Normal Mode Bends
for Circular Electric Waves

By H. G. UNGER

(Manuseript received February 18, 1957)

In dielectric-coated round waveguide the degeneracy or equality of phase
constants of THEy and TMyy waves is removed. I'n such a non-degenerate
waveguide, mode conversion in bends can be reduced by changing the curva-
ture gradually instead of abruptly. With curvature tapers, which are of the
order of, or longer than, the largest beat wavelength between TEqy and any of
the coupled waves, propagation of only one normal mode is maintained
throughout the bend. Linear curvature lapers can easily be made by bending
the pipe within the limit of elastic deformation.

Changes in the direction of a waveguide line can thus be made by inserting
a dielectric-coated guide section which is elastically bent over a fixed center
point. A thirty degree change of direction of a 2-inch I.D. pipe with 30 ft
of a dielectric-coated guide yields a total bend loss at &.4-mm wavelength
that is twice the TEq loss in 30 ft of straight pipe. An optimum bend
geometry is found which minimaizes the lotal bend loss. The normal mode
bend is a broadband device.

I. INTRODUCTION AND SUMMARY

A major problem in circular eleetric wave transmission is the question
of negotiating bends. In curved sections of a round waveguide the TEy,
mode couples to the TEy , TEp, , TE;y - - - modes and to the TMj; mode.
The coupling to the TM;; mode presents the most serious problem, since
the TEy and TMj; modes are degenerate in that they have equal phase
velocities in a perfectly conducting straight guide. TEq, power introduced
at the beginning of the bend will be almost completely transferred to the
TM;; mode at odd multiples of a certain critical bending angle. This
power transfer ean be reduced by removing the degeneracy of equal
phase velocity of TEy and TM;, modes. There are various methods to
remove the degeneracy; a simple and a very effective one is a thin dielec-
trie layer next to the walls of the waveguide. As a study of the dielectric-
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coated waveguide has shown,! this dielectric layer changes the phase
constant of the TM,, wave without appreciably affecting the propaga-
tion characteristics of the TEy mode.

With removal of the TEy-TMy degeneracy the mode conversion
which occurs when a TEy; wave passes through a bend of constant curva-
ture may be considerably reduced, but it will not be completely elimi-
nated. To design a bend with still lower mode conversion losses, we con-
sider the effect of tapering the curvature along the guide.

Guided wave propagation is most easily explained in terms of normal
modes. Normal modes are solutions of the wave equation in a particular
waveguide structure, and represent waves propagating without loss of
power except for dissipation. In the straight waveguide the normal mode,
in which we are mainly interested here is the TE, mode. The normal
modes of the curved section are not as simple as the straight guide modes,
but they can be expressed as the sum of the normal modes in the straight
waveguide. Here the mode of our main concern is the one which, when
represented as a sum of straight guide modes, has most of the power in
the TEy, part of the sum; in other words, is most similar to the TEq mode
of the straight waveguide.

At a transition from a straight waveguide to a eurved waveguide the
normal (TEy) mode of the straight waveguide will certainly excite this
normal mode in the curved waveguide but it will also excite a series of
other normal modes. All these modes propagate in the curved section,
and at the other transition to the straight guide excite not only the TEqy,
mode but a series of other normal modes of the straight waveguide. All
the power in the other normal modes represents mode conversion loss
of the bend.

A transition which transforms the normal (TEq) mode of the straight
waveguide into only one of the normal modes of the curved guide and
vice versa will avoid all mode conversion losses. Such a transition can
be realized approximately by tapering the curvature. Beginning with
zero curvature at the straight guide end of the taper, the curvature is
increased gradually along the taper to the finite value of the bend. The
normal (TEg) mode incident from the straight guide will be gradually
transformed into the particular normal mode of the bent guide which is
most similar in field configuration to the circular electric wave. At each
point along the taper there is essentially only one local normal mode cor-
responding in its configuration to the value of eurvature at that point.

This taper, unless it is infinitely long, is however only an approxima-
tion of the ideal normal mode transition. There will still be other modes
excited with a very low power level. In the next section we shall analyze
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the propagation in the normal mode taper. We will find that the taper
should have a certain minimum length to work properly. Usually it has
to be long compared to the beat wavelength between the TEq normal
mode and any of the other normal modes into which power may be con-
verted.

In the plain waveguide the degeneracy between TEq and TMy causes
an infinitely long beat wavelength. Hence, the normal mode taper would
not work there. A nondegenerate waveguide is an essential condition
for the normal mode bend.

We shall confine our attention to the linear taper. This is not the
optimum taper form, but it is most easily built.

The residual mode conversion in the bend is to be accounted for as
bend loss. This loss and the loss caused by the normal mode attenuation
in the bend add up toa total bend loss. We shall evaluate the total bend
loss for bend configurations which might be useful in circular electric
wave transmission. For specified waveguide dimensions the total bend
loss can be minimized by choosing the proper bend geometry.

The normal mode bend is an inherently broadband device. The total
bend loss shows the same order of frequency dependence as the loss in
the straight waveguide.

II. ANALYSIS OF THE NORMAL MODE TAPER

In the curved waveguide, wave propagation can be described in terms
of the normal modes of the straight waveguide. The relation between
these modes is then given by an infinite system of simultaneous first
order linear differential equations. It represents the mutual coupling of
the straight guide modes in the curved waveguide. We are interested
mainly in TEy propagation and shall restrict ourselves to a low
power level in all other modes. Consequently, an adequate procedure is
to consider only coupling between TEy and one of the coupled modes at
a time. Thus, the infinite system of equations reduces to the well known
coupled line equations?’

dE .
TZI = - ’YlEl +JC]‘-'42,

(1
B, . .,
_d7 = JCEI - 'YgEg,

in which

E1.2(z) = wave amplitudes in mode 1 (here always TI) and
mode 2 (TMjy; or one of the TE,,), respectively;
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Y12 = jBi2 + ai2 = propagation constants of modes 1 and 2, respec-
tively, (the small perturbations of +; and =,
caused by the coupling may be neglected here);
and

¢(z) = coupling coefficient between modes 1 and 2.
In the curved waveguide the coupling coefficient is proportional to the

curvature k:

c(z) = c'k(z) = 0'@, (2)
dz

in which 6 is the direction of the guide axis. The coupled line equations

(1) with varying coupling coefficient have been solved by W, H. Louisell

and we shall borrow freely from his treatment.’

We define local normal modes w,;(2) and w.(z):

Ey=|wcostt— wsinitle™

_ (3)
E, = [w sin i &+ wcosltle ™,
in which
_Mn + 2
2 b
c ¢
tan § = ;2 =3,
ang=J Y — M J Ay
Substituting (3) into (1), we find that w;(z) and w,(z) must satisfy
dw, _ 1dt
dz F(z)wl—éang,
d 1d¢ @
W _ _ lag
E‘_“'-P(z)wﬂ_ 2dzw1:

where T'(2) = 3 v/Ay? — 4¢2 In (4) the local normal modes are coupled
only through the terms poportional to d¢/dz. When ¢ is constant they are
uncoupled and true normal modes. For small values of df/dz or more
specifically when

<1 (5)

KR
21" dz

approximate solutions of (4) can be written down, which proceed essen-
tially in powers of d¢/dz. These solutions are:
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w,(z) = e |:w1(0) + 1w2(0)f dj’ B g
2 0 dz

—_wl(O),[ df 72p(z'J ﬁ% 2p(z/) dz” dz,jl,
(6)

wa(z) = ¢ l:wg(O) — = 1(())f 55 ) g

E it d¢ GG ]
ws(0) f e fu T €T & de

in which
p(2) =f T(z) dz'.
0

The initial conditions in the normal mode taper are E,(0) = 1 and
Ii5(0) = 0. The taper begins with zero curvature, £(0) = 0. Hence from
(3) wy(0) = 1 and w,(0) = 0. The wanted local normal mode is w, while
w, is an unwanted mode. At the end, z , of the taper the unwanted mode

oRM CURvy4
\)‘“F__-'L 22,- 7095

CURVATURE k
I —— - X ———
o

S —— Vo)

Fig. 1 — Normal mode bend with linear curvature taper.
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amplitude is

. (7

_1 “ df 2p(2)
| walz) | -i(fo & goor g,

This amplitude represents mode conversion loss and therefore has to
be kept as small as possible.

In (7) the function £(2), i.e., the taper function, is still undetermined.
Obviously it can be chosen so as to optimize the taper performance. A
taper of optimal design keeps the unwanted mode below a certain value
with asshort a taper length as possible. From (7) the relation between this
optimizing problem and the problem of the transmission line taper of
optimal design® is at once evident. The transmission line taper is a low
reflection transition between lines of different characteristic impedances,
To minimize the length of the transition for a specified maximal reflec-
tion, the characteristic impedance has to change along the transition
according to a function which is essentially the Fourier transform of a
Tschebyscheff polynomial of infinite degree. The same procedure can be
applied here and it will result in a curvature taper of optimal design.

We are, however, at present not as much interested in a transition of
optimal design as in a curvature taper which can easily be built. Suppose
we bend the pipe to a bending radius B, which causes only elastic defor-
mation. We do this on a form of radius R, , Fig. 1. The forces acting on
both ends of the pipe cause a torque and hence a curvature of the pipe
which increases approximately linearly from the pipe end (z = 0) to the
point of contact (z = z;) between pipe and form:

zZ1

The corresponding curve which the pipe forms along the taper is Cornu’s
spiral.

We shall evaluate (7) for a curvature as given by (8). In considering
the mode conversion we may neglect all heat losses, that is ¥y = 7B, ete.
With

¢ = ¢ j—l, (©)]
we get
dte 2 1
&;_m1+400232' (10)

AB2?
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_ AB 2 Co2 1 —1 2¢02
P =0 [Aﬁzl 4/1 + 4(AB ) R Ry = ] (an
We introduce (10) and (11) into (7) and take advantage of

and

2 A ,6 «1, (12)
which is satisfied for a gentle enough bend. The unwanted mode level
is then given by

_ Co jAfz
| we(z) | = A5, (1 — ™) | + 0 (8 Aﬁﬂ) (13)

The general restriction (5) for the solution (6) in case of the linear

taper is
200 00222 )——3,’2
el i | —_— 1
A%z ( T4 AB2z* <4

and in view of (12) only

| ABzy | = 1 (14)
is required. The length of the transition has to be of the order or greater
than the largest beat wavelength.

In addition to mode conversion loss the normal mode suffers heat loss
along the taper. From (3) and (6) this heat loss is given by the real part
of [yz — p(2)). If AB > Aa we get

Rlyz — pl = ez + Aafo A—ﬁﬁ iz, (15)

It follows from (15) that the attenuation of the coupled straight guide
modes should not be too high for the normal mode bend to work properly.

III. THE TOTAL BEND LOSS

We will consider bends of the dielectric-coated waveguide only. The
normal modes of the dielectric-coated waveguide have phase constants
which are slightly different from the phase constants of the modes in
the plain guide!

™, 52 =<2 15,
Isnm €
2 !
TE,, 28 __" e —1; (16)

with ngd Bam  Pamt — M2 (1 — %)

2 ’
TEy, 28 =P € =1

Snm T 1 - lﬂ'om2
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The losses in the dielectric coat increase the attenuation constants by:
n
ap

TMnm —_— =

Brm
2 ”

@p n €

| m

8,

~

2

m

TE.m

with nz0 ﬁnm an2 — n? 6’2(1 - Vnmz)

, (17)

2 "
TEy, 22 = Pm € 3
" Bom 3 1 — o
TFor the circular electric waves the dielectric coat increases the wall cur-
rent attenuation by

2
TEO,,,i—“‘ =( - nhmy (18)

Om Vom
The various symbols in (16), (17) and (18) are:

Bam = plain guide phase constants of TM,,, and TE,,, respectively;

Pum = mth root of J,(x) = 0for TM,... , and mthroot of J,/(z) = 0
for TE, .. waves respectively;

A Damh

A . . . .
Vam = — = cutoff factor in plain waveguide of radius a;
Ao 2ra

6= grelative thickness of dielectric coat;

= ¢ — je’ relative dielectric permittivity of dielectric coat;
a.m = attenuation constant of TE,, in the plain waveguide.

m

The coupling coefficient between the straight guide modes in a curved
waveguide is ¢ = ¢//R in which:’
TEqy = TMy, ¢’ = 0.18454 Ba,
0.09319(8a)* — 0.84204
V Buanae
2 __
TEy = TEync = 0'1557%‘35%8 + 0.15575 \/BoaBro, )

0.01376(Ba)* — 0.60216
TEnl TEH C = \/M + 001376 V ﬁolaﬁlaa,

TEy 2 TE, ¢ = + 0.09319 v/Boabna,

where 8 = free-space phase constant.

We consider the bend configuration of Fig. 1, with the curvature being
a trapezoidal function of length. The maximum power loss due to con-
version to one of the unwanted modes in the first transition is, by (13),

2
4 Co

(ABz)? AR

We (Z;) lgmnx =
|
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By the law of reciprocity the same conversion loss occurs in the second
transition. Both conversion parts phase with each other. To get an aver-
age total conversion we may add them in quadrature and the total con-
version loss to one of the unwanted modes is, expressed in nepers,

_ 4 602
- (A.le)2A_ﬂ2 '

Under most unfavorable phase conditions the conversion loss may be
twice this value, but it is very unlikely that such phase conditions will
be satisfied for all coupled modes simultaneously.

Besides mode conversion loss the local normal mode suffers attenuation
in the bend. This attenuation is larger than the straight guide attenua-
tion. Each straight guide mode contained in the local normal mode of
the bend causes an increase in attenuation. From (15) the loss caused by
one of these straight guide modes is:

A, (20)

1 2
Ay = (o1m — an) j{; Aiﬁg'dz- (21)

Where ay,, is the attenuation constant of the TE;. and TM; waves
respectively in the dielectric coated waveguide.

Introducing the trapezoidal curvature function of Fig. 1 into (21)
we get

2
Ay = 1:;]62 (a1m — car) (l - %zl) (22)

The loss caused by the TEy, attenuation in the straight dielectric coated
guide is from (17) and (18)

2 2 n
A, = anl [1 + (e — 1) T’ﬂaﬂ] g P B gy (23)
i"ﬁm2 3 1 —_ 1"012
The total bend loss is finally obtained by summing up all the terms of
(20), (22), and (23),

A=A, + 2 A4+ 2 A.. (24)

The summation signs indicate that all coupled modes (TMy and TE;.)
have to be taken into account.

The effectiveness of the normal mode bend is best demonstrated by a
practical example. A copper pipe now in experimental use at Bell Tele-
phone Laboratories for circular electric wave transmission near 5.4 mm
wavelength has 2-inch I. D. and 2§-inch O.D. Suppose we want to change
the direction of a waveguide line with this copper pipe bn an angle 6.
We can do this most easily by inserting a dielectric-coated section, which
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is bent around a fixed support in the center by forces acting on both
ends. In order not to exceed elastic deformation the bending radius must
not be smaller than

Run = (25)

Foume 17
where fu.x = flexural stress at elastic limit,
I/ = modulus of elasticity,
a; = outside radius of pipe.

This minimum bending radius requires a minimum length to change the
pipe direction by a specified angle 8, given by

lmin = 2a[lf?min . (26)

The total bend loss (24) has been evaluated for a bend configuration as
specified by (25) and (26). The result is shown in Fig. 2. The total addi-
tional bend loss is only of the order of the TIy; loss in the plain straight
waveguide. For small bending angles the curvature taper becomes shorter
and consequently the mode conversion loss inereases. The mode conver-
sion loss, however, does not go to infinity for zero bending angle. In
this case (14) is no longer satisfied, and the mode conversion loss is no
longer described by (20).

The level of the various unwanted modes which ean be caleulated from
(20) is plotted in Fig. 2.

For a practical waveguide one would decide on a standard length of
dielectric-coated pipe, one or several of which would be inserted whenever
a change in direction has to be made. Take, in our example, a standard
length of 15 feet. With one such section a change of direction up to 15°
could be made. For a change in direction up to 30° two such sections
would have to be inserted and bent around a fixed support at the center
joint. The total loss of Fig. 2 is then a maximum value, which would
only occur when the pipe is bent to the highest allowable bending angle.

IV. A NORMAL MODE BEND OF OPTIMUM DESIGN

The various terms of the total bend loss (24) depend on the bend geom-
etry in quite different ways. It is therefore likely that for a given bending
angle 6, a bend geometry can be found, which minimizes the total bend
loss. The total bend loss can generally be written as:

1 —-u

L 1 27)

A=Sl+Bz'(l_—u)2 mr
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Fig. 2 — Normal mode bend. Dielectric-coated copper pipe with 2-inch I.D.
and 23-inch 0.D. deflected to limit of elastic deformation (A = 5.4 mm).
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in which
Do’ 5 Dor € Bor 3
S = [1 /1) 8L :| g € ro
Qo + (e ) Yor® + 3 1= v &,
6’2 9
B =3z A—,B2 6o (a’lm - Otm),
(28)

2
[

2
C=EE‘;90,

=2
u=7.
Here again the summation signs indicate that all coupled modes have
to be taken into account. The factors S, B, and C do not depend on the
bend geometry, but only on the total bending angle, the waveguide prop-
erties, and the frequency. Necessary conditions for A (u, I) to be a mini-

mum are:

9A _ 200 —2u)[B _ c]_ '
au U0 = w) [?s' | = O 29
with the two roots
1
u = § ] (30)
o H
and
1 - %u
M _g_p_ 8 1 4 _1_, (32)
al (1—w)?l  (u— u?)?b ’
If u = 1, the solutions of (32) are the roots of
SP—4BI —64C = 0. (33)

If (lu)® = 3(C/B), the solutions of (32) are the roots of

o\ (B\}

Sufficient conditions for A (u, [) to be a minimum are:

94 a4 *A\
o aE (m) >0, (35)
A (36)

du? ’ K
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If w = %, we have:

2
’A_
dual
4 8 (B C
w_ﬁ(g—i-cloﬁ), @7
4 32y C )
a1 i3

Substituting

OV 7S\ (38)
= (5) (3)
we get instead of (33)
22(Bz" — 1) — 2 = 0, (39)
and instead of (37)
2
‘;_; = 16-? (@* — 1).

The positive root of (39) is plotted in Fig. 3. It follows that if r > 1 we
have > 1, consequently A /o’ > 0; and if r < 1 we have z < 1,
consequently 8°4/du* < 0. Consequently if, and only if, » > 1 the
values © = % and 2 from Fig. 3 minimize the total bend loss A.

35

3.0 /

_

Fig. 3 — Positive root of 23(32? — 1) — 2r® = 0.
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If (ul)® is equal to 3(C/B),
’ATA 2A)$4£1—2u
aur olF  \oual lu

and
A 2B 1 — 2u

ot T (1—w)?’

Hence, if v < § or, because of (31) and (34) r < 1, a minimum of A4 (u,
1) is located at

C c\' |, (B\}
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Flg 4 — 90 normal mode bend of §-ineh I.D. copper pipe with a dielectric coat
of ¢ = 25, ¢ = 2.5 X 1073, Optimum design for 5.4-mm wavelength.
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To find the optimum bend geometry for a given dielectric coated guide
and a specified bending angle we calculate r from (38). If > 1 the opti-

mum geometry is
l=21/§:n and 2z, = /‘/gx

with & from Fig. 3. If r < 1,

(., O\ (BY _ 0)*
l—(3§)+(§), ﬂnd zlr—(?’ﬁ .

A numerical example, the 90° bend of a f-inch I. D. copper pipe, is
shown in Fig. 4. The total bend loss in the optimally designed bend de-
creases steadily with increasing thickness of the dielectric coat. This
indicates that there is also an optimum coat thickness, which minimizes
the total loss of the normal mode bend of optimum total length and taper
length. Unfortunately, however, several approximations made in calcu-
lating phase constants and coupling coefficients in the dielectric-coated

0.20

0.18

MODE CONVERSION
——=——  LOSS

0.6

0.08

LOSS IN DECIBELS
o
o

ADDITIONAL
NORMAL MODE
LOSS

CUTOFF FREQUENCY

0.06

0.04 ———

7 TEq LOSS IN
STRAIGHT WAVEGUIDE

0.02

o] 10 20 30 40 50 60 70 80 90 100
FREQUENCY IN KILOMEGACYCLES PER SECOND

Fig. 5 — 90° normal mode bend of -inch I.D. copper pipe with a dielectric coat
0.0075 inch thick (¢/ = 2.5, ¢’ = 2.5 X 107%), designed for optimum performance
at A = 5.4 mm (55.5 kme).
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waveguide usually break down at smaller than optimum values of the
coat thickness.

It should be mentioned finally that the normal mode bend is an in-
herently broad band device. Except for the oscillations of the mode con-
version portion of the total loss as caused by spurious mode phasing,
there is only a gradual change of the loss with frequency.

Some terms contributing to the total loss decrease with frequency,
others increase. The over-all frequency dependence is of the same order
as the frequency dependence of the loss in the straight waveguide. As an
example, in Fig. 5 the bend loss has been plotted versus frequency for
the normal mode bend of Fig. 4.
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