Non-Binary Error Correction Codes*

By WERNER ULRICH
(Manuseript received April 19, 1957)

If a noisy channel is used to transmit more than two distinct signals,
information may have to be specially coded to permit occasional errors to be
correcled. If pulse amplitude modulation is used, the most probable error
1s a small one, e.g., 6 s changed to 7 or 5. Codes for correcting single small
errors, and for correcting single small errors and detecting double small
errors, in a message of arbitrary length, for an arbitrary number of differ-
ent signals in the channel, are derived in this paper.

For more specialized situations, the error is not necessarily restricled to a
small value. Codes are dertved for correcting any single unrestricted error
i a message of arbitrary length for an arbitrary number of different sig-
nals.

Finally, a set of codes based partially wpon the Reed-Muller codes is
described for correcting a number of errors in a more restricted class of
message lengths for an arbitrary number of different signals.

The deseribed codes are readily implemented. Many techniques are used
which have an analog in a binary system. Other techniques are broadly
analogous to binary coding techniques or are special adaplations of a
binary code.

1. INTRODUCTION
1.1 Use of Error Correction Codes

One function of an error correction code is to aid in the correct trans-
mission of digital information over a noisy channel. This process is
illustrated in Fig. 1. An information source gives information to an
encoder; the encoder converts the information into a message containing
sufficient redundancy to permit the message to be slightly mutilated by
the noisy channel and still be correctly interpreted at the destination.
The message is then sent via the noisy channel to a decoder which will
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reconstruct the original information if the mutilation has not been ex-
cessive. I'inally, the information is sent to an information receptor.

One scheme for correcting errors in a binary system is to send each
binary digit of information three times and to accept at the receiver
that value which is represented by two or three of the received digits.
Then, the encoder is simply an instrument for causing each digit to be
sent three times, and the decoder consists of a majority organ. However,
many methods are available which are considerably more elegant, and
which will permit more information to be passed through a noisy channel
in a given unit of time. This paper will deal with such methods for
channels capable of sending b different symbols instead of the usual 1 and
0 of a binary channel.

The most convenient explanation of an error correction code has been
made with respect to the transmission of correct digital information
over a noisy channel. This does not imply the restriction of such codes

INFORMATICN - DECODER INFORMAT ION
SOURCE ~ | [—| ENCODER — CHANNEL === (cORRECTOR) [—» | RECEPTOR
i1
i
NOISE

Fig. 1 — Transmission over a noisy channel.

to the noisy channel problem exclusively. Actually, the first application
considered for such a code was with respect to computers.! Many large
high speed computers stop whenever an error is detected in some calcu-
lation and must be restarted; with the use of an error correction code
this could be avoided by permitting the computer to correct its own
random errors directly. To the best knowledge of the author, error
correction codes have not yet been used in any major computer. But
the storage system of a computer may, in the future, lend itself to the
use of error correction codes.

Frequently, very elaborate precautions must be taken in present
storage systems to insure that they are free from errors. Magnetic tapes
must be specially made and handled to guarantee the absence of defects,
magnetic cores must be carefully tested to make sure that no defective
cores get into an array, cathode ray tubes used in Williams Tube or
Barrier Grid Tube storage systems must be perfect. Probably, there are
other storage methods whose development is hampered because of a
common requirement for error-free performance in all storage locations.
With the use of error correction codes, such storage systems could be
used, if they are sufficiently close to perfection, even though not perfect.
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It is not unlikely that the near future will see the development of
storage systems which will be able to store more than two states at every
basic storage location.? If such systems are developed, it seems likely
that they will be more erratic or noisy than binary storage systems,
since each location must store one of b signals instead of one of two. If a
cathode ray tube storage system were used, for example, different quan-
tities of charge would have to be distinguished; in a binary storage
system, only the presence or absence of charge must be detected. This
suggests that error correction codes may become essential with certain
types of non-binary storage systems. One object of this paper is to
develop codes for this purpose and to discover which number systems
are most easily correctable.

Some investigations have been made on the use of computer systems
using multi-state elements.? A switching algebra has been developed
similar to Boolean algebra for handling switching problems in terms of
multi-state elements. Single device ring counters (the cold cathode gas
stepping tube for example) already exist and might be useful in such
systems. But currently, only limited steps in this direction have been
made. Another object of this paper is to show the advantages and
problems of error correction codes in multi-state systems; it is not un-
reasonable to predict that error correction codes may be more necessary
in multi-state systems than in binary systems.

1.2 Geomelric Concept of Error Correction Codes

A geometric model of a code was suggested by R. W. Hamming!
which can be altered slightly to fit the non-binary case. I'or an n digit
message, a particular message is a point in n dimensional space. A
single error, however defined, will change the message, and will cor-
respond to another point in » dimensional space. The distance between
the original point and the new point is considered to be unity. Thus,
the distance d between the points corresponding to any two messages is
defined as the minimum number of errors which can convert the first
message into the second.

With an error detection and/or correction code, the set of transmitted
messages is limited so that those which are correctly received are recog-
nizable; those messages which are received with fewer than a given
number of errors are either corrected or the fact that they are wrong is
recognized and some other appropriate action (such as stopping a com-
puter) is taken.

In the case of binary codes, an error changes a 1 to 0 or a 0 to 1. In
the non-binary case, two definitions of an error are possible and will be
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used in this paper. A small error changes a digit to an adjacent value.
In a decimal system, a change from 1 to 2 or 1 to 0 is a small error. An
unrestricted error changes a digit to any other value. In a decimal sys-
tem, a change from 1 to 5 is an unrestricted error.

1.3 Material To Be Presented

The various types of codes described in this paper and the sections
in which they are to be found are summarized in Table I. The tech-
niques which are described are summarized below.

The geometric model suggests the simplest approach to error correction
codes. A transmitter has a “codebook” containing all members of the
set of transmitted messages. If the message source gives to the encoder
the signal that the information to be sent is & (that is to say, the kth

TaBLE I — Typres oF CoDES

Type of Code Distance Type of Error De;‘i’?&f’ﬂ in

Single Error Detection 2 Small and Unrestricted 11
Single Error Correction 3 Small IIT and 6.1
Single Error Correction 3

Prime Number Base Unrestricted 4.1

Composite Number Base Unrestricted 4.2
Single Error Correction 4 Small V and 6.1

and

Double Error Detection
Multiple Error Correction — Small 6.2

output of all the outputs associated with the message source), the en-
coder chooses the kth member of the set. The decoder will then look up
the message it receives in its own codebook which contains all possible
received messages, and corresponding to the entry of the received mes-
sage will find the symbols corresponding to k. Or the receiver may
compare the received message with every member of the set of trans-
mitted messages, calculate the distance between the two, and correct
the received message to whichever of the transmitted messages is sep-
arated from the received message by the smallest distance. (It has been
shown by Slepian? that this is the message most likely to be correct in a
symmetrical binary channel having the property that changes from 1 to
0 and from 0 to 1 as a result of noise in the channel are equally likely.)

The practical difficulty with such a code is the large size of the re-
quired codebooks. Most coding schemes try to eliminate such codebooks
and substitute a set of rules for encoding, decoding and correcting
messages.
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One approach toward creating a simple association between the infor-
mation and the message is to use some of the digits of the message for
conveying information directly. The Hamming Code! uses this tech-
nique.

An information digit is a digit of a message that is produced directly
by the information source; in a base b code, an information digit may
have b different values, the choice between these values representing the
information that is to be sent.

A check digit is a digit of a message that is calculated as a function of
the information digits by the encoder. It is sometimes convenient to
represent or caleculate a check digit in terms of a recursive formula using
previously calculated check digits as well as information digits. In a
base b code, a check digit may have b check states. When more than one
check digit is used, each different combination of check digits corre-
sponds to a different check state for the message; a message with m
check digits will have b™ message check states.

A systematic® code encoder generates messages containing only infor-
mation digits and check digits. The information source generates only
base b information digits. The Hamming Code is a systematic code.

Section IT offers a general method for obtaining single error detection
codes for both small and unrestricted errors. The idea of mixed digits
(digits which are, in a sense, neither information nor check digits, but a
combination of both) is introduced, and it is shown how mixed digits
may lead to more efficient coding systems. This idea is believed to be
novel. Code systems which use mixed digits are called semi-systematic
codes. Semi-systematic codes are used extensively throughout this
paper.

Section III offers a general method for obtaining single small error
correction codes, including both systematic and semi-systematic codes.

Section IV offers a general method for obtaining the more complicated
single unrestricted error correction codes. The problem is divided into
two parts. Section 4.1 describes codes for correcting single unrestricted
errors in case b, the base of the channel, is a prime number.* Section 4.2
describes a special technique for obtaining the more complex codes for
correcting single unrestricted errors in the event b is a composite num-
ber.

Section V offers a general method for obtaining semi-systematic codes
for correcting single small errors and detecting double small errors. No
general solution has been found for obtaining single error correction or
double error detection codes for the case of unrestricted errors. No gen-

* This class of codes was previously described in a brief summary by Golay.%
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eral solution has been found for multiple error correction codes for the
unrestricted error case.

In Section VI, a number of techniques are presented for using binary
error correction coding schemes for non-binary error correction codes.
Section 6.1 shows how such techniques may be used to obtain non-binary
single error correction codes, and single error correction double error
detection codes, for the small error case. Section 6.2 presents a special
technique, involving the use of an adaptation of the Reed-Muller binary
code, to obtain a class of non-binary multiple error correction codes, for
the small error case.

Section VII shows that an iterative technique of binary coding can be
directly applied to non-binary codes. It also shows how an adapted
Reed-Muller code can be profitably used in such a system.

Section VIII summarizes the results obtained in Seetions II-VII and
shows the advantages and shortcomings of many of these codes.

Section IX presents general conclusions which may be drawn from
this paper.

II. SINGLE ERROR DETECTION CODES

Single error detection codes require message points separated in n
dimensional space by a distance of two.

For the binary case, the only two possible types of errors are the
change from a 1 to a 0 and from a 0 to a 1.

A simple technique that is used frequently for binary error detection
codes is to encode all messages in such a manner that every message
contains an even number of 1°s. This is accomplished by adding a parity
check digil to the information digits of a message; this digit is a 1 if an
odd number of 1’s exist in the information digits of a message and is a
0 if an even number of 1’s exist in the information digits. At least two
errors must occur before a message containing an even number of 1’s
can be converted into another message containing an even number of
1’s, since the first error will always cause an odd number of 1’s to
appear. A message with an odd number of 1’s is known to be incorrect.*

An analogous technique may be used for the unrestricted error case in
non-binary codes. We can obtain a satisfactory code by adding a com-
plementing digit to a series of information digits to form a message.

A complementing digit, base b, is defined as a digit which when added
to some other digit will yield a multiple of b.

* Parity check digits may be selected to make the number of 1’s in a message

always odd, but the principle is the same; in this case, an error is recognized if a
received message contains an even number of 1’s.
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Tor a single unrestricted error detection code, the complementing
digit complements the sum of the information digits. A complementing
digit is a check digit. In the binary case, it is a parity check digit.

As an example, consider a decimal code of this type. A message 823
would require a complementing digit 7, making the total message
8237 (8 + 2 4+ 3 4+ 7 = 20, a multiple of 10). An error in any one digit
will mean that the sum of the message digits will not be a multiple of 10.

TFor the small error case, it is sufficient to make certain that the sum
of all digits is even since any error of =1 would destroy this property.
For the binary case, all errors are small since the only possible error on
any digit is a change by =1; a simple parity check is adequate. I'or a
non-binary code, it would be wasteful to add a digit just to make sure
that the sum of all digits is even. In a decimal code for example, if the
sum of the message digits is even, the values 0, 2, 4, 6, 8 for the check
digit will satisfy a check, or if the sum of the message digits is odd, the
values 1, 3, 5, 7, 9 will satisfy the check. More information could be
sent if a choice among these values could be associated with informa-
tion generated by the information source.

This introduces the concept of a mixed digit;i.e., a digit which conveys
both check information and message information.

A mixed digit is defined as follows: a mixed digit x, base b, is composed
of two components (y, 2) where y represents an information component
and z represents a check component. The number of information states
of a mixed digit is 8, with y taking the values 0, 1, ---, 8 — 1; the
number of check states of a mixed digit is «, the number base of z.
In a message containing m check digits and h mixed digits, the number
of check states for the message is b™-ay-as- ... -a;, Where «; is the
number of check states of the 7’th mixed digit.

If mixed digits are used as part of a code, information must be avail-
able in at least two number bases; b, the number hase of the channel,
and 8, the number base of the mixed digit. A situation where this arises
naturally is in the case of the algebraic sign of a number; this is a digit
of information, base 2, which may be associated with other digits of
any base. Similarly, any identification which must be associated with
numerical information can be conveniently coded in a number base
different from the number base of the numerical information. Thus, a
mixed digit ean sometimes be used conveniently in an information trans-
mission system without complicating the information source and re-
ceptor.

An error detection code for single small errors suggests the use of a
mixed digit. In the decimal code for example, the quibinary” representa-
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TasLE II — QuiBiNaARY CoDE

Quinary Component Binary Component Decimal Digit
0 0 0
0 1 1
1 0 2
1 1 3
2 0 4
2 1 5
3 0 6
3 1 7
E 0 8
4 1 9

tion of the mixed digit might be used, letting the quinary component of
the mixed digit convey information and the binary component a check.
(Table I1.)

The information source generates blocks of decimal digits followed by
one quinary digit. The messages are then generated in the following
way : record all decimal information digits as information message digits
and take their sum; if the sum is even, the binary component, z, of the
mixed digit is 0, otherwise it is 1. The quinary component, ¥, of the mixed
digit is taken directly from the information source and combined with
the calculated binary part by the rules of the quibinary code to form
the mixed decimal digit. Thus, z, the value of the mixed digit, is given
by the formula:

T =2y + 2 (1)

For example, if the decimal digits of a message are 289 and the quinary
digit of the message is 3, the mixed digit is 7, and the message is 2897.
The sum of the decimal information digits is 19, which is odd, so that
the binary component of the mixed digit is 1; this is combined with the
quinary component, 3, by the rules of the quibinary code table, to form
decimal digit 7. The requirement that the sum of all digits be even is
satisfied by the binary component of the mixed digit, and the informa-
tion associated with the mixed digit is contained in the quinary com-
ponent.

This method is easily extensible to any other number base and is also
extensible to the case of slightly larger but still restricted errors (such
as +1 or =2), provided that the maximum single error is less than
®— 1)/2.

From the preceding example, it is apparent that mixed digits can be
usefully employed in error detection codes. The use of mixed, check and
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information digits simplified the encoder and decoder. To differentiate
among the classes of codes which will be deseribed in this paper, the
following terms will be used, in addition to those previously defined.

A semi-systematic code encoder produces messages containing only
information, mixed and check digits. The information source generates
information digits in base b for information digits, and in base 8 for
mixed digits. (The example given above is a semi-systematic code.)

Of two coding schemes in the same channel base b, each working with
messages of the same length, and each satisfying a given error detection
or correction criterion, the more efficient scheme is defined as the one
which produces the larger number of different possible messages.

III. SINGLE ERROR CORRECTION CODES, SMALL ERRORS (=1)

The problems of error correction codes in nonbinary systems are ex-
tensive and must be treated in several distinct sections. The basic differ-
ence between the error correction problem in binary and non-binary
codes is the fact that the sign of the error is important. In a binary
code, if the message 11 is received and it is known that the second digit
is incorrect, only one correction can be made, to 10. But in a decimal
code with errors limited to =1, if the message 12 is received and it is
known that the second digit is wrong, it can be changed to either 11 or 13.

Consider the following simple code for correcting single small errors.
A decimal channel is used, and a message is composed of three informa-
tion digits and one check digit. Let x, represent the check digit and a. ,
a3, x4 the information digits. Here, x, is chosen to satisfy*

x + 2xs 4+ 33 + 4xy = 0 mod 10. (2)

The encoder calculates @, and transmits the message x5z . This is
received as x,'x:'vy’xy’. The decoder then calculates ¢ given by

e = (v 4+ 2v" 4+ 32 + 42/) mod 10. (3)

It the assumption is made that at most a single small error exists, then
this error can be corrected by using the following rules, which may be
verified by inspection.

If ¢ = 0, no correction is necessary;

5 > e > 0, decrease the cth digit by one;

* By definition @ = ¢ mod b is equivalent to a = ¢ + nb, where a, b, ¢ and n
are integers. The equality notation is used in preference to the congruence nota-
tion throughout this paper, since an addition performed without carry oceurs
naturally in many eireuits; in terms of such a cireuit, the mod b signifies only the

base of the addition, and a true equality exists between the state of two circuits,
with the same output even though one has been eycled more often.
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5 < ¢, increase the (10 — ¢)th digit by one;

¢ = 5 implies a multiple error or a larger error.

Since the value of ¢ is used for correcting a received message, it is
called the corrector.* For the general case, a corrector is defined as
follows.

In a message encoded to satisfy m separate checks, the result of cal-
culating the checks for the received message at the decoder is an m digit
word called the corrector. There are as many possible values of the cor-
rector as there are check states of the message, although all of the
values of the corrector need not correspond to a correctable error.

It is important that, for a given transmitted message, every different
error will lead to a different value of the corrector; otherwise there will
be no way of knowing which correction corresponds to a particular value
of the corrector. The number of correctable errors may be far less than
the number of possible values of the corrector, so that not all of these
values may be useful for a code to correct a particular class of errors.
However, the number of corrector states sets an upper limit to the num-
ber of possible corrections.

For many codes, it is convenient to associate a particular value of a
corrector for the condition that a particular digit has been received too
high by a single increment, for example, a 7 received as an 8.

The characteristic of a digit for a particular code is defined as the value
of the corrector if that digit is incorrectly received, the error having
increased the value of the digit by +1, and all other digits are correctly
received. Obviously, this definition only applies to those codes having the
property that the value of the corrector is independent of the value of the
incorrect digit and of the other digits.

A simple characteristic code encoder produces messages in which each
digit has a distinet characteristic as defined above.

The Hamming code is an example of a simple characteristic code as
is the code previously described. In that example, the characteristic of z;
is 7.

The advantage of a simple characteristic code for single small error
correction is obvious: the association between the calculated checks
and the correction to be performed is simple and does not depend on the
values of the digits of the message.

The following example of a simple characteristic code will illustrate
this principle more fully.

Consider a single small error correction code, working with a quinary

* The terms corrector and characteristic were first used in a more restricted
sense in an article on binary coding by Golay
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(base 5) channel. Each message will consist of ten information digits
and two check digits.

Let x;, and x; represent the check digits, and x5, 24, -+, %12 represent
the information digits.

The equations for calculating x; and x5 are:

lay + Oxe + Oy + 1oy 4+ las + lae + lag

+ 25 + 21 + 2710 + 2211 + 2200 = 0 mod 5,
Ox; + lzs + 223 + 1oy + 225 + 3we + 4an

+ Oxs + lze + 2210 + 32 + 422 = 0 mod 5.

(4)

At the decoder, the corrector terms, ¢; and ¢, are calculated using 2/,
the received value of x;, in the following formulas:

1z + 0z + Oy’ + 1oy’ + las’ + lxe’ + 127

+ 22 + 2% + 20 + 220" + 220" = ¢ mod 5,
Oz + 1o’ + 22 + 12y + 225" + 3z’ + 427

+ 0z’ + 12y’ + 220" + 320" + 42 = ¢2 mod 5.

(6)

@)

The values of ¢ics corresponding to the condition that one and only
one digit is too high by 1, ¥/ = x; + 1, can be read by reading the coeffi-
cients of the 7th digit in the corrector formulas. This quantity is therefore
the characteristic of the 7th digit. If =/ = x; — 1, then the fives com-
plements of these coefficients will be the value of the corrector. Table IIT
lists the characteristics and characteristic complements associated with
each digit.

TaBLE III — CHARACTERISTICS AND CHARACTERISTIC COMPLEMENTS
SysTEMATIC QUINARY CoODE

Digit Characteristic Complement of Characteristic
Xy 10 40
Xa 01 04
X3 02 03
X4 11 44
Xg 12 43
Xs 13 42
X7 14 41
Xg 20 30
Xy 21 34
X10 22 33
X1 23 32
Xi2 24 31
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In this code all the possible values of eic; correspond to the charac-
teristic of a digit or the complement of this characteristic, except 00
which corresponds to the correct message. (An inspection of equations
(4) through (7) reveals that if z/ = x; for all values of 7, the values
of ¢; and ¢, are 0). Thus, we can assign a unique correction to each
value of ¢ics .

The above techniques are extensible to other number bases and dif-
ferent length words provided b, the number base of the channel, is
greater than 2. (The equivalent binary channel problem has been treated
by Hamming.') The following set of rules and conventions may be
used for deriving a satisfactory set of characteristics for a simple charac-
teristic systematic code used to correet single small errors for any length
message, and any base, b = 3. The rules must be followed, and the
conventions (which represent one pair of conventions out of the set of
pairs of conventions, which together with Rules 1 and 2 can be used for
deriving a code of this class) if followed, will lead to a reasonably simple
method for encoding and decoding messages.* Since the rules, not the
conventions, limit the efficiency of the code, no set of conventions can
be found which will lead to a more efficient, code of this class.

Rule 1. For an n digit message (including check digits), m check dig-
its are required and m must satisfy the following inequalities:

bm _ 1
2

if b is odd,

1%

n, (85)

bl‘n _ Zm
2

v
=

if b is even, (8b)

Rule 2. No characteristic may be repeated; i.e., each digit must have
a characteristic different from that associated with any other digit.

Convention 1. The various digits of a characteristic are arranged in a
set order; i.e., Ci;, Cyoi, - -+, O - The first digit which is neither zero,
nor (incase b is even) b/2, must be less than /2. There must be at least
one such digit.

Convention 2. The characteristic of the jth check digit has a 1 in the
jth position and 0’s elsewhere.

Rule 1 is required since, for a code of this t ype, we must be prepared to
correct any digit in one of two ways (31). This implies a minimum of
2 n 4+ 1 values of the corrector, one for each possible correction, and one
for the case of no corrections. This means that 1™, the number of possible

* The above distinetion between rules and conventions will be observed
throughout this paper.
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values of the corrector, must be at least 2 n + 1, equation (8a). For
even bases, we must reject all values of the corrector containing only
the digits 0 and b/2 for representing error conditions for the following
reasons: a positive error leads to a corrector that is the characteristic of
the incorrectly received digit, and a negative error leads to the b-com-
plement of such a characteristic. In order to have unique error correc-
tion, we must be able to distinguish between these two conditions. If a
characteristic were to contain only the digits 0 and b/2, it would be equal
to its own b-complement; such combinations of digits are therefore not
useable as characteristics or characteristic complements.

Rule 2 is required to permit a unique identification of an incorrect
digit in case of a single error.

Convention 1 allows us to distinguish between positive and negative
errors. By observing this convention, a characteristic (corresponding to a
positive error) can be distinguished from its complement (corresponding
to a negative error) by inspecting the first digit of a corrector which is
neither 0 nor b/2. A characteristic will have this digit less than b/2,
a characteristic complement will have this digit greater than b/2. If
the corrector is a characteristic, the correction is minus one; if it is a
characteristic complement, it is plus one.

Once the characteristics have been chosen, the corresponding encoding
procedure may be performed in the following manner: Let a;; represent
the jth digit of the characteristic of information digit x, . Let z; represent
the check digit which has a characteristic containing a 1 in the jth
position. If convention 2 has been observed, (9) can be used to cal-
culate z; :

aijr; = —z; mod b. (9)
=1
An encoder calculates each z; and inserts it into the message in those
digit positions which have the characteristic of the jth check digit as-
signed to them.

In more general terms, we use implicit relations that are equivalent
to the explicit equations given by (9). Letting x; represent an informa-
tion or a check digit, and letting C; represent the jth digit of the charac-
teristic of the 7th information or check digit, these formulas may be re-
written as

; C?'jil‘-.; = 0 mod b (10)

At the receiver, the decoder calculates m different check sums. Let ¢;
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represent the check sum corresponding to the jth corrector term, and
x; represent the received value of z; : Then,

E C(;.’E{’ = C; mod b. (1 1)
i=1

The difference between equations (10) and (11) is the result of any
mutilations caused by the channel. If no error has occurred, all the ¢;’s
are 0; if an error of ==1 has occurred, the m ¢;’s will form the characteristic
or the characteristic complement, respectively, of the incorrectly re-
ceived digit.

One disadvantage of a systematic code is the discontinuity in the
number of check states as a function of m, the number of check digits.
Tor example, in decimal code one check digit is required for a message
of up to four digits, and two check digits for up to forty-eight digits.
Obviously, for a message of intermediate length, for example, twelve
digits, many of the corrector states cannot be used for single error cor-
rection since they will not correspond to any single error. A more effi-
cient code would be obtained if the check states were limited to a smaller
number.

One method of reducing the number of check states is to perform the
check in a different modulus than the modulus of the channel. In the
single error detection code using a mixed digit, binary check informa-
tion and quinary message information was conveyed by this digit. This
code was more efficient than a systematic code because each message
contained the minimum number of check states which is 2.

If a mixed digit, z, is composed of the two components (y, z) where y
is the information state of the digit and z the check state, it is conven-
ient to combine these two components to form x by means of the formula

r = ay + 2. (12)

We calculate z by using a linear congruence equation modulo «.

The use of this formula permits a decoder to act on ', the received
value of z, directly, without first resolving &’ into ¥’ and 2’, because (12)
insures that ' = ¥’ mod «. This permits ' to be corrected directly and
then resolved into its components.

As an example, consider a semi-systematic code for correcting a single
small error in a decimal system, using a twelve digit message; ten of the
digits are information digits and two are mixed digits, each conveying
binary message information and quinary check information. (One of
these binary digits might represent the sign of the number.)

With two quinary checks, twenty-five different check states are pos-
sible; for correcting single small errors in a twelve digit message, twenty-
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TaBLE IV — CHARACTERISTICS AND CHARACTERISTIC COMPLEMENTS
’
SeMI-SysTEMATIC DECcmMAL CODE

Digit Characteristics Characteristic Complements
x; (mixed digit) 10 40
xa (mixed digit 01 0 4
X3 0 2 0 3
Xy 1 1 4 4
X5 1 2 4 3
Xg 1 3 4 2
X7 1 4 41
Xg 2 0 3 0
Xg 21 3 4
Xio0 2 2 3 3
X1 2 3 3 2
X2 2 4 31

five corrector states are required, one for each of the two possible cor-
rections (1) for each digit, and one for the case of a correctly received
message. Characteristics may be chosen for the various digits in accord-
ance with the rules and conventions outlined above in this case, since
the check modulus is the same for both check digits. Consequently, it
is no accident that these characteristics, shown in Table IV, are the
same as those shown in Table III.

Let (' and ' represent the characteristic of the 7th digit, and let
11 and 1, represent the two binary information digits. Then:

12
Z Cax; = —z mod 5, x = z + 5y, (13)
i=8
12
> Coxi = —z mod 5, Xo = 22 + Oys . (14)
i=3

Because x; = z; mod 5 and x2 = 2. mod 5, these relations can be re-
written implicity to resemble equation (10):

12
> Cax; = 0 mod 5, (15)
i=1
12
> Cox; = 0 mod 5. (16)
i=1

At the decoder, the corrector ¢c, is caleulated by:

12
E C,‘].’L’i’ = C1 ]]lOd 5, (17)
=
12
Y Cior/ = c:mod 5. (18)

i=1
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If the corrector is 00, the message has been correctly received; other-
wise, the corrector is either the characteristic or characteristic comple-
ment of the incorrect digit, from which plus one or minus one respec-
tively must be subtracted as a correction.

Consider the general case. Let @, x», - - -, 2 represent the & informa-
tion digits; ¥, ¥2, -+, ¥m represent the information state of the m
mixed digits, and 2, 22, ---, 2. represent the check state of the m
mixed digits. In addition, let ey , @, - -+ , @ represent the number base
of 2y, 22, -+, 2 rvespectively; Bi, B2, -+, Bm represent the number
of possible states of y1, y2, -+, ym respectively, and Zpy1, Tega, - -,
Zi4m represent the values of the mixed digits after the message has been
encoded. (Note that for simplicity, a check digit is considered as a special
case of a mixed digit; its information state is permanently 0.) The follow-
ing encoding procedure may be used in which z,, @:, - -+, @ are used
directly as part of the transmitted message. This is a semi-systematic
code, which means that information digits are not changed in coding.
To derive the mixed digits, the following formulas are used:

anty + 0+ awr = —z mod oy (19-1)
T4y = o + 21 (20-1)
@y + 0+ and; + CgrnTe4n = —zzmod as  (19-2)
Tty = Yooz + 22 (20-2)
apzy + o +apve + -0+ e inTetion

= —z;mod «;  (19-))

2oy = Yia; + z; (20-))
A1y + SRR ol 1 S 8 + e + Amk+m—1)T(k+m—1) = —&m mod Oy (]g‘m)
Totm) = YmOm + Zm - (20-m)

In each case, the value of the check component z;, of a mixed digit
sy i determined by a formula invelving the information digits and
previously calculated mixed digits. Immediately after z; has been de-
termined, xg4; is calculated for possible use in calculating z(4) -
After the message has been completely encoded the following equations,
analogous to (10), will be satisfied.
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Let C,; represent a;; in equation (19-j). Then,
k+m

Z C,‘j;l',' = 0 mod oj . (21)
i=1

(Since xgy; = 2z; mod a;, substitution of x4, for z; in equation (19-j)
will continue to satisfy the equation.)
At the decoder, equation (21) is changed to
k+m

> Cyrid = ¢; mod «; (22)
=1

In (22), / represents the received value of x;, and ¢; represents the jth
digit of the corrector. If all the digits have been correctly received, i.e.,
x/ = z;for all values of 7, then ¢, = ¢a = --- = ¢, = 0; [see equation
(21)]. If x5 had been received incorrectly so that @' = @ + 1, but all
other digits had been correctly received, then the value of ¢; (the jth
digit of the corrector) would be calculated in the following manner:

k+m

Cj mod a; = Z Cij.’t'i’
i=1
k+m
c;mod a; = Y, Cijw; + Chy = C); (23)
i=1

Equation (23) proves that Cj; is actually the jth digit of the charac-
teristic of 2 , because by definition, the characteristic of x, is the value
of the corrector when x,’ = a» + 1, and all other digits have been cor-
rectly received. This means that the general term, C;; of (21), is actually
the jth digit of the characteristic of the ¢th digit and that this is a simple
characteristie code.

Tor the case that 2’ = a, — 1, the value of the corrector is such that
if it were incremented, digit by digit, by the characteristic of ), the
corrector would be composed only of zeros. Incrementing the corrector
by the characteristic of x; is equivalent to recalculating the corrector
with 2’ increased by one, which in this case would amount to calculat-
ing the corrector for the case of a correctly received message. The
latter is composed of all zeros [see (21)]. Thus, for the case of a single
error of —1, the corrector is the characteristic complement of the digit
which is incorrectly received. For a semi-systematic or systematic code,
the characteristic complement is an m digit word whose jth digit is the
complement modulo a; of the jth digit of the characteristic.

Equation (20-j) shows that generally «;3; cannot exceed b. (An ex-
ception is given below.) The maximum value of y;is 8; — 1 since y is a
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digit in the number base 8; . The maximum value of z; is usually a; — 1,
since z; is a digit in the number base a;. Thus,

Tet; = Yioy + 2 =2 b — 1, (24)
B;— Da; +a; —1=b—1, (25)
a;B; £ 0b. (26)

Equation (24) restates (19-j), and also states that the maximum value
of any digit , is b — 1, where b is the number base of the channel. In
(25), the maximum values of y; and z; are substituted to yield the result
shown in (26).

It was stated above that the maximum value of z; is usually «; — 1.
An exception occurs only in case z; checks only itself and other mixed
digits, the latter being restricted to fewer than b — 1 states. Under such
circumstances, the value of z is sometimes restricted, so that even though
z is caleulated to satisfy a check, modulo «; [see equation (19-)], it can-
not assume «; — 1 values. For example, a code for transmitting a
single digit message over a decimal channel and permitting the correc-
tion of small errors, might use as the set of transmitted messages the
digits, 0, 3, 6, 9. In this case, « = 3 (any correct message satisfies the
check * = 0 mod 3) and 8 = 4 since four different messages may be
transmitted. In this case, z is restricted to the value 0 because the mixed
digit checks only itself.

In order to correct single errors of 1, using a simple characteristic
code, it is necessary and sufficient that every characteristic be different
from every other characteristic, and that it also be different from the
complement of every other characteristic.

The following rules and conventions may be used to derive a set of
characteristics which meet the requirements for a simple characteristic
semi-systematic or systematic code for correcting small errors for any
base b = 3 and an arbitrary length message. No set of conventions can
be found which will lead to a more efficient code of this class, since the
rules, not the conventions limit the efficiency of the code.

Rule {. For an n digit message, including mixed digits, containing m
mixed or check digits of which m; are associated with an even modulus,
a, the inequality

(o ape ... oy —2")/2 2 n (27)

must be satisfied.
Rule 2. No characteristic may be repeated, i.e., each digit must have
a characteristic different from that associated with any other digit.
Rule 3. Since the mth check is the last one to be caleulated, and the
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characteristic of the mth mixed digit must therefore contain only a single
digit which is not 0, @, must be greater than 2.

Convention 1. The various digits of a characteristic are arranged in a
set order, i.e., C;y, Cin, -+, Oy . The first digit which is neither 0 nor
a;/2 must be less than «;/2. There must be at least one such digit.

Convention 2. The characteristic of the jth mixed digit has a 1 in the
jth position and 0’s elsewhere, provided that a; # 2. If a; = 2, the char-
acteristic of this mixed digit has a 1 in the jth and mth positions, and 0’s
elsewhere.

Rule 1 is required because the number of possible corrector states is
aprass ... ‘an,of which only those containing at least one digit which
is neither 0 nor /2 can be associated with the 2n possible errors. The
same reasons used for Rule 1 for the systematic code case are equally
applicable here; a characteristic containing only the digits 0 or «;/2 in
the jth position is not distinguishable from its complement.

Rule 2 is required to permit a unique identification of an incorrect
digit.

Rule 3 is necessary to derive the sign of an error on the mth mixed digit.

The reasons for using Conventions 1 and 2 in the case of the sys-
tematic code are equally applicable in this case. For the case o« = 2,
however, a special convention must be used to avoid a conflict with
Convention 1.

The procedure for converting a set of characteristics into an error
correcting code system is the same for a semi-systematic code as for a
systematic code except that the following additional funetions must be
performed: the encoder must combine check states with information
states to derive mixed digits, and the decoder must resolve mixed digits
into information and check digits after it has performed its corrections.

By using these rules and conventions, the most efficient simple charac-
teristic code can be determined. For messages of length n (including
mixed or check digits), the following relations must be satisfied:

Let

P=aa ... an,
Q = Bi-B2 ... Bu,
m, = number of even o’s.
Then:
(P —2™)/2 z n, (28)
ad; £ b, (29)*

* For exceptions, see above,
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TaBLE V — DeciMaL Error Correcrion CODES

n P o= ay,an, ... B1,B:, ... 2n+1
Q
1 3 2.5 3 4 3*
2 5 5 5 2 5
3 10 10 10 1 7
4 10 10 10 1 9
5 15 16.7 5,3 2,3 11
6 15 16.7 5,3 2,3 13
7 15 16.7 5,3 2,3 15
8 20 20 10, 2 1,5 17
9 25 25 5,5 2,2 19
10 25 25 5,5 2,2 21
11 25 25 5,5 2,2 23
12 25 25 5,5 2,2 25
13 30 33.3 10, 3 1,3 27
14 30 33.3 10, 3 1,3 29
15 40 10 10, 2, 2 155 31
16 40 40 10, 2, 2 155 33
17 50 50 10, 5 1,2 35
18 50 50 10, 5 1,2 37
19 50 50 10, 5 1,2 39
20 50 50 10, 5 1,2 41

* The single digit message containing the points 0, 3, 6, 9 is an exception to
the inequality a8 = b, because the mixed digit checks only itself.

For the most efficient code b™/Q should be minimized. This term repre-
sents the ratio of the number of possible messages for an n digit message
with and without error correction. This is normally at least as great as
2n + 1, the number of possible corrections on such a message.

Table V shows the most efficient decimal codes of this type for an n
digit message, for values of n from 1 to 20. Where two or more different
codes are equally efficient, the code with the fewest mixed digits is shown.
It is easy to convert from a code using two mixed digits with ey = 5,
a; = 2, to one using a check digit with & = 10, or to make the inverse
conversion, and to show that both codes are equally efficient.

IV. SINGLE ERROR CORRECTION CODES, UNRESTRICTED ERROR

The problem of correcting an unrestricted error on one digit of a
message must be divided into two categories, depending on whether b
is a prime number or a composite number. As will be seen, the error
correction problem for prime bases is considerably simpler than that for
composite bases. The method for correcting errors in prime number
systems was discovered by Golay,® although this did not come to the
author’s attention until after he had worked out the same method. The
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adaptation to non-prime channel bases is believed to be novel. Since the
adaptation makes use of the code for prime bases, both will be described.

4.1 Prime Number Base, Single Unrestricted Error Correction Code

'This code depends upon a fundamental property of prime numbers,
well known in number theory.” Let p represent a prime number and d,
e, and w represent non-negative integers less than p, related by the
expression :

dw = ¢ mod p. (30)

If d # 0, then d and ¢ uniquely determine w.

In order to have a simple characteristic systematic code for correcting
unrestricted errors, it is necessary and sufficient that the set of charac-
teristics shall have the property that all multiples of all characteristics
are distinct. Equation (30) implies a unique correspondence between mul-
tiples of a characteristic and the characteristic itself, if we consider ¢ to
be the multiple, d the multiplying factor and w a digit of the charac-
teristic. An error, d, is simply identifiable if a known digit of a charac-
teristic is always 1. If each characteristic is distinet from every other and
if a sufficient number of check digits are available, a simple characteristie
code can be obtained. In the following set of rules and conventions which
may be used for deriving a set of characteristics for a simple charac-
teristic systematic code for correcting single unrestricted errors, p repre-
sents the prime number base of the channel. The number base of the
channel must be prime, and the length of the message is arbitrary. Since
the rules and not the conventions limit the efficiency of the code, no other
set of conventions may be found which will lead to a more efficient code
of this class.

Rule 1. For an n digit message, m check digits are required and m
must satisfy the inequality
" =1
p—1

Rule 2. Each digit must have a different characteristic.

Convention 1. The digits of a characteristic are arranged in a set
order, ie., CyC - -+ Ciyn . The first digit which is not 0 must be 1.

Convention 2. The characteristic of the jth check digit has a 1 in the
jth position and 0’s elsewhere.

Rule 1 is required for a code for correcting single unrestricted errors
gince any digit must be correctable in one of p — 1 ways. This implies
a minimum of n(p — 1) + 1 states for the corrector, one for each cor-

n =

(31)
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rection and one for the correct message. When m check digits are used,
p™ corrector states are obtained.

Rule 2 and Convention 2 are the same for the single small error cor-
rection systematic codes. The same reasons apply for both cases.

Convention 1 is changed from the equivalent convention for the small
error correction code, because the magnitude of the error, not only its
sign, must be derivable for a code for correcting single unrestricted
errors.

An encoder first encodes the message according to (32), where C;
represents the jth digit of the characteristic of x;,

> Cix: = 0 mod b. (32)

The decoder calculates the corrector using the following formula where
x/ represents the received value of 2, ;

Z C;,-x,-’ = Cj mod b. (33)

The decoder then examines the digits of the corrector in order. The
first digit which is not 0 shows the magnitude, d, of the error. All digits
are then divided by d (provided d # 0). (That division is unique, as
shown by (30).) The result of this division is the characteristic of the
incorrect digit, which is then corrected by subtracting d.

Consider a code for correcting a single unrestrieted error in a six digit
message for a base 5 channel:

(34)

A value of 2 for m will satisfy equation (34). The characteristics are 14,
13, 12, 11, 10 and 01, the last two being check digit characteristies, for
X1, Ta, Tz, T4, Ts, and xs respectively. Here, 2y, @2, a3, and x4 are in-
formation digits. The encoding formulas are:

4 2+ 1+ 2= —as mod 5, (35)
47, + 329 + 225 + 3 = —x mod 5. (36)

The decoding and correcting formulas are: (x; is the received value of
.’U")

Il

.'61’ + 1‘2’ + Jlfa’ + 1?34’ + SUE" ‘1 mod 5, (37)

4 + 3z’ + 22/ + 2’ + '’ = co mod 5. (38)

The corrector is ¢ica .
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Suppose that a message 221321 is received as 224321. Then:
c = 13

3 mod 5, (39)
¢a = 26 = 1 mod 5. (40)

To find the characteristic of the digit, ) , that was incorrectly received
from the value of the corrector, (41) and (42) must be solved:

d Ciy = e; = 3 mod 5, (41)
d Cha = 2 = 1 mod 5. (42)

Because the first non-zero digit of any characteristic is 1, (41) can be
solved for d since ('y; = 1. This yields the result, d = 3. Using this result,
(42) is solved for (e ; by inspection, Chs = 2, since 3-2 = 6 = 1 mod 5.
Thus the characteristic of the incorrect digit, Ch; Che, is 12, and the
error d, is 3; a3’ must therefore be reduced by 3 to get the correct value.
Since the message was received with x;’ too high by an amount 3, this
result confirms our expected correction.

Any correction that is applied must be applied on a modulo b basis.
For example, if a correction of —2 is indicated on a digit whose re-
ceived value is 1, 1 — 2 = 4 mod 5, which means that the digit is cor-
rected to 4.

Codes of this type are restricted in their construction. No mixed digits
may be used, and the number base must be prime. For the case of
n=[p"—1)/(p— 1]+ 1,9+ 1 check digits are required [see (31)].
This means that the number of information digits for a message of
this length is the same as for a message one digit shorter, which requires
only g check digits. A comparable binary case is the Hamming Code
example of an eight binary digit message (four information digits)
compared with a seven digit message (also four information digits). In
the binary case, the extra digit is useful for double error detection, but
unfortunately, this is not the case for non-binary codes.

4.2 Composite Number Base, Single Unrestricted Error Correcting Code

The problem of correcting an unrestricted error on a single digit,
working with a number base b, that is not a prime is much more difficult.
Many relatively ineflicient techniques exist. For example, characteristics
containing only binary numbers (0 and 1) might be used; (this would
amount to using the Hamming Code directly). This is obviously ineffi-
cient since the corrector associated with any single digit error of amount
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d, would contain only the digits 0 and d, thus wasting most of the pos-
sible corrector values.*

It is possible to encode and decode using the prime factors of the
number base, performing separate and independent corrections on each
factor. This is also inefficient, since for many cases, information as to
which digit is in error is found independently in two or more ways, while
for certain values of the error, it can be found in only one way. Working
with mixed digits and check bases, a lower than b, is not satisfactory
since certain values of the error (« in particular) will never show up in a
particular check. The technique used for primes will not work since
multiples of two different characteristics may be identical; for example,
base 10, characteristics 11 and 13, error 5, will both yield correctors of 55.

Another technique that is relatively efficient is, however, available.
It involves performing all check, encoding and decoding operations in a
number base p, where p is some prime number (usually, the lowest)
that is equal to or greater than b. (In case b is a prime, we use the pro-
cedure outlined above, which is a special case of the procedure to be
deseribed below.)

The obvious difficulty in such a procedure is that while the informa-
tion channel can only handle b levels, the check digits may assume p
levels, corresponding to the required p check states. This dilemma can
be resolved by adding an adjustment digit. The object of this digit is to
permit check information to be transmitted in a base greater than b,
the channel base. The idea of an adjustment digit can best be illus-
trated by an example. Suppose for a decimal channel, checks are performed
in a unodecimal (base 11) code. Let vy represent the value corresponding to
ten. (The consecutive mtegers in a unodecimal sygtem are then 0, 1, 2,
3, , 9, v, 10, 11, , 19, 1, 20, ete.) Suppose in a particular mes-
sage, four check dlglts #1, 22, 23, 21, caleulated modulo 11 from decimal
information digits are used, whose values are 1, 0, v, 8. A fifth digit,
2 is added such that the sums modulo 11 of 21 + 20, 22 + 20, 23 + 70,
21 + 2o are kept constant at 1, 0, v, 8 respectively. There are eleven dif-
ferent words satisfying the condition: [1, 0, v, 8] = [(&1 + 20), (22 + 20),
(23 + 2), (21 + 20)]. These are shown in Table VI. Of these words, six do
not contain the digit v, and so may be transmitted over a decimal chan-
nel. Thus, an adjustment digit permits check digits which are calculated
in a number system of a higher base than b, to be transmitted over a base
b channel. When an adjustment digit is used in base p for adjusting m
digits so that transmission over a channel in base b is possible, a mini-

* A waste of corrector values is equivalent to an excessive number of check
states for a message, which in turn implies an excessive number of check digits.
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mum of b — m(p — b) states are allowed for the adjustment digit. (For
certain values of the check digits, more states could be allowed, but a
code for utilizing these extra states becomes unwieldy.) For the case
b = 10, p = 11, this turns out to be 10 — m. At least one state must
be available for each adjustment digit, to have a workable code.

The characteristic of an adjustment digit is determined in the follow-
ing way: if an adjustment digit adjusts the jth check digit, then the jth
digit of the characteristic of the adjustment digit is 1; otherwise, it is 0.
The characteristic of all other digits may be derived using the rules de-
scribed above for the prime number base channel, except that p, the
prime number base of the code must be used instead of b, the number

TABLE VI — ILLUSTRATION OF ADJUSTMENT DiGIT

Zn <1 32 53 11
0 1 0 Y 8
1 0 ¥ 9 7
2 % 9 8 6
3 9 8 7 5
4 8 7 6 4
5 7 6 5 3
6 6 5 4 2
7 5 + 3 1
8 4 3 2 0
9 3 2 1 v
N 2 1 0 9

base of the channel, for generating characteristics. A message is initially
encoded using a value of 0 for an adjustment digit. Subsequently, if the
adjustment digit always has at least ¢ allowable states, it may be used
to transmit one additional information digit, base ¢, of information. If
the value of this information digit is y, the (y 4+ 1)stlowest possible value
of the adjustment digit (making the lowest value equivalent to ¥y = 0)
meeting the requirement that all adjusted check digits are no greater
than b — 1 is transmitted. The adjustment digit in eonjunction with
its associated check digits conveys a digit, base ¢, of information.

In the example given above, ¢ = 6 and if y is 4, the fifth lowest value
of zy, 7, is transmitted. The lowest value must be associated with y = 0.
The values of zyz1202324 that are sent over the decimal channel are 75431.

An example of such a code is one using a decimal channel working in a
unodecimal base for the purposes of encoding and error correction. The
word length, n, is twelve, nine decimal information digits, one octal (base
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8) information digit associated with the adjustment digit, and two check
digits. The characteristics are the following:

a1y x5 16 9 12
22 19 x5 15 20 11 (adjustment digit)
x3 18 a7 14 zu 10 (check digit)
x4 17 xg 13 212 01 (check digit)
Let zn and z. represent the values of the check digits and xp2,
originally derived from ay, 72, - -+, Tz, @y :
A+t -+ 2= —zymod 11, (43)
vy + 920 + 8xs + - + 239 = —z2 mod 11, (44)

From z;, and z12, the ten different words (0, 211 , z12), (1, 20 — 1,212 — 1),
(2,20 — 2,210 — 2), -+, (9,20 — 9, z12 — 9) are formed. If y is the
value of the octal information digit, the (y + 1)st such word, that does
not contain the digit v, is selected and transmitted as the last three
digits of the message. For example, if z;; = 2, 2z, = 1 and y = 6, the ten
words are (0, 2, 1), (1, 1,0), (2, 0,7v), (3,7, 9), 4,9, 8), (5,8, 7), (6, 7, 6),
(7, 6, 5), (8, 5, 4), (9, 4, 3); the word (8, 5, 4) is selected since it is the
seventh in the sequence that does not contain any v’s. Table VII shows
the choice of the three last digits as a funection of y, given 2z = 2,212 = 1.

Formula (45) is used for calculating the corrector. Let C';; represent
the jth digit of the characteristic of x:, ¢; the jth digit of the cor-
rector, and z; the received value of ;. Then,

12
¢; = 2, Ciyx’ mod 11. (45)
i=1
The translation from corrector to correction is the same as if the original

TasLE VII — ReELaTioNn BETWEEN Apjustep DIGIT AND
AsSOCIATED INFORMATION
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message had been in a unodecimal eode. (This has been illustrated in
Section 4.1.)

The first step of the encoding procedure is to calculate the unadjusted
check digits. Next, the adjusted check digits and adjustment digit are
selected according to the value of y, the information digit associated with
the adjustment. The message is then ready for transmission.

At the decoder, the message is first corrected as if it had been re-
ceived as a unodecimal message. The information digits are then in
their corrected states. Next, the adjustment digit and the check digits
are examined and the inverse of the encoding process used to select a
particular set of check and adjustment digits is used to reconstruct the
value of ¥ which originally controlled the selection. In the example given
above, the values of ¥ , 211 , 212 are 8, 5, 4 respectively; the decoder recog-
nizes that this is the seventh lowest value of a3, which means that the
value of ¥, used in selecting xy, and the adjusted values of x;; and .,
was 6.

The code described above is fairly efficient; about 90 per cent of the
corrector values can be associated with corrections; the produet of the
information states and the check states is about 97 per cent of the
total number of states of a twelve decimal digit word. Iach of the above
factors reduces the efficiency of the code below a possibly unattainable
maximum. It will be noted, however, that this reduction is relatively
small in both cases, and is very much lower than would be the case for
any of the rejected schemes. The scheme is not difficult to instrument;
relatively little additional equipment is required in addition to the
basic equipment for instrumenting a simple prime number base chan-
nel, unrestricted single error correcting code system.

The method of adjustment digits is general and can be used for de-
riving a single error correction code for correcting unrestricted errors
for any channel base. Any convenient prime check base, p, at least as
great as b may be used, although the lowest will generally be the most
efficient. The only requirements which must be fulfilled are that the
number of states of the adjustment digit must be at least 1, and that at
least two check digits must be associated with each adjustment digit.
An adjustment digit associated with m check digits, working with a
channel baseb and a check base p, may have b — m(p — b) different states.

V. SINGLE ERROR CORRECTION, DOUBLE ERROR DETECTION CODES FOR
CORRECTING SMALL ERRORS

Single error correction, double error detection codes are very useful
in situations where a message may occasionally be repeated. In order
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for a correction code to be reasonably useful in a system with random
noise or errors, the errors must be relatively infrequent, which makes
double errors still more infrequent. If means are available for an occa-
sional but very infrequent repetition of a message, a single error correc-
tion, double error detection code will increase the reliability of a digital
system, since a message may be repeated if a double error is recognized.

This section will show how the ideas of the single error correction,
double error detection Hamming Code may be combined with the ideas
of semi-systematic single small error correction codes (described in Sec-
tion I1I) to derive simple and efficient codes for correcting single small
errors and detecting double small errors.

In order to derive a simple characteristic code for correcting single
small errors, and detecting double small errors, a set of characteristics
must be found having the property that the sum or difference of two
characteristics or their complements or double the value of one charac-
teristic or its complement be distinguishable from the value of any
single characteristic or its complement. The sum of two characteristics
represents the value of the corrector for a message with two errors of
+1, +1, the difference represents two errors of +1, —1, the sum of
their complements represents two errors of —1, —1; double a charac-
teristic represents an error of 42, and double a complement represents
an error of —2. To have a true single error correction, double error de-
tection code for small errors, all these cases must be distinguished from
the case of a single error or no error by making certain that the value of
the corrector for any of these cases is different than the value of the
corrector corresponding to any single error and no error.

Table VIII gives the characteristics used in the single error correction
Hamming Code and the single error correction, double error detection
Hamming Code for conveying four digits of information in a message
containing seven or eight binary digits respectively.

An inspection ot Table VIII shows that the sum (performed without
carries from column to column) of any two characteristics in the right
part of the table is distinguished by having at least one 1 in the first
three places and a 0 in the last place. This distinguishes it from any
single characteristic since all characteristics have a 1 in their last place.

Some difficulties arise in trying to adopt such a scheme directly in a
non-binary system. For the code to be efficient, an over-all check would
have to be performed using a mixed digit; only two check states are
required for an over-all parity check, and if b > 3, (b representing the
number base of the channel) at least two information states are pos-
sible. But the over-all check digit, which performs a binary check, is not
checked by any other digit. This means that although errors might be
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detected in an over-all check digit, difficulties would be encountered in
determining the direction of the correction, so that the information
conveyed by the mixed digit could be used. Actually, means are avail-
able, for accomplishing an adaptation of binary techniques. These meth-
ods are described in Section VII but they are less straightforward than
the ones described below.

For channels with base b, greater than 3, at least one check may be
made using a check base, a,, , that is 4 or greater. If characteristics are
used whose last digit (the digit associated with the a,, check) is always 1,
and whose only other limitation is that each characteristic is different
from every other characteristic, a satisfactory code is obtained. Single
errors are corrected in the normal way. If the last digit of the corrector
is1 or a, — 1, the error is =1 respectively on the digit whose charac-

TaBLE VIII — CHARAcTERISTICS FOR HammiNng CoDpES

Single Erro .., Single Error
Correction Rrver Bevection
001 Check Digit X1 0011
010 Check Digit Xa 0101
011 Information Digit X3 0111
100 Check Digit X4 1001
101 Information Digit X5 1011
110 Information Digit X5 1101
111 Information Digit X7 1111
Over-all Check Digit X5 0001

teristic or whose characteristic complement is indicated by the cor-
rector. If the last digit of the corrector is 2 or @,, — 2, or the last digit is 0
and other digits are not all 0, a double error is indicated. If the entire
corrector is made up of (’s, the message is correct as received.

An example is a code for a ten digit message, decimal base channel;
eight decimal information digits, one mixed digit conveying binary
message information (such as the sign of the decimal number) and qua-
ternary (base 4) check information, and one check digit are transmitted
in each message. Let x; and a» represent the mixed and check digit re-
spectively, a3 through xyy the information digits, 3 the binary informa-
tion eonveyed by =z, , and z, the quaternary check information conveyed
by @1 . The encoding formulas are:

2z3 + 3xy + 4 + Sag + 627 + Tas + 8xg + 920 = —22 mod 10,  (46)
Ty X a v+ v+ v+ s+ @+ a0 —z mod 4, (47)
r =z + -J:yl . (48)

Il
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Note that (46), (47) and (48) must be applied consecutively, in that
order, since (47) cannot be applied without knowing x, obtained from
(46), and (48) requires z; , obtained from (47).

The characteristics are 01, 11, 21, 31, 41, 51, 61, 71, 81, 91 respec-
tively; the complements of the characteristics are 03, 93, 83, 73, 63, 53,
43, 33, 23, 13 respectively. The corrector, ., is calculated at the
decoder by the following formulas (x/ is the received value of z:):

e = i (z)(@ — 1) mod 10 (49)
C = i x;/ mod 4 (50)

i=1

Consider the example of a message with decimal information digits
3752065 2and binary information digit 1. Then z, = 3, 21 = 3,
and 35, = 1, yielding a value of 7 for z; . The message is sent as 7 3 3 7
52 0 6 5 2. Suppose that the sixth digit is changed to 1 in transmis-
sion. Then the corrector has a value 53; this is the complement of the
characteristic of the sixth digit and indicates that the sixth digit should
be incremented by 1 according to the rules previously stated. If the
sixth digit had been received as 1 and the seventh digit also received as 1
(an error of +1), then the corrector value would be 10, indicating a
double error (see rules stated above).

If a multiple of 4 is used as a, , the last digit of a characteristic may
assume all odd values below a,,/2. The rule then is that an even value of
the last digit of the corrector, or a 0 for the last digit and other digits
of the corrector not all 0, indicates a double error.

The following set of rules and conventions may be used with any
base b = 4, and any length of message, for deriving a set of charac-
teristics for a semi-systematic code for correcting single small errors and
detecting double small errors. Since the conventions restrict the effi-
ciency of the code, it is conceivable that a different set of conventions
will yield a more efficient code in some cases; (51) may be modified
through the use of an alternate set of conventions.

Rule 1. No two digits may have identical characteristics.

Convention 1. Choose for a,, a multiple of 4. Let an/4 = g.

Convention 2. The characteristic of the mixed digit associated with
an contains a single 1 in the last position; the rest of its digits are 0.

Convention 3. The characteristics of the jth mixed or check digit con-
tains a 1 in the last position, a 1 in the jth position and 0’s elsewhere.

Convention 4. The characteristic of an information digit has an odd
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number less than a,/2 in its last position. The rest of its digits are
arbitrary.

Convention 5. The above conventions restrict the choice of charac-
teristics. In order to have n distinet characteristics, m mixed or check
digits, using check bases ay, @, - -+, @m, are required, and inequality
(51) must be satisfied:

n g et ... Qg1 (f. (51)

Codes may be derived using the above conventions only if b = 4.
For the ternary case, a relatively efficient code may be obtained by
using one ternary digit as an over-all parity check digit. The rest of the
message is in a single small error correction code, derived using the
rules and conventions of Section ITI. Any single small error will lead to a
failure of the parity check, and a double small error will lead to a failure
of other checks but not the parity check.

No general solution has been found for deriving an efficient single
error correction double error detection code for the unrestricted error
case. Also, no general solution has been found for deriving an efficient
multiple error correction code for the unrestricted error case. A reason-
ably efficient method has been found for correcting multiple errors in
the more important small error case; this is discussed in Section 6.2.

VI. THE USE OF BINARY ERROR CORRECTION TECHNIQUES IN NON-BINARY
SYSTEMS

In this section, methods for using binary codes for the correction of
errors in a non-binary system are described. Although the single small
error correction codes obtained in this manner are generally less flexible
than the codes obtained in Section ITI, the class of multiple error correc-
tion codes described in Section 6.2 is the only reasonably satisfactory
class of such codes that has been found. The codes described in this
section are semi-systematic but are not simple characteristic codes.

6.1 Stngle Small Error Correction Codes

Binary codes are most conveniently used for correcting small errors
(&1). Suppose any digit, base b, has an associated pair of binary digits,
arranged in such a way that a change of 41 in the base b digit will
change only one of the two binary digits. For b = 10, an association
such as the one shown in Table IX might be used. For example, if a
6 is received as a 7, the associated binary message would indicate
that the second of the binary digits is incorrect; a 7 can be corrected
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TasBLE IX — AssoctaTEDp BINARY Digits FOR CORRECTION
oF SMALL ERRORS

Decimal Digit Associated Binary Digits

00
01
11
10
00
01
11
10
00
01

E=lelaEN Karlle) BISNVLY SO ]

TaBLE X — REFLECTED QUIBINARY CODE

Decimal Digit Quinary Component Binary Component Associated Binary Digits
0 0 0 00
1 0 1 01
2 1 1 11
3 1 0 10
4 2 0 00
5 2 1 01
6 3 1 11
7 3 0 10
8 4 0 00
9 4 1 01

to an 8 or a 6, but only the correction to 6 would correspond to a
change in the second binary digit of the associated binary message.

If the first of the associated binary digits is the odd or even indication
of a quinary component of a decimal digit, a decimal digit can convey
ten states rather than the four states of the associated binary digits.
The combination of binary and quinary digits shown in Table X may
be called a reflected quibinary code because of its analogy with the re-
flected binary code.*

If a method were available for transmitting without error (e.g., by
using an error correcting code) a message composed of the associated
binary digits in a base b code, small errors could be corrected in the
base b digits.

An examination of Table X for resolving a decimal digit into binary
and quinary components, reveals that a change of +1 on any decimal

* The reflected binary code has the property that each increment changes only
one binary digit; for example, the eight successive words of a three binary digit
reflected binary code are 000, 001, 011, 010, 110, 111, 101, 100.
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digit will change only one of these two components. Further, an error
corresponding to a change in the quinary component can be uniquely
corrected if the error in the decimal digit is assumed to be 1. For
example, if a received 6 is discovered to have an incorrect quinary com-
ponent, only a decrease in the quinary component making the decimal
digit 5 is a possible correction, since an increase in the quinary com-
ponent would correspond to the decimal digit 9, a change of more than
+1 from 6.

A system is shown in Iig. 2 for taking advantage of these properties.

INFORMATION SOURCE

QUINARY BINARY
INFORMATION INFORMATION
DIGITS n n-m DIGITS

ODD OR EVEN
RECOGNITION CIRCUIT

BINARY
DIGITS

n

SYSTEMATIC BINARY ERRCR
CORRECTION CODE ENCODER

BINARY MESSAGE BINARY PARITY )
INFORMATION CHECK DIGITS REFLECTED
DIGITS (NOT USED) QUIBINARY
COMBINER
INFORMATION RECEPTOR n | PECIMAL
MESSAGE
BINARY QUINARY CHANNEL
INFORMATION INFORMATION J
DIGITS DIGITS
n-m n
REFLECTED
QUIBINARY
RESOLVER
n QUINARY |
DIGITS N | BINARY
DIGITS
QUINARY ODD OR EVEN
CORRECTION RECOGNITION
CIRCUIT CIRCUIT
BINARY BINARY
DIGITS DIGITS
n
2n| [ BiNARY DECODER

2n| AND CORRECTOR

Fig. 2 — Use of binary codes with a decimal channel.
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In this example, an information source generates n quinary and n —m
binary information digits for each message. All quinary digits go through
an odd or even recognition cireuit to be converted into binary digits for
the purpose of generating a binary error correction code message. These
binary digits and the binary digits generated by the information source
are fed into a systematic binary error correction code encoder whose
output is a binary message containing 2n digits, of which m are parity
check digits. This output is divided into two parts, 2n — m original
inputs to the encoder unchanged by the encoding process (this is a sys-
tematic encoder which does not change information digits in encoding),
and m parity check digits.

The m parity check digits are then combined with m of the quinary
information digits through the use of the reflected quibinary combiner
to form m of the decimal digits of the decimal message that is trans-
mitted; the other decimal digits are formed by combining the n — m
binary information digits with the rest of the quinary information
digits.

The decimal message is transmitted over the noisy channel and arrives
with one or more (a number limited by the choice of the binary code)
errors of =1 on decimal digits. It is fed into a reflected quibinary resolver
which resolves decimal digits into binary and quinary components in
accordance with the reflected quibinary code (Table X). The quinary
digits are then fed into an odd or even recognition cireuit to form binary
digits; these and the binary outputs of the resolver are fed into a binary
decoder and corrector, working with the same code as the binary en-
coder. The output of this corrector should correspond to the output of
the original binary encoder.

In the decoder, the binary digits are corrected. When the binary digit
derived from a quinary digit is corrected, however, the quinary digit is
not yet correct. The correction of the quinary digit is performed by
examining both the corrected binary digit derived from the quinary
digit and the corrected binary digit which was derived from the same
decimal digit as the quinary digit in question. The rules for correcting
the quinary digit are given in Table XT.

As an example, consider the application of a Hamming Code for
transmitting ten binary digits in a fourteen binary digit message.

Using a code of this type, single errors of £1 may be corrected in a
seven digit decimal message, transmitting seven quinary digits of in-
formation and three binary digits of information. The characteristics
required for a fourteen binary digit Hamming Code message are shown
in the first column of Table XII,
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TaBLE XI — Correcring QuiNary Dicrrs

Correction of
Q B B, Quli-:lary Digit
Even 0 0 None
Even 0 1 None
Even 1 0 —1
Even 1 1 +1
Odd 0 0 +1
Odd 0 1 —1
Odd 1 0 None
0Odd 1 1 None

TaBLE XII — Binary CobpE UsEp rorR CORRECTING
DEeciMAL MESSAGE

Chngxl:tne?irstics a b Position in Decimal Message
0 0 0 1| Parity Check Digt (0) (0) | Binary comp. of 1st digit
0 1 0| Parity Check Digit (0) | (0) | Binary comp. of 2nd digit
0011 1 1 Binary comp. of 3rd digit
0 1 0 0] Parity Check Digit (1) (1) | Binary comp. of 4th digit
01 01 0 0 Binary comp. of 5th digit
0 10 0 0 Binary comp. of 6th digit
01 11 1 3 | Quinary comp. of Tth digit
1 0 0 0] Parity Check Digit (1) (1) | Binary eomp. of 7th digit
1001 1 3 Quinary comp. of 6th digit
1 01 0 0 2 | Quinary comp. of 5th digit
1 011 0 4 Quinary comp. of 4th digit
1 100 1 1 Quinary eomp. of 3rd digit
11 01 1 3 Quinary comp. of 2nd digit
1 110 0 0 Quinary comp. of Ist digit

To illustrate the method completely, a strictly binary example will
first be illustrated, then a related decimal example. In column a of Table
XTI, the digits of a binary message are indicated and in column b, the
binary and quinary information digits. The values of the parity check
digits, which are shown in parentheses, are calculated by the usual for-
mula. Let C; represent the jth digit of the characteristic of the 7th
digit (including parity check digits):

14

Z J}{C,'_,' =0 mod 2.

=1

(52)

This formula applies for all values of j and in this case will yield four
implicit equations each with one unknown term, the value of the parity
check digit. Using the given values of the binary information digits,
the values of the parity check digits are calculated. These are shown in
parentheses in Table XII.
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The binary message is
00110011100110.

For this example, the quinary components (quinary information digits)
of decimal digits are chosen odd if the corresponding digit of the binary
example is 1, even if that digit is 0. The binary and quinary components
are then combined by the rules of the reflected quibinary code to form
the decimal digits 0 7 2 9 4 7 6. For example, the quinary and binary
components of the fifth digit are 2 and 0, respectively; the decimal digit
which has these components is 4, the fifth decimal digit of the message.

Consider the binary case. Suppose that the message is mutilated in
transmission so that the tenth digit is received incorrectly. The message
is mutilated from

00110011100110

to
00110011110110.

The decoder and corrector calculates the corrector by
14

¢ = »_ i mod 2. (53)
i=1
In this formula, ¢; is the jth digit of the corrector and z/ the received
value of ;. In this example the corrector is 1 0 1 0, which means that
the tenth digit, which has this characteristic, is wrong and should be
changed to 0.
The corresponding error in the decimal example is a change in the
fifth digit from 4 to 3. If the message 0 7 2 9 3 7 6 is received, the
resolver and quinary to binary converter delivers the message

00110011110110
to the decoder instead of
00110011100110

corresponding to the correct message. The corrected binary message is
produced at the output of the decoder and corrector. When the quinary
and binary components of the fifth digit are examined by the quinary
correction circuit, the following inputs exist:

Received quinary digit 1 (0dd) (quinary component of
received decimal 3)
Corrected binary digit
derived from quinary 0 (By)
Corrected binary digit
from same decimal number 0 (B).
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Table XI shows that the quinary digit must be increased by 1 to 2,
which combined with the binary 0 conveyed by the same decimal digit
yields a decimal value of 4, the original transmitted value.

The best semi-systematic simple characteristic code for correcting
single small errors in a seven digit message allows 6 X 10° possible mes-
sages in a seven digit message (see Table V), whereas this code allows
6.25 X 10°. This code is therefore slightly more efficient. In addition,
this code has the special advantage that any error of =2 on one digit
1s recognizable since the corrector will have a value of 1111 for the asso-
ciated binary message. (An inspection of the choice of characteristics
and assignment of characteristics to the two components of any decimal
digit will confirm this.)

This general technique can be applied to any base b channel, provided

TaBLE XIIT — CompPONENTS OF QUINARY Dicrrs

Mixed Digit Information Digit
Quinary Digit Info. Comp. Check Comp. | Quinary Digit | Binary Comp. |Ternary Comp.
0 0 0 0 0 0
1 0 1 1 1 0
2 1 1 2 1 1
3 1 3 0 1
4 not used not used 4 0 2%

* If quinary information is initially generated, the combination (1, 2) will not
oceur,

that b is greater than 3. For odd bases, the digits which convey a parity
check component and an information component cannot be utilized effi-
ciently since one state of the base b digit is not available. For example,
using a base 5, (see Table XIII), only two information and two parity
check states may be conveyed by one digit, since the use of a third infor-
mation state would require at least six states for the mixed digit. In
the case of information digits, however, all states can be used. In the
quinary example, the resolution of a digit into two components and the
subsequent recombination is subject to the restraint that one of the com-
binations (1, 2) will not occur, which can be assured if the information
source generates quinary digits.

IFor the case of high redundancy codes having the property that the
associated binary code contains more than 50 per cent parity check
digits (corresponding to a negative value of n — m in Fig. 2), at least
some of the base b digits must convey two or more parity check digits.

This can be easily accomplished: a decimal digit ean convey three
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TasLE XIV — Decman Digit ConvEYING THREE BINaArY DiciTs

Decimal Digit Binary Components
0 0 0 0
1 00 1
2 01 1
3 010
4 110
5 1 11
6 1 01
7 1 00
8 not used
9 not used

parity check digits if a simple reflected binary code correspondence be-
tween binary and decimal digits is maintained as shown in Table XIV.

An extension of this idea is the encoding of the original information
(i.e., the information that is shown coming out of the information source
in Fig. 2) in some error detection or correction code. For example, the
decimal to reflected quibinary code resolver will cause both components
to be incorrect if an error of &2 in a decimal digit occurs. In this case,
the system shown in Fig. 2 will automatically make a correction on the
decimal digit of either 42 or —2 depending upon the value of the re-
ceived decimal digit, and provided a double error correction binary
code is used. Such a correction will be incorrect about half the time. If
the received binary digit is compared to the corrected binary digit and
the received quinary digit is compared to its corrected odd or even digit,
an error of 2 can be detected without changing the code. If one extra
binary check digit, treated as an information digit by the encoder and
decoder, is transmitted in the message, this binary digit can convey the
information necessary for determining the sign for a correction of =+2,
provided that only one such correction is required for any one message.
A rule for determining the value of this digit is:

B,=0 if 2 g = (0orl) mod4,
i=1

Il

(54)
B =1 if > g; = (2 or3) mod 4,

where g, represents the ith quinary information digit, and B, represents
the special check digit. If the received message contains one error of =2
on a digit, two possible corrections may be made on the quinary compo-
nent of this digit; 1. Obviously, only one of these corrections will
satisfy the equation for determining B, since the two possible corrected
values of ¢ are two units apart.
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Note that the associated binary codes for performing such a correc-
tion must have the property that two binary digits may be corrected
since an error of 2 corresponds to incorrect values for two associated
binary digits. If the noise is such that errors of 2 are not very unlikely,
it may be desirable to place the binary and the quinary components of
any one decimal digit in a different binary error correction code word so as
to make the errors independent. In a seven decimal digit message, as an
example, the quinary components of the first four decimal digits can be
used to generate parity check digits which are conveyed by the binary
components of the last three decimal digits. The binary component
of the fourth decimal digit (this might be B.) and the quinary com-
ponents of the last three decimal digits generate parity check digits
conveyed by the binary components of the first three decimal digits.
Two separate binary error correction code messages are then conveyed
by a single seven digit decimal code message. Each message is in a four
information digit, three parity check digit Hamming Code. Through the
use of this code, one error in the binary component of any decimal digit,
and one error in the quinary component of any decimal digit may be
corrected.

In certain cases, the quinary digits themselves might be encoded in an
error correction code for single unrestricted errors before the binary
process is carried out. This is helpful chiefly for occasional large errors,
leading to initial miscorrections.

The variations based upon the principles described, which can be
applied to any channel, provided b = 4, including the pyramiding of one
code scheme upon another, are almost endless. Generally, the last
encoding and first decoding step should be able to correct many more
errors than the first encoding step. For example, if quinary components
are encoded in single unrestricted error correction quinary code, the bi-
nary code should probably be a triple or quadruple error correction code;
otherwise a correction may not correspond to the most probable error
condition, and the correction scheme loses its effectiveness.

These techniques cannot be conveniently applied to the ternary chan-
nel, since a ternary digit cannot be resolved into two components effi-
siently.

6.2 Multiple Small Error Correction Codes

One limitation of the above techniques is the requirement for a sys-
tematic binary code;i.e., a code in which some of the binary information
digits are transmitted directly, and others are determined by parity
checks on information and previously calculated check digits. These
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TasLe XV — ReEp-MurLer Copes — 256 Dicir MESSAGE

Number of Digits of Information per Message Number of Errors Correctable per Message

255 0

247 1

219 3

163 7

93 15

37 31

9 63

1 127

systematic codes are conveniently applicable only to the correction of
single errors and a few special cases of multiple errors.

The Reed-Muller' codes are not systematic codes, (“‘systematic”
being used in the narrow sense indicated above, not in the sense of Ham-
ming'), but offer the advantage that multiple error correction is rela-
tively straightforward. For this reason, it is desirable to find some way
of adapting the binary Reed-Muller codes for correcting a number of
small errors in non-binary codes.

To explain the nature of the Reed-Muller codes completely is beyond
the scope of this paper; a list of their important features is sufficient.
This is:

1. The length of a message is 2" binary digits for the simpler versions
of the code.

2. If € represents the number of combinations of d items taken
¢ at a time, and ¢ = d!/le!(d — ¢)!], then 2¥ — 7o Ci—; information
digits may be transmitted correctly in a message containing 2* digits,
if no more than 2" — 1 errors oceur in the messages; 2" errors are de-
tected but they are not always correctable. The Reed-Muller codes for
correcting a large number of errors will frequently correct more than
2™ — 1 errors, and will always correct 2" — 1 or fewer errors.

These values are given for a 256 digit message in Table XV.

3. Each digit of the transmitted message is a parity check of a group
of digits from the information source; the message cannot be broken down
into information digits and check digits.

4. The decoding is accomplished by a number of majority decisions
among different groups of message digits.

A technique will be described for using a Reed-Muller code efficiently
to correct a number of small (&1) errors for any code base b that is a
multiple of 2, and also, at a small sacrifice of efficiency, a number of larger

errors.
A theorem, stating that any code which is generated by a set of parity
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checks will contain the same set of allowable messages as some systematic
code, was proved by Hamming." In particular, such a theorem indicates
that a Reed-Muller code will contain the same set of allowable messages
as some systematic code. This was also proved by Slepian,"” who has given
a simple method of deriving a systematic code generating the same set
of messages as a Reed-Muller code. For convenience, such a code will be
called an SERM code (Systematic Equivalent Reed-Muller code).

A Reed-Muller decoder serves to derive the information digits from a
message in Reed-Muller code which may have been mutilated by noise.
If a Reed-Muller decoder is followed by a Reed-Muller encoder, the com-
bination serves as a noise eliminator (provided the noise is within the
correction bounds of the code), since the output of the encoder is the
noiseless Reed-Muller code message that is equivalent to the noisy
message that entered the decoder. This property is useful since it means
that any message, drawn from the set of Reed-Muller code messages,
which has not been mutilated outside the bounds set up by a particular
Reed-Muller code, will be restored to its original form, by a Reed-Muller
decoder followed by a Reed-Muller encoder. Since an SERM code will
produce only messages included in the set of messages of the correspond-
ing Reed-Muller code, the SERM code can be used in conjunction with a
Reed-Muller decoder and encoder to permit transmission over a noisy
channel in a systematic code.

The two systems shown in Fig. 3 are therefore equivalent in their
error correction properties. In both cases, messages from the set of Reed-
Muller code messages are sent, and since the same decoder is used ini-
tially, both systems will correct errors in the received message in the
same manner. The Reed-Muller encoder in the second system is re-
quired because a Reed-Muller decoder does not correct a message but
derives information digits from the received message directly. The
derived information digits, however, necessarily correspond to some
corrected form of thereceived message and, in effect, the decoder performs
the same correction as it would perform by deriving the corrected form of
the message first.

INFORMATION| REED MULLER NOISY REED MULLER [INFORMATION
T ENCODER CHANNEL DECODER —
INFORMATION SERM NOISY RM M | | oIt INFORMATEE
T~ | ENCODER [|CHANNEL [ | DECODER [~ | ENCODER [ |SELECTOR[™ —p

Fig. 3 — Equivalent systems using SERM and Reed-Muller codes.
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Tapre XVI — Murrreni SmanL ErRror CorrEcTION CODE
Using SERM Copes wiTH DrciMAL CHANNEL

Information Digits . Check Digits No. of Small E
Message Length (Equlvablfgl:littsl))ECMI (Equlv%fgniis) ecimal éﬂ:r:l’:ta]?f: perr;];:.
128 127.7 .3 0
128 125.3 2.7 1
128 116.9 11.1 3
128 100.0 28.0 7

This means that a Reed-Muller code can be adapted to the system
shown in Fig. 2. The Systematic Binary Error Correction Code Encoder
is simply an SERM encoder; this is permissible since the SERM codes
are systematic. The Binary Decoder and Corrector is simply a Reed-
Muller decoder followed by a Reed-Muller encoder. Everything else
remains unchanged.

This scheme offers flexibility for the correction of large numbers of
small errors. Proper initial error correction encoding of the original in-
formation digits will permit correction of a small number of large errors.

Table XVI shows some typical cases of the correction of many small
errors in a decimal message as a function of the number of information
and check digits in a message of constant length. For convenience, every-
thing is shown in equivalent decimal digits, even though in the actual
code, binary and quinary information digits are used. Only the first few
entries are considered, since the message composed exclusively of the
figits 0, 3, 6, 9 in which any number of small errors in a decimal channel
may be corrected (this code is described by the first entry of Table V) is
more efficient than the codes corresponding to subsequent entries on
Table XVI. This code, which is very easy to instrument, will transmit
the equivalent of 77 decimal digits in a 128 decimal digit message.

One problem not efficiently solved by these techniques is the multiple-
error correction ternary channel problem. A technique which can be
used is a code identical to the regular binary Reed-Muller Code, except
that all equations will be modulo 3 instead of modulo 2. In decoding, this
will sometimes require subtraction instead of addition; in modulo 2
equations there is no difference between these operations, but in modulo 3
equations, the two operations are distinct. The same procedure can be
used for correcting multiple unrestricted errors in any base.

VII. ITERATIVE CODES

All the codes deseribed above have one disadvantage; occasional ex-
cessive noise will yield a non-correctable message. In order to approach
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error free transmission, some iterative coding procedure may be used.
This problem has been solved by Elias.”® His methods are directly appli-
cable to non-binary codes, since nothing restricts the digits to binary
values. .

In order to minimize the complexity of an iterative coding procedure,
systematic codes are desirable. The advantages of the Reed-Muller code
are significant however, especially for the case of a relatively noisy
channel. A sound procedure for a binary channel would therefore be to
use SERM codes, (see Fig. 3); such codes are more efficient than iterated
Hamming Codes in a relatively noisy channel.

VIII. SUMMARY AND ANALYSIS

Many codes have been presented in this paper, all constructed by
some combination of procedures involving linear congruence or modulo
equations.

In most cases, more efficient codes exist. Exhaustive procedures exist
for deriving maximum efficiency codes, although the codes derived in
this manner usually require an extensive codebook, both at the encoder
and at the decoder. Even for simple single error correction binary codes,
the most efficient code is not always a systematic code. For example,
the best systematic single error correction binary code working with an
eight digit message has only 16 different allowable messages; it is known'
that a non-systematic code with at least 19 allowable messages exists.

In the case of non-binary codes, the situation is somewhat worse.
Very few of the codes given in this paper take advantage of the fact that,
for most situations, a digit that is incorrectly received as Q or b — 1 is
usually corrected only in one direction and no need exists to specify
whether the correction is 4=1. Most of the codes are arranged so that
any received digit may be corrected either positively or negatively. No
codes have been found which take full advantage of such a property,
other than codebook codes, except for isolated instances of short message
codes having symmetrical properties. For example, the single digit,
single small error correction decimal code having 0, 3, 6, 9 as the allow-
able messages takes full advantage of this property, and is, at the same
time, a true semi-systematic code.

It is extremely difficult to find the ultimate limits of efficiency of code-
book codes. The exhaustive procedures are totally impractical except for
very short messages. If an analysis is restricted to codes which do not
take advantage of the property that certain values of digits may be
corrected in only one direction, and it is assumed that each possible
message 1s mutilated to the same number of incorrect messages, one
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limit to the efficiency of codes may be found. This limit can be derived
from the fact that an error correction code decoder and correction cir-
cuit must be able to convert any message which contains errors within
the bounds of the correction performed by the code, into the value of
the message as originally transmitted, or must be able to derive the
original information which was fed into the encoder. Thus, if each mes-
sage may be mutilated in w ways, and still be corrected, then at least w
messages must be associated with each allowed message. This is indi-
cated diagrammatically in Iig. 4. The messages produced by the encoder
are shown at the left; each one fans out to w — 1 mutilated messages
plus the original message. The decoder converts any of these w messages
into the original message.

The value of w can be determined by taking all possible combinations
of errors that can be corrected by a coding system. For example, for a
code system which can correct up to (d — 1)/2 small errors in different
digits in an n digit message, w is given by

(d—1)/2

w = Z ;"2 ‘ (55

i=0
where d is the minimum distance between messages, and

. n!
(n — )kl

i

This equation merely signifies that w is the sum of all combinations of
positive and negative (accounting for the 2 term) errors in up to
(d — 1)/2 different digits out of n digits. I'or single errors, w = 2n + 1.
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Fig. 4 — Graphical representation of an error correction code.
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The number of different messages that can be produced by the en-
coder must be no greater than b*/w, subject to the above restriction, b
representing the maximum number of messages that the decoder may
receive as an input. If only systematic and semi-systematic codes are
considered, the number of messages is limited to multiples of powers of
b and of the information component base 3 of mixed digits. The number
of check states must be at least as large as w, so that w different correc-
tors may be calculated and associated with w different corrections.

Subject to the above restrictions, the following statements may be
made.

1. The systematic single small error correction codes derived using
the rules of Section III are the most efficient systematic single small
error correction codes possible. For those codes in which the two sides
of inequality (8a) are equal, no code, not even a non-systematic code, is
more efficient.

2. The systematic single unrestricted error correction codes derived
using the rules of Section 4.1 are the most efficient systematic single
unrestricted error correction codes. For those codes in which the two
sides of inequality (31) are equal, no code is more efficient.

3. No codes are more efficient than those semi-systematic codes,
derived using the rules of Section III, for which the two sides of in-
equalities (28) and (29) are equal and m; = 0. It is difficult to make
more general statements about semi-systematic codes, because spe-
cial techniques (such as those of Section VI), not all of which are known,
may be used with these codes.

Tor multiple error correction codes, other techniques are both simpler
and more efficient than the straight systematic and semi-systematic
techniques deseribed in Sections III, IV and V. One such scheme has
been deseribed in detail in Section VI. No codes have been found which
approach the limit set by w, but the codes described in Section 6.2 are
moderately efficient.

Throughout this paper, all techniques which involve vast complica-
tions at the expense of slight additional efficiency have been avoided.
Codebook methods are always possible. If a technique is almost as com-
plicated as a codebook technique with only slightly greater efficiency
than a simple technique, the simple technique would always be used in
practice, and the codebook satisfies the mathematical and theoretical
requirements. In a sense, a really complicated technique is only useful
for deriving a better lower limit for the maximum efficiency of a code-
book code. In the non-binary case, however, a codebook system is con-
siderably more efficient than any code system which does not take ad-
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vantage of the fact that all transmitted messages are not mutilatable to
an equal number of correctable received messages.

From the point of view of deriving lower limits to the maximum effi-
ciency of a codebook technique, such a consideration is vital. Except for
a few relatively trivial cases, no codes have been found which take sig-
nificant advantage of the above consideration, for deriving such a
limit.*

IX. CONCLUSION

In this paper, techniques have been presented for deriving error cor-
rection codes for non-binary systems. None of the methods presented
are overly complicated, nor do they require excessive storage capacity
for either the encoding or decoding and correction system.

The codes are sufficiently simple so that their use with a non-binary
storage system may be considered, and the development of such a
storage system should not be stopped because a system without flaws or
not subject to noise cannot be realized.

An important disadvantage of using error correction codes with such
a system is the time requirement. Correction usually requires a signifi-
cant amount of time. This is probably one reason why the Hamming
Code is not used more extensively. The more advanced and complicated
codes, such as the Reed-Muller Codes, suffer particularly from the
amount of time required for a correction. The codes described in this
paper are therefore probably best suited to medium or low speed stor-
ages, which are not read too frequently.

A study of this type may be of some interest to those who have been
considering the use of multi-state devices for building switching systems
and computers, since this paper represents a study of a typical problem.
Certain lessons may be derived from this study:

1. Restriction to a single number base for all operations is a severe
handicap. The more advanced codes presented in this paper, require
extensive use of different number base operations. The ahility, inside
the computer, to change number bases for different operations, may well
be useful.

2. Different problems are best solved using different number bases.
I'or example, the use of an even number base is desirable for multiple
small error correction codes, while the use of a prime number base is
desirable for correcting single large errors. It is the author’s opinion that

* Note that this restriction has less significance in the case of binary codes. In

a symmetrical channel with only two available signals, each value of a digit may
be changed in as many ways, namely, one, as every other.
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number bases which are the product of several small factors are best.
Suggested values are six, ten and twelve. Number bases with two differ-
ent prime factors, may offer an advantage, since they permit simple
translation and change of number base among at least three different
numbers.

In the comparison between binary and non-binary error correction
codes, the following observations may be made:

1. Keeping the amount of information per message fixed, a binary
single error correction code is less efficient than a non-binary single
small error correction code, provided b, the channel base, is greater than
three, but is more efficient than a non-binary single unrestricted error
correction code.

2. Non-binary codes are slightly more complicated to implement than
binary codes; this applies to multiple error correction codes as well as to
single error correction codes. The amount of added complication is in no
case really extensive.

It was initially hoped that this study might also produce some addi-
tional binary error correction techniques. One such technique was dis-
covered: the use of a systematic equivalent Reed-Muller code to ap-
proach error free coding (see Section VII).

Finally, the author wishes to express the hope that further work on
non-binary systems will be encouraged by this study.
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