Circular Electric Wave Transmission
Through Serpentine Bends

By H. G. UNGER
(Manuseript received January 9, 1957)

An otherwise straight waveguide line with equally spaced discrete supports
may deform elastically into a serpentine bend under its own weight. The
TEw wave couples in such bends to the TMy, and TE,, waves. The general
solution of coupled lines with varying coupling coefficient is applied to a
serpentine bend by an tterative process, and evaluated for the elastic curve
resulting from a periodically supported line. TEy-TMy coupling causes
only a small increase in TEy attenuation. Mode conversion to TEy, waves
can become seriously high at certain critical frequencies when the supporting
distance 1s a multiple of the beal wavelength. In a copper pipe of 2§ inch
0.D. and 2 ineh 1.D., the mode conversion to the TEy, wave at critical
[frequencies near 5-mm wavelength causes a TEqy atfenuation increase of
90 per cent and a spurious mode level of —7 db. These mode conversion
effects can be controlled effectively by inserting maode filters.

I. INTRODUCTION

In curved sections of round waveguide the TEy - wave couples to
the TM;, and TE,, waves, and power is converted to these waves when
the TEy wave is transmitted through bends. A form of bend which is
inherently present even in an otherwise straight and perfect line is the
serpentine bend, I'ig. 1. Between discrete supports the pipe is deflected
by the force of its own weight. The resulting curve is well known from
the theory of elasticity. The curvature varies along the axis following
essentially a square law. The minimum bending radius occurs at the sup-
ports. For the practical example of a copper pipe of 2§-inch O.D., 2.00-
inch I.D. and a supporting distance of 15 ft, this minimum bending ra-
dius is 992 ft. A uniform bend of this radius would convert most of the
power incident in the Ty wave to the TM;; wave after a certain length
of bend.

Fortunately a serpentine bend with the same order of bending radius
does not affect circular electric wave transmission as seriously as does a
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Fig. 1 — Serpentine bends.

uniform bend with the same bending radius. This will be shown in the
following analysis.

A treatment of serpentine bends given previously by Albersheim' con-
siders only circular and sinusoidal curvatures. Furthermore, it does not
show all the effects of serpentine bends that we are interested in. We
shall present a more general and complete analysis here. The only re-
striction we have to make is that the power exchanged in one section of
the serpentine bend from the TEy mode to any of the coupled modes or
vice versa is small compared to the power in the mode from which it has
been abstracted. The curvature may be any function of distance along
the serpentine bend.

The general results indicate that normally a serpentine bend causes an
additional attenuation to the TEgy mode. Part of the TEy power which
travels temporarily in one of the coupled modes suffers the higher attenu-
ation of this coupled mode. Formulae for this increase in attenuation
constant are obtained for periodically supported guides from the deflec-
tion curve given by the theory of elasticity.

The coupling between the TEy and TMy waves causes only a very
slight increase in TEy, attenuation, since the difference in propagation
constant for these two modes is very small. In fact, if there were no
difference in propagation constant, as in the round guide of infinite wall
conductivity, coupling between TEq and TM;, waves in serpentine bends
would not affect the TEy transmission at all.

Coupled modes which have a larger difference in phase constant than
TMy; but still are close to TEq cause a serious inerease in TEq attenua-
tion at certain critical frequencies. If a multiple of the beat wavelength
between the T, mode and a particular coupled mode is equal to the
supporting distance, power is converted continuously into the coupled
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mode. For low attenuation in the coupled mode the power transfer may
even be essentially complete.

II, SOLUTION OF THE COUPLED LINE EQUATIONS

In a curved round waveguide the TE; mode couples to the TMy
mode and the infinite set of TE,, waves. Consequently, the wave propa-
gation is deseribed by an infinite system of simultaneous first order
linear differential equations. An adequate procedure is to consider only
coupling between TEy and one of the spurious modes at a time. Thus,
the infinite system of equations reduces to the well known coupled line
equations,”

dE,
dz

dEs
— E, — kE
dz + Yollig Lk 1

+ 'YlEl — ICEQ = 0,

(1

Il
=]

in which

E, s(z) = wave amplitudes in mode 1 (here always TEy) and mode
2 (TM; or one of the TE;,), respectively;
Y1, = propagation constant of modes 1 and 2, respectively,
(The small perturbation of v; , v: caused by the coupling
may be neglected here); and

k(z) = je(z) = coupling coeflicient between modes 1 and 2.
In the curved waveguide the coupling is proportional to the curvature;
¢ do
= EU = G d_Z, (2)

in which ® = radius of curvature, and # = direction of guide axis. (The
various coupling coefficients are listed in the appendix.) Without loss of
generality we start with 6(0) = 0. We will use the average propagation
constant v,

= %( 1t v,
Y Y Y (3)

Ay = (v — 72).

Several coordinate transformations will change (1) to a form which can
be solved approximately. A similar procedure has been used to solve the
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related problem of the tapered mode coupler.’ With the first transforma-
tion

Ei(z) = 3¢ " u(2)e™ + ua(z)e” ), (4)
Eu(2) = 3¢ ™ [m(2)e™ — wa(z)e ],
the new coordinates satisfy the equations:
%iml + Aye Py = 0,
p (5)
f + Aye™uy = 0.
With the second transformation
w(e) = 32 € " + w) ¢, -
up(2) = Hnfz) €747 — wma(2) €77,
v1(z) and »(2) satisfy
d’i)]_ .9 . . 2A7,
o 2Av sin” ¢y + jAvy sin 2e8e” v = 0,
(7
dvs 2 . . 277,
& + 2Ay sin® e, — JAy sin 2efe” v = 0.
With the third transformation
1(2) = wi(2) exp (2A-y f sin” ¢ dz'),
0
. (8)
va(z) = wal2) exp (—— 20y f sin® e dz').
0
We finally get the equations
d
—;%1 + El(Z)W2 = 0,
(9)

dUJ2

= + ta(2)w,

I
e

in which
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£12(2) = =+ jAy sin 2¢ exp l::l: 2A~y(z -2 f sin® ¢0 dz')] . (10)
0

As long as we have the condition f | £1,2(2") | d2’ < 1, approximate
[i]

solutions of (9) can be written down which proceed essentially in powers
of £, as follows,

wi(2) = wi(0) — wa(0) j; (2 de’
+0.0) [ 5@ [ 86 @ d,
. (11)
@) = w0) — 0,0 [ &)@
+ w0 [ 6E) [ a6 i,
The new coordinates are related to the wave amplitudes by:
Ei(2) = % e’ {w, (2) exp [— Ay (z -2 f sin’® ¢ dz'):| cos ¢f
0
+ jwa(z) exp I:A'y (z -2 f  sin? o dz'):| sin cuﬂ},
0
] (12)
E.(z) = é e {jwl(z) exp [— Ay (z -2 f sin® e dz’)] sin ¢f
0

+ wo(z) exp [A-y (z -2 f ] sin” ¢f dz'):l cos coﬂ}.
o

The solution (12) in combination with (11) is general and may be
applied to any form of curvature as long as the converted power remains
small compared to the original power in either of the modes.

III. WAVE PROPAGATION IN SERPENTINE BENDS

If we apply (12) to a section of a serpentine bend with the length I we
have 6(I) = 0. The output amplitudes are related to the input ampli-
tudes of both modes by a transmission matrix

Eil) = || T || £0). (13)
The elements of || 7' || are obtained from (11) and (12):
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T = |:1 + j: £(2) jﬂ“ £(2) dZ'dz]

1
-exp [— vil + 2Ay j; sin’ ¢f dz],
i !
T = —f ti(2) dz exp [_711' + 24y f sin” cof dz:l ’
o
nl !
T = — f £:(2) dz exp [—wl — 24y f sin® cof dz],
i 0
1 z
= [1 -+ fu £2(2) fo £(2) d dz]

!
-exp [—vzl — 2Ay f sin” ¢f dz:I.
0

For a line of iterative serpentine bends we apply the rules of matrix
calculus. If By = 1 and Es = 0 at the input of the first section, then
the output amplitudes of the n'™ section are:

(14)

T

>

Tn — To ] _
E 1 nor
" ['+Vuh—Tmu4ﬂJme

1 Ty — T ] -
L 1 _ nge 15
+2[ VT T aTTw) ¢ 2 0¥
1o _ _
.kl’ L= ngy __ ngs ,
= (T = T § ATl © <™
where
g "t = %[Tu + Ty = ’\/(Tn - Tm)2 + 4TuTzl]- (16)

Two limiting cases for the expressions (15) and (16) are of special interest:
1. | Ty — To [ >4 | T Tn |

- VETY
71 — T
¢ LA P
— jl‘127‘21. —n —n
_ o no__ v2
B = Tn — To? © ™
— T12T21 Tlﬂ —n —ngs
v o— T, — E; = - no_ 02
¢ Chl ey il e e
2.4 |TpTu| > |Tu— Twl®
g = Tut Tn i
2
Ey, = e 4+ e ") (18)
g =1 /T o o,

2 Tz1
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In case 1 the wave amplitude Ei, is only affected by a slight change of
the propagation constant. The small additional term in the expression
for K, can usually be neglected. The power in the wave K., is small
compared to the ¥, power; 7' is usually of the same order of magnitude
as Ty .

In case 2, however, a complete power transfer between E;, and F,,
oceurs eyelically if the loss is sufficiently low. Consequently, condition
(18) has to be carefully avoided. Rather, condition (17) must always be
satisfied.

IV. SERPENTINE BENDS FORMED BY ELASTIC CURVES

A section of the waveguide line between two supports deforms like a
beam fixed at both ends. Under its own weight, w per unit length, such
a beam will bend and form an elastic curve, Fig. 1, whose deflection
from a straight line is given by:

P SR (19)
YT oumi i 1)
in which ¥ = modulus of elasticity of the beam, and / = moment of

inertia of the beam. Since we are concerned with small deflections y
only, we have * = z and § = dy/dx. Hence,

2 3
6=d(§—3;—2+2%), (20)

in which d = wl’/12E1. Introducing the elastic curve (20) into the trans-
mission matrix (10) and (14) and performing the integrations with sin
e = ¢ we get for the elements of the transmission matrix:

7l _ ﬂ I d” g —
Iu—exp[ 71!+A71105:l11+4ﬂ ﬁlﬁl:') 3AYT + Ayl
2 515 ']: 2 2A491
+§A‘YI - l—()—_A YT — (3 — 391 + AYF)%e
moo_ e _ _ Mg 6‘02(12 _ 2.9 434
Ty = exp I: ¥al Ayl 105:’ {1 + 1Ay [9 3AyT + Ayl 1)
A TP 4 {05 AT -3+ 3AyI + Af{z)%‘“*‘]},
T = To = j 590 (3 — 3891 + ayP)e™!

- )A afa
— (3 4 3Ay1 + Ay P)e ™.



1286 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1957

The expressions (21) are hard to evaluate, but for some special cases of
interest they can be simplified greatly.

To compute the coupling effects between the TEq wave and the
TM,; wave we make use of | Ayl | < 1 and get the following approxima-

tions:
2 2 2.9
_ _ cd 353 _ _ cod
Th = |:1 315 Ay l] exp (71 105 A'y) 1

Cozdz 3 co2d2
Tzz = |:1 + .§ﬁ A7 l:| exp — ('Y'.’. + 105 A‘Y) l: (22)
Ty = Ty = j‘l’ig Ay e

In (22) the condition | Ty — Ta|® 3> 4| ThTw | is satisfied; conse-
quently the wave propagation is described by (17),
Cu2d2 (:(]2‘1{2 2.2 . —ynl
Ky, =exp —|m — 105 Ay | nl + 0 Av°l sinh Aynle ™, .

By, = j%‘imz sinhAynle™™".

In addition to small oscillations, which are negligible, the wave ampli-
tude F; suffers an additional attenuation

2 42
_ Co d

Aa, = — 2=
“ 105

Aa. (24)
Physically this means that to a first approximation there is no net power
transfer from E; to Es. The power converted from F, to K, in one
section of the iterative serpentine bends is all reconverted in the same
section. But this power, which travels partly in the F, wave, suffers
the ¥, attenuation and consequently changes the //; attenuation.

To evaluate (24) we introduce the coupling coefficient and the differ-
ence in attenuation constants between the TEy and TM;; wave. Then,
the relative increase of TEy attenuation is:

Ao,

o

2 2
_3 o @ P [
— 639 X 10°d ﬁ(z.ﬁg .- 1), (25)

where an = attenuation constant of TEy ,
a = inner radius of pipe,

A = free-space wavelength.
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A numerical example shows that the increase in TEy, attenuation caused
by coupling to the TM;; wave in serpentine bends is small. For a copper
pipe with 2.00-inch LD, and 23-inch O.D. and a supporting length
I =15ft,wehaved = 1.51 X 107% and at A = 5.4 mm we get Aa,/ay =
0.19 X 107"

Tror coupling between the TEy; wave and the waves of the TE,, family
the difference in propagation constant is no longer small; the approxima-
tion which was valid for the TIM;; wave can not be made for TE,, waves.
Actually, the supporting distance is usually several beat wavelengths.
Therefore, no essential simplifications of (21) are possible for the general
case of coupling between TE; and TE,, . But closer examination of (21)
shows that if

2A8l = 2mr m=1,23 - (26

is satisfied, the difference 7,7 becomes very small. The net power
converted to any of the TIE;, modes may be small in each section of the
iterative serpentine bends, but if (26) is satisfied the contributions from
each section add in phase and in a long line with the square of distance
more and more power is built up in the particular TE,, wave. Only when
the attenuation in this TE,, wave is large enough to damp out the power
as fast as it is converted will an undistorted TEy, propagation be main-
tained. This condition for the attenuation constant can be derived from
I Tu - Tzz | 2 >> 4, T12T21 f CIf l Aﬁ' > l Aa i and I Aal‘ > CQQdE/lom‘lT

then Ty — T = —2Acale” ™', and since Ty Ty = —9 ¢’d’/m'z* e
the condition for undistorted TEy propagation is:
2 52
2 d
|Aal [ > 922 (27)
miw

If (27) is satisfied the wave propagation is again deseribed by (17).
Neglecting all terms which are small because of (27) the wave ampli-
tudes are:

2 42 n 242
B, = [1 +oald 1 ] e gl Ly ey

minrt 2Aal mirt 4Aa??

Eon = —i3 Cud 1

) Je mir? 2Aal

(28)

I _ C'.!Adul}c—)'lnl

For not too large values of n, the first term of I, may be written:

149 cd T e = exp| — ( -9 wd 1 )-nl:|
mirt 2Aal *P " mir! 20al? )

The additional attenuation to the 17, wave as caused by the continuous
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power abstraction is seen from this expression to be

232
_ _god 1 :
Ay = — 9 mirt 28al*” (29)
The condition (27) may now be written
2Aa, K | Aa |, (30)

or, the rate of conversion loss has to be small compared to the difference
between Es» attenuation and E; attenuation.

When the wave is travelling through a large number of serpentine
bends, power is built up gradually in the 2 mode to a constant value,

B 2 Cod 1

| = D it | 20al | (31)

Both the attenuation increase and the power level in spurious modes can
seriously affect the E; transmission.

To evaluate (29) and (31) we rewrite them with mwx = ABl and
d = wl’/12E1 as follows;
Aa,, _ w Co 2 o1
= [ ) 52
By _w & | cn
E.|  EI (248)%n | 2Aa |’ (33)

We note from (32) and (33) that the coupling effects cannot be controlled
by changing the supporting distance. Only the number of cr itical fre-
quencies in a given range decreases with decreasing supporting distance.

The previously cited numerical example of the 2 inch copper pipe
vields the following values at the critical frequencies of the two lowest
TE,, waves near A = 5.4 mm:

TEq 2% — 0.114 20 log | 22| = —23.4 ab,
oy E]
TE.: 2% = 0855 20 log | 22| = —6.85 db.
oy o

The mode conversion, especially to the TEp wave, causes a seriously
high additional attenuation and spurious mode level.

V. MODE FILTERS IN SERPENTINE BENDS

Periodically spaced supports are a condition for the critical case de-
seribed by (32) and (33). Accordingly, the coupling effects can be con-
trolled by removing the periodicity of the supports.
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F16. 2 — TEq, attenuation increase of TE,~TE,, coupling in serpentine bends
with mode filters; 2-inch L.D. 2¢-inch O.D., A = 5.4 mm. Serpentine bends are
caused by equally spaced supports and the elasticity of the copper pipe. The sup-
porting distance is a multiple of the beat-wavelength between TEg, and TE;. .

An alternative to control the coupling effects is insertion of mode
filters into the line. Mode filters which pass the TE,, waves without loss
but attenuate all other modes have been developed in various forms.
To estimate the amount of mode conversion control that can be achieved
by mode filters, we make two different assumptions. Only the critical
case of the supporting distance equal to a multiple of the beat wave-
length is considered here.

A. The mode filters are ideal; they present infinite attenuation to all
unwanted modes. At the input of a section between two mode filters we
have a TEy, wave only and at the output the spurious mode level has
risen to

El  w o )
7| T EI (2A,3)2L' (39)
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Fig. 3 — Spurious mode level of TEy-TE: coupling in serpentine bends with
mode filters; 2-inch I.D. 2%-inch O.D., A = 54 mm. Serpentine bends are
caused by equally spaced supports and the elasticity of the copper pipe. The sup-
porting distanee 1s a multiple of the beat-wavelength between TEq and TE. .

The loss to the TIy; wave caused by the mode conversion is equivalent
to an inerease in THEq attenuation

1| w ¢ 2 £

Aa, = 5 I:ETI @Tﬁ)?:l L. (35)

L is the spacing between two successive mode-filters. In (34) and (35)
the attenuation constants of E; and E, are assumed to be equal. Further-
more (34) and (35) hold only as long as the £, power level is small com-
pared to the F; power level.

Tdeal mode filters is a rather optimistic assumption. Practical mode
filters present only a limited attenuation to the unwanted modes. There-
fore a more realistic procedure is to represent the effect of the mode
filters by a uniform increase of unwanted mode attenuation.

B. The mode filters with a loss A are considered to cause a uniform
increase in K, attenuation Ae = A /L. Equations (32) and (33) modified
to include this attenuation increase are:

Aa, |:w co j|2 at
- T 9 H
a0 ET (2A8)%an | 20a| +% (36)
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L_w & o
By ET (2A8)%n

| 28 | +%' (87)

.n evaluation of the TEy-TE;. coupling in the previously described
% wnch copper pipe for critical frequencies near A = 5.4 mm is shown in
Figs. 2 and 3. The mode filter loss of 1 db can be achieved for the TE;,
wave in an 18-inch long helix waveguide. A 100-foot spacing of the
mode filters reduces the increase of TIy attenuation to 9 per cent and
the spurious mode level to —26 db.

APPENDIX

The coupling coefficient for the wave coupling between the TE, wave
and the TEy , TE;., TE;; waves as well as the TMy wave have been
caleulated by 8. P. Morgan." If ¢ = ¢,/R, the factor ¢, is for the various
waves

TMM Cy = 018:‘:5-]:6&,

0.09319(Ba)? — 0.84204

= B, 0931¢
TE11 Co ‘\/ﬁglaﬁna + 0.09319 ‘\/Bulaﬁua,
0.15575(8a)? — 3.35688 -
TE = — 15575 9
12 Co \/,Bmaﬁma + 0 \/ﬁola,ﬂl_a,
0.01376(Ba)? — 0.60216 -
3 €0 = — 01376
TEl-i Co ‘\/Bmaﬁma + 0.013 \/ﬁmaﬁma,
where a = radius of waveguide,
B = free-space phase constant,

Bnm = phase constant of TH,, wave.
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