , with the subscript in parentheses. The function
T vanishes on the boundary of the waveguide. For the present the
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modes may be assumed to be numbered in order of increasing cutoff
frequency; later when we have occasion to refer to specific modes we
shall replace the subscript n by the customary double subseript notation
for TE and TM modes in a circular guide.

The T-functions are assumed to be so normalized that

f (@rad T)-(grad T) dS f (flux T)- (lux T) dS

@

XEfT2dS= 1,
S

where S is the cross section of the guide. The gradient and flux of a
scalar point-function W are transverse vectors with the following com-
ponents:

oW aw
gl'adu W = m, grad., W = m}, (8)
fux, W= s, w = =W

€20V e 0u

Various orthogonality relationships exist among the 7-functions corre-
sponding to different modes of the guide, and among their gradients and
fluxes. These relationships have been listed by Schelkunoff.”

The transverse components of the fields in the curved guide may be
derived from potential and stream functions, U and ¥ for TE waves
and V and II for TM waves. Thus

B, = —grad V —flux ¥,
&)
H, = flux II —grad U.

We now assume series expansions for the potential and stream functions
in terms of the functions T'(u, v), with coefficients depending on w. Let

Vv

I

=2 Vi (w) Ty, v), 0= = Tu(w) Tw(u, ),

i (10)
=2 Vin(w) Ty, v), U = =2 Iu(w) T, ).

Il

v

The I’s and V’s have the dimensions and properties of transmission-line
currents and voltages. If we substitute (10) into (9) and expand in
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components by (8), we obtain:

AT 0T
E., = Z[Vm @ 4 Vi []il,

9l e90v

B, =X [Vw o = T %] (11)
H, = ;[ I Z0 o T 1 ii;[:al]’

Ho=3 [I(,.) aT(ﬂ) +1 9«:6_[;]]'

For the longitudinal field components it is convenient to expand the
combinations e, and e;H, in the following series:

el = ZX(n)Vw,(n)(w)T(n) (u, v),
n

(12)
Ban = Zx[n]Iw.[nl('w)zT[ﬂ] (ur U).

It should be noted that the boundary conditions in the curved circular

guide are

E,=E,=0 (13)
at the boundary of the guide, and that these conditions are satisfied by
the individual terms of the series for F, and FE,, on account of the
boundary conditions already imposed on T'wy and 7', . Hence we do
not have the problem of nonuniform convergence which sometimes
arises in treating waveguides of varying cross section by the present
method.

The procedure for transforming Maxwell’s equations into generalized
telegraphist’s equations is now straightforward, if a trifle tedious. One
substitutes the series (11) and (12) into equations (5), and integrates cer-
tain combinations of the latter equations over the cross section of
the guide, taking account of the orthogonality properties of the T-
functions. For example, subtracting a7 (m)/e:dv times the first of equa-
tions (5) from 87T (m/e:du times the second equation, and integrating over
the cross section, yields

dV(m)
- = m Vw
dw X(m) ¥V w,(m)

= —1w E I:I(n) f,ue;; grad T(,.)) (gra.d T(m)) as (14)

+ I fs pe, (grad T ) - (ux T') dS]-

Adding 87 (n1/e19u times the first equation to 87y /e:dv times the second
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and integrating gives

dgl[um] = —iw E I:I(n) fﬂﬂg (gra.d i”(n)) . (ﬂux T’[m]) dsS
n S
(15)
+ I fs pes (grad Ty - (grad Tim) dS].
Similarly, from the fourth and fifth equations we get
dl o . . o v
(I’EU) = —1iw Zﬂ: [17(,;) j;ét’:; (grad T {m)) - (grad i (,1)) dS
(16)
+ Vi f ee; (grad T () - (Aux T'p) dS:|,
8
df .
dLﬁ — Xt dw,m
= —iw Y [V(,,) f ee; (grad Tny) - (Alux T'pmy) dS amn
n S

- V[,ﬂ Leea (gra.d T[m]) . (grad T[ﬂ]) dS:I.

From the third of equations (5) using the fact that the 7-functions
satisfy (6), then multiplying through by 7', and integrating over the
cross section, we get,

. 2T m
V[m] = —1lw Z I,,,I[,,]X[n] f ﬁT[—!-[—] dS. (18)
n 8 €3
Similarly, from the sixth equation,
. TwT m
T = —ie & Vo,mxe [ SO0 a8, (19)
n 3 3
These equations may be written in the form

Z 1)
‘P’[m] — _z: w,[m][n] w.[ﬂl’
n Xm]

Y v (20)
Ty = —Z M‘_’_M,
n X(m)
where we define
: T T
Zuw,tmltn] = 10X (X [n] fmd&
s €3
21

. el omyT
Yi,onyy = 10X m)X () f%d&
s 3
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Solving (20) for I,(m and Vi m in terms of Vi, and I, respectively,
we may write

YW.[ml[n] V[ .
nl

Iw.[ml = -
n X[m]

. (22)
w,(m)(n
Vam = — 2, =228 I,
n X(m)

where Yo, a0d Zy,(myy may be defined as the ratios of certain de-
terminants involving Zu,imjm and Y, omm respectively.®

We are now able to eliminate Vi (m and 7w (m from (14) and (17),
and to write down the generalized telegraphist’s equations for the
curved circular waveguide filled with an inhomogeneous dielectric in
the following form:

AV (m
dt(v) = _; Zmmla + ZmmIml,
AVim
d—[w] = —Zﬂ: [ZimwImy + Zimmd ml,
. (23)
(‘d;;"} = —; [YmmVm + YmmVml,
[II m 7
",,:D] = —; [Yimmw Ve + Yimm Vil
The impedance and admittance coefficients are defined by:
Zmymy = j; pes (grad Ton) - (grad Ton) dS + Zuw,oom,
Z(m)[n] = w ‘/‘;nea (grad T(m))-(ﬂux T[n]) dS,
Dimon = i L ey (Aux Ty - (grad Te) dS,
Z[m] n] = w L,u.e;; (grad T[m]) . (gra.d T[,.]) dS,
(24)

Y oy = i f ees (grad Tom) - (grad T) dS,

* If (20) are actually regarded as infinite sets of equations, one has to pay some
attention to defining the meaning of the statement that their solutions are given
by (22). In practice we shall deal with a finite number of modes, and shall by-
pass all questions about infinite processes.
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Y ey = i f ces (grad T'om) - (Bux Tpny) dS,
S

Y[m](,.) = 1w f €€y (ﬂux T[,,..]) . (grad T(n)) dS,
L}

Yimm = 10 ./;66'3 (grad T'p) - (grad T'w) dS + Y, (mim-

It may be noted that if the guide were straight, so that e; = 1, and
if x and e were constant over the cross section, the ¥’s and Z’s would all
be zero except for those having equal subseripts. If the curvature of the
guide is gentle, and if g and e do not vary much over the cross section
(or if they vary extensively only in a small part of the cross section),
then the ¥’s and Z’s with unequal subseripts will be small, and we can
obtain approximate solutions of (23) based upon the smallness of the
coupling,.

We shall now compute first-order approximations to the impedance
and admittance coefficients under the following assumptions:

K= Ho,

(25)
e = el + ),

where uy and ¢ are constants (usually but not necessarily the per-
meability and permittivity of free space), and 6 is a dimensionless func-
tion of position. No mathematical difficulties would follow from assum-
ing u as well as e to be variable, but since the case of varying permeability
is not, of such immediate practical interest we shall omit this slight addi-
tional complication. In order that the coupling per unit length due to
curvature and to inhomogeneity of the dielectric be small, we further
assume that

|[E] = a/b K1,

(26)
%fmds« 1,
8

where, as usual, S is the cross-sectional area of the guide.
From (21), first-order approximations to Z,, (mjs) and Y, () are

Zw,[m][n] = ?:w# [amn - E[m]In]],
" (27)

Yo, tmm = tweldmn + 8mymy — Emym),



1220 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1957

where

Emitl = XpmX(n] fs ET oy Tmy dS,
Emymy = XX j; ET(m> T(n) dS: (28)

Sy = XemXm) f&T(,,,, T dS.
8

The quantity 8., is the Kronecker delta, and is not to be confused with
S(my(ny , Which is defined by the last of equations (28). Note that &mim
and Emmeo are zero unless the angular indices of the two modes in-
volved differ by exactly unity.

Tt is not difficult to obtain approximate solutions of (20) in the forms
(22), since the off-diagonal elements of the coefficient matrices of (20)
are small compared to the diagonal elements. Using the expression de-
rived by Rice®? for the inverse of an almost-diagonal matrix (we shall
not attempt to prove this result for infinite matrices), we find the first-
order approximations

m x
Xt XU 5, 4 ity

1/'
w,[m][n]
1w

(29)

Xm)yX(n)
__'r.n)i_ [amn + E(m)(n) - a(m)(n)]-
Twey

Il

ZW.(mJ (n)

Approximate expressions for the impedance and admittance coeffi-
cients appearing in the generalized telegraphist’s equations (23) are:

Zimymy = twpolbmn + Emm] + Zu,mm ,

Zimyin = 1@poEminl 5

Zimmy = 1wpoZ(mim »

Zimm = twpoldmn + Epmml, (30)
Vi = tweldmn + Emm + Aol

Vimm = twalZmm + Awmml,

Yimoy = twelEmon + Apmml,

Y[m][n} = iweu{amn + E[m][n] + Alm]l'vl]] + Yw.[m][n] .
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where
Emym) = _/;E(gl‘ad T(m)) . (grad T(n}) ds,
Em)n] = fsg(grad T(m)) - (flux T[,.]) ds,
(31)
Bty = f £ (Aux Tpy) - (grad T my) dS,
E[m][n] = Lf(gﬂld T[m])'(gl‘ad T[n]) dS:
and
Amymy = Lﬁ(grad T ) - (grad T y) dS,
A(m)[n] = Lﬁ(gl‘ad T(,,,))-(ﬂux T[n]) (IS,
(32)

Ay = j:g 8 (Aux Tpw)-(grad T'wy) dS,

Apmiin] = -[s & (grad T;m]) . (grad T[n]) ds.

The E’s are zero unless the angular indices of the two modes involved
differ by exactly unity.

1.2 Representation in Terms of Coupled Traveling Waves

From now on we shall assume that the distribution of dielectric over
the cross section of the curved guide is independent of distance along
the guide, so that the impedance and admittance coefficients are con-
stants independent of z. (We shall henceforth designate the coordinates
by (p, ¢, 2), instead of the (u, », w) of the preceding section.) The general-
ized telegraphist’s equations now represent an infinite set of coupled,
uniform transmission lines, and their solution would be equivalent to
the solution of an infinite system of linear algebraic equations and the
corresponding characteristic equation.

For our purposes it is convenient to write the transmission-line equa-
tions not in terms of currents and voltages, but in terms of the ampli-
tudes of forward and backward traveling waves, assumed to exist in a
straight guide filled with a homogeneous medium. Thus let a and b be
the amplitudes of the forward and backward waves of a typical mode at
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a certain point. In what follows the wave amplitudes a and b will always
carry mode subscripts, so they need never be confused with guide radius
and radius of curvature. The mode eurrent and voltage are related to
the wave amplitudes by

V = K'a + b),

(33)
I = K ¥a — b),
where K is the wave impedance. We have
-K(rl) = h(n)/‘*’fﬂ ’ (34)

K = opo/hin ,

for TM and TE waves respectively, where hq) and A represent the
unperturbed phase constants,

how = (B° — x)

(35)
hpy = (8 — x?),

and
.32 = wz.unén . (36)

For a cutoff mode, h is negative imaginary; but we shall deal only with
propagating modes in the present analysis.

If we represent the currents and voltages in the generalized tele-
graphist’s equations (23) in terms of the traveling-wave amplitudes, and
then perform some obvious additions and subtractions, we obtain the
following equations for coupled traveling waves:

da m) . + - + -
d; = —i 2 [Khymam + Kemmbey + Kmmbm + Kaymbuml,
2 n

db(m}

. - + —~ +
el 42 X Koy @ + Kimy by + Kemmiial + Ky mbiml,
n

(37)
da . + — + —
d[:] = —i 2 [Kfm@@m + Kb + Kmim@m + Kb,
. n
dbpmy _ : - + o~ +
e +1 2 K @@m + Kb + K@ 4 Kmimbml.
n

The «’s are coupling coefficients defined in terms of the impedance and
admittance coefficients by

- i —4
W(myn) = %[(K(ul)K(n)) Y(m}(ri) + (K(M)K(n)) Z(M)(n)]s
.+ 1 —
K(myn) = %[(K(m)K[n]) Y(m)[n] =+ (K(m)K[n]) %Z(m)["]]s
-1 } -
ity = HEmEw) Vimm £ EmEm) ™ Zimmw),
. 1 Y
it = E mEm)' Yimm £ EmKw)™ Zimiml

(38)
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In these definitions the plus signs are taken together, likewise the minus
signs. The factors of 7 are introduced in order that the «’s may be real for
propagating modes in a lossless guide.

TFor the small-coupling case discussed at the end of the preceding sec-
tion, it is convenient to separate a typical coupling coefficient into two
parts; thus,

k= ¢+ d. (39)

Here ¢ is the coupling coefficient due to curvature and is zero unless the
angular indices of the two modes involved differ by unity. The coupling
coefficient d is due to the dielectric. All d's vanish if the dielectric is
homogeneous; otherwise particular symmetries may cause certain classes
of d’s to be zero. The ¢’s and d’s may be expressed in terms of integrals
written down in the preceding section if we substitute for the ¥’s and
Z’s in (38) their definitions according to (30).

The x™’s which have equal subscripts (n)(n) or [»][n] may be regarded
as phase constants (of particular TM or TE modes) which have been
modified by the presence of the dielectric. For the modified phase
constants we introduce the symbols B¢, and B, ; thus,

2
X 8y hy* By @)
2h(ny !

B A 1m
Qh[ﬂI )

_ o+ _
B = Ky = hay +

(40)

+
B = Kinitm = b +

The general expressions for the coupling coefficients between any two
different modes are as follows:

205
+ 1 BEm ) — XmXmEm )
Cmm = 5 I:V Bmbiny Emymy =+  ombon ]
m n

2

— X)X ()0(my(n)
+ _ 4+ —
d =_ hamhy A
mm =5 |:\/ mfeiny Bm) (n) ke

Emn = 3 BEwmm [V /b = Vg /],
A = 3 BAmy1 Vi /B,

C:[tm] m = ¥ BEm (ﬂ){\/h(n)/h[m] =+ ‘\/h[m]/h(nj]’
Aty = 3 BAm o) Vi lm

1 [BQE[H.HM — XimX (1 €ml [n]

Y :|: E miln h h‘
2 h[m]h'[n] [m][n] [m]ft[n] |5

di BQA[ml [n]
[mlln] = ¢ b
2 \/h[mlh[n] ’

[u—y

(41)

+
Ciml[n] =
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where the symbols with double subscripts are defined by (28), (31), and
(32).

1.3 Coupling Coefficients Involving the TEq Mode

In Part II we shall consider a well-compensated bend in which the
total power in all spurious modes is everywhere low compared to the
power level of TEq . (This is somewhat more restrictive than merely
assuming that the power in any one spurious mode is everywhere small
compared to the power in TEy, .) To first order, therefore, we may com-
pute the power abstracted from TEy by mode conversion by assuming
that the TEy mode crosstalks into each spurious mode independently.
For this calculation we need the values of the forward coupling coeffi-
cients between TEy and all other modes. The crosstalk into backward
modes will be negligible in all practical cases.

We shall use the customary double-subscript notation for the various
modes in a round guide, but shall continue to denote TM waves with
parentheses and TE waves with brackets. We assume that the distribution
of dielectric is symmetric with respect to the plane of the bend, so that TEy
is coupled to a definite polarization of each spurious mode. The normal-
ized T-functions are then:

Tmy = 1/: J 1 Cxcumyp) i ne
nm T k(ﬂm)‘]"—l(k(nm)) ’

(42)
7o g/ Talximp) cos ng
] 7 (lpem® — 15 alkrnm)’
where
k(nm) = Xnm)Q, Jn(k(n'ﬂ)) =0
) ) (43)
k[nm] = X[nmlQ, Jn’(k[ﬂm]) = 0!
and
1, n =0,
€ = (44)
2, n # 0.

1.3.1 Coupling Coeflicients due to Curvature

We know that to first order the curvature of the guide can couple the
TEy mode only to modes of angular index unity. Let us calculate the
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coupling between TEy and TM,,, . Referring to (31), we have

o -
=(Im)[01] = =[01](1m)

[ elerad Tm) - (ux T ds
8

(45)

_ fh * V2T 1 (x100p) T1(x 1myp) €OS”
o Jo wabkamyJo(kon)So(kam)

a/‘\/iklm]b ifm = 1,
0 if m# 1.

pdp de

Hence the only transverse magnetic mode coupled to TEy by the bend
is TMy, , and from (41) the forward coupling coefficient is:

chvon = Gonay = Ba/A/2 kpnb = 0.184548a/b. (46)

To obtain the coupling between TEq; and TE;,, , we must evaluate two
integrals. Trom (28), the first is

Eoypm) = Epmpon

X[01)1X[1m] fET[cu]T[lm] s
8

(47)

_ fh * V2 xtmp Jo(xoup) J1(xumip) cos” ¢ d
o Jo mab(kpm® — 1)Wo(kpn)J1(kim)

_V2a Fepam (bron” + Frpm®
b (kpm® — Dikon® — kpm®)?

and from (31), the second is

=t =
S[01][1m] = S[1m][01]

f £(grad Ton) - (grad T'umy) dS
S8

_ fg' fﬂ V2 xtmp 1 (xionp) Ji' (xiimip) cos® ® dp do (48)
o Jo mab(kpm? — 18 o(koy)d 1(kpm)
2v/2a kroukm”
b (knm?® — 1(kon® — kom®)*
A short table of numerical values of the above two integrals follows:

m Efor)(im) Elo1](1m]

1 0.23871 a/b 0.18638 a/b
2 0.32865 a/b 0.31150 a/b
3 0.03682 a/b 0.02751 a/b
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Putting these values into the expression (41) for the forward coupling
coefficient, we obtain:
[0.09319(8a)? — 0.84204
L '\/h[nl]ah[n]ﬂ

F0.15575(8a)? — 3.35688 |
C-[';u][lg] = W + 015575\/ h[m]ahm]a]g, (49)

70.01376(Ba)* — 0.60216 . 1
C-[’alnlal = ’\/W + 0.01376 AV h[ﬂllah[l:‘la’ilg .

+ 0.09319 ‘\/h[m] ah[u]fl:l %,

+ —
Croujpu =

1.3.2 Coupling Coefficients due to Dielectric

Depending upon the distribution of the dielectric material over the
cross section of the guide, the TEy mode may be coupled to any mode
except those of the TMy,, family. The dielectric coupling coefficients, as
given by equations (41), are

+ + ——
it my = Qinmyonn = 38401 (vmy V Aiumy/ Bion)
=
at —dF __ BApinm) (50)
[01] [rm] — 1o — S
" (nm 2\/h[u11h[mn1

The A’s are obtained from equations (32); thus,

Ay my = Lﬁ(grad T(nm))‘(ﬂux T[m]) ds

— fz’r “ 5(.0, w)ﬂ\/;Jn(X(nmJP)Jl(X[m]P) COS Tp dp de
0 Jo Tﬂk(nm)Jn—l(’ﬂ(um))Jﬂ(]f-[uu) ’

51
Aoy fnm) = j;é(grad Tiem) - (grad Ty) dS (51)

pdp de.

— _fﬂffﬂ a(p, w)‘\/;x[nm]l]n,(x[nm]no)']l(X[UI]P) COS N
o o TQ(kpnm® — 1) 0 (Egnm))Jo(Kron)
1.4 Dielectric Losses
To take account of dielectric dissipation we may introduce a complex
permittivity,
e=¢ — 1" = € (1 — 7tan¢), (52)
where ¢ is the loss angle of the dielectric and is not, of course, to be con-
fused with the coordinate ¢. If we let

€ = e (1 +48), (53)
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where &’ is real, then (52) may be written
e = e[l + 8 — i(l + &) tan ¢] = &l + 8), (54)

where
8§ =06 —i(1 + &) tan o. (55)

No changes in the formal analysis result from the fact that é now has a
complex value.

If the compensator is designed (assuming a lossless dielectric) so that
the total power coupled from TEy into all spurious modes is small at
all points, it is reasonable to assume that the principal effect of dielectric
loss on the TE, mode will be seen in the modified phase constant g
of this mode in the presence of the compensator. If the compensator is
made by filling a certain part S; of the guide cross section with a medium
of constant, (complex) permittivity, and the rest of the cross section with
air, then from (32) and (40) the modified phase constant of the TE;
mode is

By = by + 55— f (grad T[m]) ds, (56)

°h[ o)
where § is given by (55). Since § is complex, the attenuation constant is

148"t
@y = —Im ﬁ[l]l] = M (grad T[Dl])2 dS, (57)
2hyoy 5

where the integration may be carried out as soon as the area S; is speeci-
fied.

The approximation (57) for the attenuation constant due to dielec-
trie losses has a simple physical interpretation. It corresponds to the
power which would be dissipated in a medium of conductivity we” if
the electric field existing in the medium were the same as the field of the
TEsn mode in a straight, empty guide. This is probably a very good
approximation if & is small, as it will be for the foam dielectrics from
which compensators are most likely to be made.

It is doubtful that (57) furnishes a good approximation to the dielec-
tric loss when the permittivity of the compensator is high (6 not small
compared to unity). If the permittivity is high the cross section of the
dielectric member will be small, but the field perturbation may be large
in the immediate neighborhood of the dielectric. The series which rep-
resent the fields in terms of the normal modes of the empty guide may
converge slowly; in other words, when using the telegraphist’s equations
one must consider the coupling between TEy and a large number of
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other modes, none of which appears by itself to be very strongly coupled
to TE(u .

Of course if we had a single normal mode of the compensated guide,
with a field pattern independent of distance along the guide, it might
well be possible to calculate the field distribution and the dielectric losses
approximately, without reference to the telegraphist’s equations and
regardless of the permittivity of the dielectric. However, we do not have
a single normal mode of the compensated guide, but rather a mixture of
modes. The field pattern varies along the guide as the modes phase in
and out; and it is not easy to conclude from this picture what the actual
dielectric losses will be.

Finally it should be remembered that we have said nothing about the
possible effect of a dielectric compensator on eddy current losses in the
waveguide walls. If one attempted to use a compensator of small physical
size and correspondingly high permittivity, the resulting perturbation
of the electric field might very well increase the eddy current losses in
the wall adjacent to the compensator. On the other hand, the increase
would probably be negligible for a compensator made out of a foam di-
electric.

II. APPLICATION
2.1 Properties of Uniformly Coupled Transmission Lines

We shall now apply the preceding theory to the caleulation of TEy
mode coupling in gentle bends. To describe propagation in a curved
waveguide in terms of the modes of a straight guide requires, in general,
the solution of the infinite set of equations (37); but we can give an ade-
quate approximate treatment by considering just two modes at a time,
one mode of each pair always being TEg, . Furthermore we need consider
only the forward waves, since the relative power coupled from the for-
ward waves into the backward waves is quite small.

The differential equations representing the forward waves on two uni-
formly coupled transmission lines are:

2 4 o + ik = 0,
(58)

. d
Kty + E% + ya = 0.
In these equations a,(z) and a;(z) are the amplitudes of the forward

traveling waves, normalized so that | ao |* and | a; |* represent power flow
directly. We may think of the subscript 0 as always referring to the TTy
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mode. The complex constants v, and v; may be regarded as (modified)
propagation constants; note that because of the coupling they are not
necessarily equal to the propagation constants of the uncoupled modes.
The coupling coefficient is denoted by «; it will be real if the coupling
mechanism is lossless, but is not required to be so in the general mathe-
matical solution.

We are interested in the case in which line 0 contains unit power at
z = 0, and line 1 contains no power. Subject to the initial conditions

au(O) = 1, al(O) = 0, (59)
the solution of (58) is

aﬂ(z) — I:é + (‘Yn ;. ‘Yl):l emt 4 l:r21_ _ (’Yn ;. 'Yl)] emlz,
. (60)
a(z) = Zlem — ™,
where
r=vV(v — 1)’ — 4 (61)
and

my = 3[—(vo + 7)) + 7l

1

(62)
my = 3—(vo + v1) — 7).

For the case of two propagating modes without loss, « is real and we
may write

Yo = 6o, 11 =161, (63)
so that

r = i‘\/(ﬁn — B1)? 4+ 4% (64)

A straightforward caleulation now gives the power in each line at any
point:

4 s N .
Py, = IGO(Z) Iz =1 — m&n‘ %[(ﬁo — ﬂl)- + 4,‘-]}2‘
2 (65)
PJ. = Ial(z) I2 = 4; Si.nz l[(BO _ 181)2 + 4’(2112
(Bo — B1)* + 4 ? :
Hence the maximum power transferred from line 0 to line 1 is
(P) o il _ /6 = B )

T B — B+ T+ 26/Be — BOP
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and the points of maximum power transfer are
a4
V(B0 — B1)* + 4’

2 (67)

where n is any integer.

As is well known, complete power transfer from line 0 to line 1 is
possible if and only if the (modified) phase constants 8, and 8, are equal.
In general the maximum power transterred to line 1 depends on the ratio
of the coupling coefficient to the difference in phase constants, and if this
ratio is small, then

(P])mux ~ 4"2/(.80 - lsl)zv (68)

If the difference in phase constants is not large enough to prevent un-
desirable power loss from line 0, an alternative possibility, as Miller®
has shown, is to increase the attenuation constant of line 1 while leaving
the attenuation constant of line 0 as nearly unchanged as possible. We
can get an idea of the required attenuation difference from the following
approximate treatment.

Let
=+ i,
0 0 ) 0 (69)
Y1 = a1 + i1,
and assume that
l 2-“/(’70 - "Yl) J : « L (70)
Then
2 2
PR Y — Y — (71)
(o — 1)
and
K2
A Yo— 1’
2 (2)
K

We are interested in the power in line 0. From the first of equations (60),
we have

ao(z) =~ [1 + ——K*:I e ok e, (73)

("Yo - "Yl)“’ N (‘Yo - Tl)2 '
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Let us consider the case in which line 1 has a much higher attenuation
constant than line 0; that is,

@ > a. (74)

The second term on the right side of (73) is provided with a small co-
efficient, and also its exponential factor deeays much faster than the
exponential in the first term. The second term, therefore, rapidly be-
comes negligible as z increases, and we may write,

2

wrofie L Jeenon
(yo — v1)

If the attenuation constant of line 0 is not modified* by the presence
of the coupled lossy line 1, then in the absence of line 1 the amplitude of
ay(z) would be ¢ *”, and the factor by which the amplitude is reduced
owing to the presence of line 1 is

2
14+ —=

(yo — v1)? Iexzz“n—m | (76)

The first factor on the right is very nearly unity, but not less than unity
if « is real (lossless coupling mechanism) and

(ar — )’ = (B — Bo)”. (77)
Hence the factor by which the amplitude is multiplied is not less than
K’z

Yo — Y1

(O!() — 061) xzz
. 78
P e — a) + (B0 — B (78)

assuming that x is real. If the amplitude of the wave on line 0 is not to
be down by more than N nepers, after a distance z, from what it would
have been in the absence of the coupled line, it suffices to have

exp

(a1 — o)’z

(a1 — a)? 4 (B — Bo)?

=N, (79)

or

o — o = [(2/N) + V(2/N) — 4B — Bl (80)
2.2 TEy-TMy Coupling in Plain and Compensated Bends

In Jouguet’s' and Rice’s® analysis of propagation in a curved wave-
guide, the curvature is treated as a perturbation and the field com-
* The value of ap may very well be modified by the eoupling; but if it is this

can easily be taken into account when computing the over-all change in | aq(z) |
due to the presence of line 1.
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ponents are developed in powers of the small parameter a/b, but the
field perturbations are not expressed in terms of the modes of the straight
waveguide. We shall now consider propagation in plain and compen-
sated bends from the coupled-mode viewpoint.
Denote the coefficient of coupling between the TEy mode and the
TM...., mode or the TE,,. mode by
Km) = Cnm) T Cam) 81)
Kinm] = Cam) + dim

respectively, where as usual we indicate TM modes by enclosing the
subseripts in parentheses and TE modes by enclosing the subscripts in
brackets. In Part I the coupling coefficients are written with two pairs of
subseripts, since in general they may refer to any two modes, but here
one pair of subseripts would always be [01] and will be omitted. The co-
efficient ¢ represents that part of the coupling (if any) which is due to the
curvature of the guide, and d represents the coupling (if any) which is
due to the inhomogeneity of the dielectric. We assume that the dielec-
tric loading, if present, is symmetric with respect to the plane of the
bend, so that coupling to only one polarization of each mode need be
considered.

The phase constants of the TM,., and TE,,, modes in a straight, empty
guide are, respectively,

homy = VBE — Xtamys hiom = VB — Xtwmi (82)

where
Xy = kam/@G  Xtwm = knm/@, (83)
and
Jn kgmy) = 0, Jo (ktam) = 0. (84)
Also
B = 2rx/}, (85)

where A is the free-space wavelength.

As noted in the preceding section, the presence of coupling may
cause the modified phase constants Bem and B.m) of the coupled modes
to differ slightly from the unperturbed phase constants hum and hgum .
In a plain bend (curvature coupling only), the 8’s are equal to the A’s,
and in most cases the effect of a small amount of dielectric coupling on
the phase constants may be neglected. Exact values of Brum and Beam
may be obtained if necessary from (40).
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The coupling coefficient between the TIy,; and TM); modes in a plain
bend is given by equation (46) as

cany = Ba/\/ 2kpyb = 0.18454 Ba/b = 1.1595a/\b. (86)

The (smallest) critical distance for maximum power transfer is given by
(67) with 8y = B;, namely

_ m _ k[m] b)\ _ 135475)\
“o T 2eay T 24/2a a

and the critical angle #,, is

, (87)

¥, = 7,/b = 1.3547 M/a radians = 77.62 \/a degrees. (88)

€g

This expression agrees, as it must, with that obtained by Jouguet and
Rice. (We write &, for the uncompensated bend in order to reserve &,
for a bend with dielectric loading.)

It should be pointed out that ¢qi) is not necessarily the largest of the
coupling coefficients due to curvature. In a guide sufficiently far above
cutoff, it appears from (49) that ¢y is approximately equal to cqy ,
and ¢(i2) is one and two-thirds times as large as cqyy . It two transmission
lines are coupled over a distance z which is small compared to the dis-
tance required for maximum power transfer, then by (65) the relative
power transferred to line 1 is

Pi(z) ~ 7, (89)

which is proportional to the square of the coupling coeflicient. It follows
that for a sufficiently small bending angle the largest amount of power
will go into the mode which has the largest coupling coefficient to TEy,
(in the above example, THE;). Kach coupling coefficient, however, is
proportional to 1/b, and can be made as small as desired by increasing
the radius of curvature of the bend. Since the phase constants are unal-
tered to first approximation by the curvature, the maximum power trans-
ferred tends to zero with 1/b° for every mode whose unperturbed phase
constant differs from kg . The only mode with finite power transfer for
a finite bending angle with an arbitrarily large bending radius is TM;, ,
sinee hqyy = hpy . For the present we shall assume a bending radius so
large that power transfer to modes other than TM, is negligible. Com-
plete power transfer from TEy to TM;, will then take place in a plain
bend at odd multiples of the critical bending angle #,, .

We now consider a dielectric-loaded bend in which the permittivity e
is a function of the transverse coordinates (p, ¢), but does not vary
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from one cross section to another. The permeability u is assumed to be
constant. Thus we shall write, as in (25),

B = Ho,
(90)
e = all + 0 ¢,
and assume that
L[1s1as <1, 1)
S Js

where 8 is the cross-sectional area of the guide. The inequality (91) im-
plies either that ¢ does not vary much over the cross section, or that it
varies extensively over only a small part of the cross section. The first
alternative corresponds to a dielectric whose relative permittivity dif-
fers but little from unity, and is the most likely case in practice. If, on
the other hand, 5 is large in a small region (a thin sliver of high-permit-
tivity material), the dielectric coupling coefficients will not diminish
very rapidly with increasing mode number. The TTy mode will be appre-
ciably coupled to a large number of modes, and it may not be safe to
assume that the total power converted into spurious modes is small just
because the conversion into any given mode is small. We shall not try
to decide here what maximum value of | 8 | is practicable.

If the distribution of dielectric is symmetric with respect to the plane
of the bend, the dielectric couples the TEy mode to a definite polarization
of each spurious mode, and in particular to the same polarization of the
TM,, mode that is coupled by curvature alone.* The dielectric coupling
coefficient between TEq and TMy; is, from (50) and (51),

P B
W=\ 2rakondo (ko)

It is obvious that the decoupling condition, namely:
kany = can + dapy = 0, (93)

may be satisfied by an infinite number of different distributions of per-
mittivity. Ingenuity is required, however, to find a configuration which
is easy to fabricate and which does not couple the TEq mode too strongly
to any other mode in the guide. The spurious mode problem is quite
serious when the diameter of the guide (in wavelengths) is so large that

_[g 8(p, ©)J1" (x10110) 90;‘;90 ds. (92)

* A dielectric insert which is not symmetric with respeet to the plane of the
bend will couple Ty, to the other polarization of TM, , with potentially complete
power transfer to this mode on account of the equality of phase velocities. A small
accidental lack of symmetry should not lead to serious mode conversion in a bend
of moderate angle.
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many modes have phase velocities close to TEq, . In the next section we
shall compute the coupling to various modes for a number of cases.

Mention may be made here of the effect of imperfect decoupling. If
we could satisfy the decoupling condition (93) exactly, then to first
order there would be no transfer of power from TE; to TMy in a bend
of any angle. In practice we cannot expect to satisfy (93) exactly, on
account of uncertainties in the permittivity and dimensions of the
compensator. If the coupling coefficients are constant along the bend, the
effect of reducing ki by making dyyy nearly equal and opposite to cqy)
is to increase the distance required for maximum power transfer to
TMy, to take place. In the simple case where 8,y = B0y , as, for example,
when the compensator is made of a bent half-cylinder of dielectric, the
critical angle for a fixed bend radius is inversely proportional to k) -
The eritical angle 9, for an imperfectly compensated bend, in terms of
the critical angle J., for an uncompensated bend, is

C(1)
cany + d(m

If day can be made equal and opposite to cqy within 1 per cent, say,
then d, = 100 ¢, . The power transferred in a bend of angle & is simply
proportional to sin® (3/4,).

15;,- = ﬂcu . (94)

2.3 Various Compensator Designs

From now on we shall consider a compensated bend in which the
TEy and TM;; modes are completely decoupled, and we shall investigate
the coupling between TEy and spurious modes. (By “spurious mode”
we mean any mode of the straight round guide except TEy or TMy; .)
We shall assume that the power in all spurious modes is everywhere
low compared to the power level of TEy . To first order, therefore, we
may compute the power abstracted from TEy; by mode conversion by
assuming that the TEy mode crosstalks into each spurious mode inde-
pendently. In practice the crosstalk is greatest into modes whose phase
velocities are nearest to the phase velocity of TEy ; and it seems more
than adequate, at least for foam dielectric compensators, to consider
about a dozen modes.

From (68), the maximum relative power (assumed small) which cross-
talks from TEy, into a given spurious mode is

(Pl)mnx ~ [2"/(.80 - ﬁl)]zy (95)

where « is the total coupling coefficient. For all spurious modes we
assume that the difference in phase constants is not much changed by
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the dielectric loading; this assumption obviates the somewhat laborious
calculation of 8, for each spurious mode from (40). Thus,

Bo— B = hy — ha, (96)

and a good estimate of the maximum power which crosstalks into any
spurious mode is

(Pl)mux =~ [2(6 + d)/(h’o - kl)]z' (97)

If the form and dimensions of a bend compensator are fixed, and the
TEy—TM,; decoupling condition is assumed to be met by adjusting the
permittivity, it turns out that the maximum power which crosstalks
into a given mode is proportional to (a/b)". It is thus easy to calculate
the bending radius which makes (P1)mex for any given mode equal to a
(small) preassigned value. The total power abstracted from the TEy
mode by mode conversion will be a complicated, fluctuating function of
distance along the bend, or of frequency at a fixed distance, because of
the different critical distances for maximum power transfer into the dif-
ferent spurious modes, but we can get an idea of the minimum tolerable
bending radius by considering just the crosstalk into the one or two most
troublesome modes.

It seems likely that with present-day dielectrics at millimeter wave-
lengths, dielectric losses in a compensated bend will be comparable to
mode conversion losses. For this reason an estimate of dielectric losses
is given in connection with each type of compensator design discussed
below.

2.3.1 The Geometrical Optics Solution

An obvious way to design a bend compensator on paper is to load the
bend with a medium of continuously varying permittivity for which*

8 = —2(p/b) cos ¢. (98)

This may be called the geometrical optics solution of the bend problem,
since to first order it equalizes the optical length of all circular paths
which are coaxial with the curved center line of the waveguide. Physi-
cally the required variation of permittivity is rather simple; the per-
mittivity at each point depends only on the distance of the point from a
line through the center of curvature perpendicular to the plane of the
bend. An attempt to indicate this variation by shading has been made

* Tn order that the relative permittivity of the medium be nowhere less than

unity, the constant ¢ in the expression ¢ = (1 4+ 3) must be greater than the
permittivity of free space; but this does not affect the analysis in any way.
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Fig. 2 — Various bend compensators.

in Fig. 2(a). One could approximate the continuous variation with a
laminated structure consisting of a number of layers of different permit-
tivities, the permittivity varying slightly from one layer to the next.

Although the geometrical optics approach provides a very good theo-
retical solution to the bend problem, it does not lead to a perfect compen-
sator. It is shown at the end of this section that a perfeet compensator,
in the sense of one which does not couple TEy; to any other mode at any
frequency, does not exist. The geometrical optics compensator couples
the same modes to TE, that are coupled by the curvature of the bend
itself, namely TM;, and the TIL,,, family; but the coupling coefficients of
the various modes are not in exactly the same ratios. Thus if § is given
by (98), the net coupling between Ty and TM;; in the compensated
bend is zero, but there will be a small residual coupling between TEy,
and each of the TE;,, modes.

The curvature coupling coefficients are given by (49). Table I contains
numerical values which have been worked out for ga = 12.930 and
Ba = 29.554, corresponding respectively to guide diameters of § inch and
2 inches at an operating wavelength of 5.4 mm.

Dielectric coupling coefficients can be worked out without much dif-

TaBLE I — CouprrLING COEFFICIENTS AND POowER TRANSFER
IN GroMeTRICAL OPTIcS COMPENSATOR

fa = 12.930 fa = 29.554

Mode
(c+d)
(ha — In)

(c+d)

¢ d (ko — B

¢ d

TMy | 2.386/b | —2.386/b — 5.454/b | —5.454/b —
TEy | 2.344/b | —2.479/b | 0.600a/b | 5.480/b | —5.537/b | 0.597a/b
TEw» | 3.759/b | —4.318/b | —1.962a/b | 9.092/b | —9.322/b | —1.954a/b
TRy, | 0.306/b | —0.420/b | —0.087a/b | 0.793/b | —0.831/b | —0.083a/b




1238 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1957

ficulty from (50), (51), and (98). The first few coefficients are:
d(n) = *018454&@/6,

doy = _0.18638(8a)*/b

\/h[m]ah[n]a ’ (99)
don = _ 0.31150(8a)%/b

\/h[m]ﬂhm]ﬂ ’
dosy = _0.02751(.80.)2/6-

V'h onehpsa

Some numerical values are recorded in Table I.

The phase constant of any mode in the compensated bend is equal
to the phase constant of the same mode in a guide filled with material
of constant permittivity & . We may therefore set Sjoy — Buwm; equal
t0 hy — hpm - Strictly speaking, A is then the wavelength of a free wave
in a medium of permittivity e ; but e differs little from the permittivity
of vacuum if the compensator is made from a foam dielectric. The ratio
of total coupling coefficient to difference in phase constants, namely
2(c + d)/(hy — h;), which determines the maximum power transfer by
(97), is given in Table I for the Z-inch and 2-inch guides at A = 5.4 mm,

For large Sa the leading terms in ¢(1,,) and dj1. , which are proportional
to Ba, cancel each other, and ¢pm; + dpm decreases like 1/8a. The differ-
ence in phase constants, ki — hpm) , is also proportional to 1/8a for
large Ba. Hence the ratio of coupling coefficient to difference in phase
constants approaches a finite limit as fa approaches infinity; to three
decimal places the limiting values are the same as those given in Table I
for Ba = 29.554.

If we choose a sufficiently large value of a/b, the maximum power
transferred to a given mode may be made to approach any preassigned
small value as A/a approaches zero. This is a special property of the
geometrical oplics compensator. For other compensator designs ¢ + d will
be of the order of 8a while hy — h; will be of the order of 1/8a, so that
2(c + d)/(he — hy) will tend to infinity like (8a)’. Hence in the short-
wavelength limit the bend output will be a jumble of modes all at com-
parable power levels. Practically, one must expect the same end result
with a geometrical opties compensator, because of the impossibility of
meeting exact mathematical specifications; but a carefully-designed
geometrical optics compensator should work satisfactorily up to a con-
siderably higher frequency than any other type.
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To get an idea of tolerable bending radii with a geometrical optics
compensator, we shall calculate the radius at which the maximum mode
conversion loss from TEy into TE;, (the worst spurious mode) is 0.1
db. Setting P; = 0.02276, we find from (68) that the minimum bending
radius for a Z-inch guide is 5.69 inches, and for a 2-inch guide, 12.95
inches, both at a wavelength of 5.4 mm. It is worth noting that if | dpy |
is increased by 5 per cent of its theoretical value, the minimum bending
radius becomes 7.89 inches for the Z-inch guide and 39.2 inches for the
2-inch guide. (This assumes that the TM; mode is still properly de-
coupled and that TEy, is still the worst spurious mode.)

Dielectric losses are likely to be a serious problem in a geometrical
optics compensator, inasmuch as the whole volume of the bent guide has
to be filled with dielectric. Relatively large values of & are required to
negotiate bends as sharp as those just discussed. For example, if b = 13a,
in a practical case § might range from 0.058 at the inner surface of the
hend to 0.250 at the center of the guide to 0.442 at the outer surface
(referred to e as the permittivity of free space). The loss tangent of
present-day dielectrics in this range is approximately 2 X 107, A large
(i.e., far above cutoff) waveguide filled with a dielectric of relative per-
mittivity 1.25 and loss tangent 2 X 10" will show a dielectric loss of
about 1.13 db/meter or 0.34 db/ft at 5.4 mm. The dielectric loss in a
90° bend with a bending radius of 1 foot would be about 0.54 db, and for
other bends the loss would be directly proportional to the length of the
bend, and to the loss tangent if different from 2 X 107" It is true that
loss tangents as low as 5 X 107’ may be obtained with lower values of
permittivity, say & = 0.033; but with such a small é the bend radius
must be proportionately larger, and the total dielectric losses in a bend of
given angle would be larger than with a higher permittivity material.

We proceed now to demonstrate the assertion made earlier that a per-
fect bend compensator does not exist. More precisely, we shall show that
it is impossible to compensate the bend with an isotropic medium whose
permittivity and permeability are everywhere finite, but otherwise
arbitrary, in such a way that there is no conversion from TEq to any
other mode at any point at any frequency.

If there is no mode conversion at any point of the bend then the fields
at all points must be those of the Ty mode, referred to the bent cylindri-
cal coordinate system described at the beginning of Section 1.1. In other
words, we have preseribed the electromagnetic field and are asking
whether it is possible to choose the permeability and permittivity so
that the given field will satisfy Maxwell’s equations. Usually the
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answer to this question will be “No.” The Maxwell equations,
v X E = —iwu,
- . = = (100)
vV X H = iwek,
are equivalent to six scalar equations, and if the components of £ and
H are prescribed, one cannot in general satisfy all these equations by
merely adjusting the two scalar functions u and .

It is particularly easy to see the difficulty for the TEy mode in a
curved guide. Recall that the TEy mode fields are independent of the
coordinate ¢, and that the only non-vanishing field components are
E,(p, 2), H,(p, 2), and H.(p, z). The fourth of equations (5) is:

1 ad d
R [g (1 + (o/t) cos B — 2 (pHP)] w0

= dwell, .

Since E, = 0, the right side of the equation is zero for any finite value of
¢ at any finite frequency, and the whole equation reduces to

H.sing
P peose 0, ‘ (102)

which can be true for all values of p and ¢ only if the radius of curvature
of the bend is infinite. Hence a perfect compensator cannot be designed
with any value of e.

The practical importance of this result does not appear to be great,
since theoretically the geometrical optics solution would provide an
extraordinarily good compensator, Until one has a dielectric whose
permittivity is continuously variable and precisely controllable, and
whose loss tangent is very low, even this solution is of only academic
interest.

2.3.2 The Single-Sector Compensator

In practice the simplest way to compensate a bend is to fill part of
the cross section of the guide with homogeneous dielectric material of
relative permittivity (1 4 &), and leave the remainder empty. In many
cases a suitable shape for the cross section of the dielectric is a sector of
a circle, inserted on the side of the guide nearest the center of curvature
of the bend, and symmetrically placed with respect to the plane of the
bend. Such a sector, of total angle 8, is shown in Fig. 2(b). We shall now
discuss the properties of a single-sector compensator.



CIRCULAR WAVEGUIDE WITH INHOMOGENEOUS DIELECTRIC 1241

Tor future reference, the modified phase constants of the TE; and
TMy; modes may be calculated from (40) as:

b .
Bay = hany + —— [(6 — 0.29646 sin 0)5"
4:1|'h(;1)
— (0.70354 sin ) xan 1, (103)
850
=} =,
Bron = hpony + drhon
The dielectric coupling coefficients for the single-sector compensator
are given by (50) and (51), provided that some of the Bessel functions
are integrated by Simpson’s rule. In particular, the dielectric coupling
coefficient between TEy and TMy,; is

day = —0.12066 85 sin 6/2. (104)

Substituting (86) and (104) into (93), we obtain the decoupling condition
for a single-sector compensator, namely

(105)

No circular magnetic modes (TMyu) and no higher circular electric
modes (TEq , TEq , ete.) are coupled to TEy by the single-sector com-
pensator, We also observe that the coupling coefficients of the TE,,
and TM;,, modes do not depend upon the sector angle 6 so long as é
and 6 are related by (105). This is because these modes have the same
angular dependence as the TM;, mode, which we are trying to compen-
sate.

The most troublesome spurious modes are those whose phase velocities
are closest to TEy , namely TEy and TE;, . The coupling coefficients and
power transfer ratios for these two modes in §-inch and 2-inch guide are
given in Table II. Either of these modes could be decoupled by proper
choice of the sector angle, provided we had a uniform, low-dissipation
dielectric with the required value of 8, but it is impossible to decouple
both modes at once with a single sector. As a compromise, we might adopt
the sector angle which equalizes the maximum power transferred to THy
and TEy (the distances for maximum power transfer are of course not
the same for the two modes). This angle is approximately 144°.

Suppose we wish to employ a 144° sector in a Z-inch guide at 5.4 mm.
If the criterion is that TEy is to lose a maximum of 0.1 db each to TEg,
and TEy , so that the total mode conversion losses are of the order of 0.2
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TaBLE II — CouPLING COEFFICIENTS AND POWER TRANSFER To TEy
AND TE; MobEs DUE To SINGLE-SECTOR COMPENSATOR

fa = 12,930 fa = 20.554
Mode
d 2d/(ho — In) d 2d/(ho — M)
1.11562 sin @ @ sin @ 2.4727 sin 0 @ sin @
D —— ——— | —10.38 - : —54.23 - —
Tha b sin 6/2 b sin 6/2 b sin 6/2 b gin 6/2
TE, _ 0.6579 si.n 30/2 —10.89 a si.n 30/2 _ 1.4426 si.n 36/2 —56.901 a si.n 36/2
b sin6/2 b sin 6/2 b sin 8/2 b sin /2

db, then the bending radius can be 19.5 inches. The corresponding value
of & is 0.036.

If we try to use a 144° sector in a 2-inch guide at 5.4 mm, with the same
mode conversion criterion as before, the bending radius must be so large
that no currently available dielectric has a small enough value of & to
satisfy the decoupling condition. We are therefore forced to use a smaller
sector angle. With a sector of small angle, TE; is the worst spurious
mode. It turns out that if § = 0.033 and if TE,, is not to lose more than
0.1 db by conversion into TEj; , the minimum bending radius is 1131
inches or 94.3 feet, and the corresponding sector angle is 4.70°,

An approximate formula for the attenuation constant due to dielec-
tric losses in a single-sector compensator is given by (57), provided that
6 is small. The result is

2 o
ag = gL+ 9) tang 6° nepers/meter, (106)

2hon 360
where tan ¢ is the loss tangent of the dielectric, and 6° is the sector angle
in degrees. As numerical examples, we find that the dielectric loss at 5.4
mm in a -inch guide compensated with a 144° sector having § = 0.036,
tan ¢ = 5 X 107°, amounts to 0.085 db in a 90° bend of radius 19.5
inches. In a 2-inch guide compensated with a 4.70° sector (8 = 0.033,
tan ¢ = 5 X 107", the dielectric loss is 0.155 db in a 90° bend of radius

94.3 feet.

2.3.3 The Three-Sector Compensalor

Although the single-sector compensator should work well in a guide
which will propagate only 40 to 50 modes, it does not look so promising
for a 200- to 300-mode guide, chiefly because of the unavoidable crosstalk
into TEy and/or TE; . We are therefore led to consider the design of a
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three-sector compensator which will not couple either TEy or TEjy to
TEy .

A three-sector compensator is shown schematically in Fig. 2(c). The
angle of the center sector is called 6; and the angle of each outer sector
6, . Each outer sector makes an angle , measured between center planes,
with the center sector.

The condition for decoupling TE; from TMy, with the three-sector
compensator is

_ 1.5295 a
{2 cos ¢ sin 62/2 + sin 6,/2) b’

If & and a/b are given, two additional conditions may be imposed upon
8, , 62, and . The conditions are taken to be:

2 cos 2¢ sin #: + sin 6, = 0,
2 cos 3¢ sin 36:/2 + sin 36,/2 = 0.

If equations (108) are satisfied, the compensator does not couple TEy
to any modes of the TEa, , TEsn , TMam , or TM;,, families.

To design a three-sector compensator with given values of a/b and
8, one can solve (107) and (108) numerically for 8, , 62, and . However,
if 8, is small (=20°, for example), a simpler design procedure may be
used. The following equations are approximately true:

) (107)

(108)

126.8a
0 = b5 degees,
6. = 0.6186, , (109)
v = 72°

It should perhaps be pointed out that the precision of 6, 62, and ¢
individually is not critical, since there is no necessity for the coupling
to TEy and TEj to be exactly zero, so long as it is reasonably small.
One should, however, strive to make the TEy—TMy coupling as nearly
zero as possible, and it is therefore important to satisfy (107) with the
greatest possible precision.

Expressions for the dielectric coupling coefficients due to the three-
sector compensator may be obtained from those for the single-sector
compensator if we merely replace sin n0/2, wherever it occurs, by
sin n6,/2 + 2 cos ny sin nd/2, where n is the angular mode index, as
usual. If 8, , 6., and ¢ satisfy (108), then the coupling to TEsm , TEsm,
TM;, , and TMs, is zero, and the mode having the largest value of
2(c + d)/(he — M) is TEy . As noted earlier, since the fields of TMy
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TasLe ITI — CourLiNG COEFFICIENT AND PowER TRANSFER
10 TE;» MoDE DUE TO THREE-SECTOR COMPENSATOR

Ba = 12930 Ba = 29.554

Mode
(e +d) d 2 (c+d)

Ui — ) ¢ e — )

c d

TE;. | 3.7591/b | —3.0334/b | 2.549a/b | 9.0919/b | —6.5491/b | 21.59a/b

and TE;, have the same angular dependence, the coupling to TEy is
independent of the number and arrangement of seetors used in the com-
pensator so, long as the decoupling condition for TMy, is satisfied. Nu-
merical values are given in Table III.

The formula analogous to (106) for the attenuation constant due to
dielectric loss in a three-sector compensator is

_ B+ 9) tan g (6:° + 26:°)

oo T60° nepers/meter. (110)

agq

As a numerical example, let us design a three-sector compensator for
a Z-inch guide at 5.4 mm. Under the requirement that the TE; loss due
to conversion into TEy, must not be greater than 0.1 db, the minimum
bending radius is 7.39 inches. If the angles are *

81 = 60°,
Bp, = 300,
¥ =75

the value of 6 should be 0.143, which is not difficult to obtain with foam
dielectrics. Assuming a loss tangent of 2 X 10" we find that dielectric -
losses in a 90° bend are about 0.12 db.

As a second example, for a 2-inch guide at 5.4 mm with the same mode
conversion criterion, one needs a bending radius of 143.1 inches or 11.92
feet. With 6 = 0.033, the compensator angles are

91 = 27.60,
92 = 16.40,
v = 72.5%

* Tt is not practicable to use larger angles, because if 8, > 60° portions of the
outer sectors counteract the eﬁ'ec_t of t]}e rest of the compensator on TM;; , and
dielectric losses make the design inefficient.
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and if tan ¢ = 5 X 107°, the dielectric loss in a 90° bend is about 0.25
db.

2.4 Can Dissipation Be Used to Discourage Spurious Modes?

It was shown in Section 2.1 that the effect of markedly increasing the
attenuation constant of one of two coupled transmission lines is to re-
duce the over-all attenuation of a wave introduced on the other line.
One might wonder whether it would be practicable to decrease the per-
missible radius of a compensated bend by introducing loss into the
spurious modes. The answer is “No”, at least for guides large enough to
propagate 200 to 300 modes at the operating wavelength. One simply
cannot get the required magnitude of loss into the spurious modes with-
out simultaneously introducing intolerable loss into TEy . A numerical
example will make this clear.

We found in Section 2.3.3 that with a three-sector compensator in
2-inch guide at 5.4 mm it would be possible to negotiate a bend of
radius about 12 feet with a maximum loss of 0.1 db by mode conversion
to TE)z (the worst spurious mode). Let us now ask what the attenuation
constant of TE;; would have to be if we wished to transmit around a
bend of radius 6 feet with a three-sector compensator, and have the
mode conversion loss suffered by TEq not greater than 0.1 db in a 90°
bend. Preparing to substitute into (80) of Section 2.1, we have the
following values:

b = 72 inches,
kpm = Cuzy + dug = 2.54/b = 0.0353 in ",
z = wb/2 = 113.1 inches,
Bo — B1 = ho — Iy = 0.236 radians/inch,
N = 0.1 db = 0.0115 nepers.
From (80) we get
apz — apn = 12.2 nepers/inch ~ 4200 db/meter.

Since the maximum TE;, attenuation which can be achieved in a 2-inch
guide by a mode filter which transmits TEy freely is of the order of 10
db/meter,* the value of epy called for by the above calculation is ob-
viously out of the question.

* This estimate is based on calculations described in Reference 6 for modes in
a helix surrounded by a lossy sheath; but it is doubtful that much greater loss
could be produced by other types of filter, such as resistance card ‘‘killers”.
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It should be noted that a moderate amount of loss in the spurious
modes may be worse than none, so far as the effect on TEy, is concerned.
Miller™ has shown that the total power dissipated in the system goes
through a maximum when (e — ap)/x & 2. It appears that a; — ap must
exceed « by a couple of orders of magnitude before the loss in the driven
line (i.e., TEq) becomes really small, if we are counting on dissipation to
counteract the coupling to spurious modes.

Since by use of the compensator we are attempting to make the
TEy — TMy; coupling coefficient zero, we may expect that this co-
efficient, if not exactly zero, will at least be small compared to the cou-
pling coefficients of spurious modes such as TE,;, . Because kg is very
small, it may be that a practicable amount of loss in the TM;; mode would
improve the performance of the bend. But in view of the preceding para-
graph we must be careful, when introducing loss into TM;j;, not to
introduce the wrong amount of loss into some spurious mode which has
a larger coupling coefficient to TEj, .
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APPENDIX

Compensation of a Gradual Bend by a Dielectric Insert in the Adjacent
Straight Pipe

We shall discuss briefly three different ways of transmitting the TEy
mode around a plain (i.e., air-filled) bend with the aid of dielectric mode
transducers inserted into the straight sections of guide on one or both
sides of the bend. The first two methods involve converting the TEy
mode to a normal mode of the bend and reconverting to TEy; on the
other side.? In the third method, the input to the bend is pure TEy ,
and the output mixture of TEy and TM;, , whatever it may be, is re-
converted to TEg by a dielectric transducer.

A1 The TMy' Normal Mode Soluttion

One of the normal modes of the bend is a pure TMy; mode (TMy")
which is polarized at right angles to the TM;; mode (TMy"”) that the
bend couples to TEy, . Clearly if one has a transducer in a straight guide
which converts TEy, entirely to TMy, , it is a mere matter of rotating the
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transducer about the guide axis to insure that the polarization which
enters the bend is TMy,'. We shall design such a transducer using a di-
electric sector in a straight pipe.

From Section 2.1, for complete power transfer from TE, to TM,; we
must have

Bron — Bay = 0; (111)
the transfer then takes place in a distance
= /2 |k |- (112)

The modified phase constants B and By for a single dielectrie sector
of angle 6 are given by (103) of Section 2.3.2. Substituting these values
into (111), we find that the only condition under which it is satisfied is

sin § = 0,

113
6 = 180°. (113)

The transducer must therefore be a half eylinder. I'rom (104) we have
kay = day = —0.12066 88, (114)
and so (112) gives for the length of the transducer,
I = 2.072 \/6. (115)

The TEy — TMy' transducer should be placed on either side of the
diametral plane of the straight guide which lies in the plane of the
bend. An exactly similar transducer on the other side of the bend will
reconvert TMy," into TEy, . Since TEg and TM;, have the same velocity
in a straight guide, the transducer can be made of a number of sections
with arbitrary spacing and of total length I; but in practice one will not
wish to have too long a run of TMy, in the empty guide because of the
higher heat losses of this mode.

A.2 The TEqy &= TMyu” Normal Mode Solution

If we write the coupled wave equations for TEy and TMy,” in a plain
bend in the form
dﬂ(}

+ thay + dca; = 0,
dz

(116)

?:CGU + % + ihal = 0,
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where

h = hoy = hay , 1)

¢ = Can,

it is evident that we can add and subtract to get the equivalent pair of
equations:

ﬂi(ao_;ra_ﬂ + ik + (@ + @) =0,
(118)
d(a'%ﬂ +ih — @ — @) = 0.

Hence the normal modes of the curved guide are the combinations
ap = a1, or TEy &= TM”.

In order to launch only the normal mode TEy + TMy” at the input
of the bend, the amplitude of the other mode must be zero, or ay = a .
Similarly, to launch only the mode TEq —TM,y”, the condition is
a0 = —a; . Hence the output of the normal mode transducer of length [,
say, must be

ao(l) = *a(l). (119)

We return to the solution of the coupled line equations in Section 2.1
and write

k =dm = d,
Yo = 1By = 0o,

. . (120)
Y1 = Bay = 161,
r=is = iV (B — B)’ + 4d*.

Then equations (60) of Section 2.1 become:
a(l) = [cos sl — i w_“;_fi) sin %Sz] ¢l
(121)

.2d . —1i
al) = —i= sin ig) g HBEOL

Substituting into (119) and equating real and imaginary parts gives:
l=m/s, (122)
B — Bl =|2d]. (123)
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In view of (103) and (104) of Section 2.3.2, (123) is equivalent to
+41 —

€03 6/2 = §1640," & 0.1955’ (124)
and (122) becomes
1.465M
© 6| sing/2]’ (125)
where
v = A\ = 3.8317 \/2mra (126)

is the cutoff ratio for TE, and TMy, waves in a straight, empty guide.

A TEq to TEy &= TMy” mode transducer may thus consist of a di-
electric sector, attached to the surface of the straight guide on the side
nearest the center of curvature of the bend, if the angle of the sector
satisfies (124) and the length satisfies (125). However, the condition (124)
can be satisfied by a real angle only if

08483 = MA = 1; (127)

that is, only if the guide is very near cutoff; and the value of § which
satisfies (124) varies rapidly with A over the above range. This form of
normal mode transducer is therefore too narrow band to be of much
practical interest.

A.3 A Broadband Compensalor

We shall now show how to design a dielectric compensator, in a straight
section of guide, which takes the mixture of TEy and TMy” put out by
an adjacent bend and reconverts it to pure TEy , independent of fre-
quency.

First let us write the solution of (116) for a plain bend in terms of ar-
bitrary initial values a,(0) and a,(0). We have

ﬂl)(Z) + al(z) = [00(0) _|,__ al(o)]e—ﬁaz—{“’

heti 128
an(z) — ai(z) = [a(0) — al(o)]e—thz-}-wz, (128)

and hence
a(z) = [a0(0) cos cz — 1a1(0) sin czle” ™, )
a1(z) = [—7a0(0) sin ez 4+ a:(0) cos cz]e-:'h;.

The bend may be compensated with a dielectric-loaded straight guide,
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provided that* 8, = B in the straight guide (this may be arranged, for
example, by using a half-cylinder of dielectric), and provided that the
length of the compensator and the coupling coefficient d are properly
chosen. The amplitudes of the two modes in the straight guide, in terms
of arbitrary initial values ao(0) and a:(0), are

Cao(z) = [ao(0) cos dz — iay(0) sin dzle”*,
a(2) = [—iay(0) sin dz + a,(0) cos dze ™%,

Now suppose that the length of the bend is I; and the length of the
compensator I , and take the origin of z at the input to the bend. A pure

TE,, input is represented by

(130)

a(0) = 1,
() = 0, (131)
and so, applying (129) and (130) in succession,
ao(ly) = cos cl; e ™My
a(l) = —isinche ™, (132)
aoll + ) = cos (ch + dl)e ™,
(133)

a(l + L) = —isin (el + dl)e PR,

The condition that all the power be in T'Ey at the output of the com-
pensator at every frequency is

Cll —}' dlz = 0, (13‘1:)

or
dly = —0.18454 Bal,/b, (135)

on referring to equation (86) of Section 2.2 for the value of c.

A convenient form of compensator would be a half eylinder of dielec-
tric whose diametral plane is perpendicular to the plane of the bend.
The coupling coefficient of the half cylinder is given by (104), and the
condition for complete compensation becomes

L = 1.5295 ha/b. (136)

The most easily adjustable parameter is probably the length I, of the com-
pensator.

* The necessity for 8o = 81 is apparent if we consider that under certain condi-
tions the bend may put out a pure TMy,” mode, and complete reconversion is pos-
sible only if the compensator has 8, = g1 .
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We have analyzed the compensator as if it were all on one side of the
bend; but it may evidently be divided into sections of total length I
which are distributed arbitrarily on both sides of the bend. An obvious
configuration would be to put a section of length /./2 on each side of the
bend immediately adjacent to it.

Limitations on the usefulness of this kind of compensator will be di-
electric losses and mode conversions. The former can presumably be re-
duced as the dissipation of available dielectrics is reduced. Mode conver-
sions could be calculated by the general methods of Part I, but one would
have to work out the values of the coupling coefficients between TMy,
and all other modes, which has not yet been done. In any case it is likely
that the minimum tolerable bending radius would be no less than for the
within-the-bend compensators discussed earlier in this paper.
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