Shortest Connection Networks
And Some Generalizations

By R. C. PRIM

(Manuscript received May 8, 1957)

The basic problem considered is thal of inlerconnecting a given set of
terminals with a shortest possible network of direct links. Simple and prac-
tical procedures are given for solving this problem bolh graphically and
computationally. It develops that these procedures also provide solutions
for @ much broader class of problems, containing other examples of practical
interest.

I. INTRODUCTION

A problem of inherent interest in the planning of large-scale communi-
cation, distribution and transportation networks also arises in connec-
tion with the current rate structure for Bell System leased-line services.
It is the following:

Basic Problem — Given a set of (point) terminals, connect them by a
network of direct terminal-to-terminal links having the smallest possible
total length (sum of the link lengths). (A set of terminals is “‘connected,”
of course, if and only if there is an unbroken chain of links between every
two terminals in the set.) An example of such a Shortest Connection Net-
work is shown in Fig. 1. The preseribed terminal set here consists of
Washington and the forty-eight state capitals. The distances on the par-
ticular map used are accepted as true.

Two simple construction principles will be established below which
provide simple, straight-forward and flexible procedures for solving the
basic problem. Among the several alternative algorithms whose validity
follows from the basic construction principles, one is particularly well
adapted for automatic computation. The nature of the construction
principles and of the demonstration of their validity leads quite naturally
to the consideration, and solution, of a broad class of minimization prob-
lems comprising a non-trivial abstraction and generalization of the basic
problem. This extended class of problems contains examples of practical
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SHORTEST CONNECTION NETWORKS 1391

interest in quite different contexts from those in which the basic prob-
lem had its genesis.

II. CONSTRUCTION PRINCIPLES FOR SHORTEST CONNECTION NETWORKS

In order to state the rules for solution of the basic problem concisely,
it is necessary to introduce a few, almost self-explanatory, terms. An
isolated terminal 1s a terminal to which, at a given stage of the construc-
tion, no connections have yet been made. (In Fig. 2, terminals 2, 4, and
O are the only isolated ones.) A fragment iz a terminal subset connected
by direct links, between members of the subset. (In Fig. 2, 8-3, 1-6-7-5,
5-6-7, and 1-6 are some of the fragments; 2-4, 4-8-3, 1-5-7, and 1-7 are

3 o
3

1 30/0

o4

Fig. 2 — Partial connection network,

not fragments.) The distance of a terminal from a fragment of which it
is not an element is the minimum of its distances from the individual
terminals comprising the fragment. An isolated fragment is a fragment
to which, at a given stage of the construction, no external connections
have been made. (In Fig. 2, 8-3 and 1-6-7-5 are the only isolated frag-
ments.) A nearest neighbor of a terminal is a terminal whose distance
from the specified terminal is at least as small as that of any other. A
nearest neighbor of a fragment, analogously, is o terminal whose distance
from the specified fragment is at least as small as that of any other.

The two fundamental construction principles (P1 and P2) for shortest
connection networks can now be stated as follows:

Principle 1 — Any isolated terminal can be connecled lo a nearesl
neighbor.

Principle 2 — Any isolated fragment can be connected to a nearest
netghbor by a shortest available link.

For example, the next steps in the incomplete construction of Fig. 2
could be any one of the following:

(1) add link 9-2 (P1 applied to Term. 9)
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(2) add link 2-9 (P1 applied to Term. 2)

(3) add link 4-8 (P1 applied to Term. 4)

(4) add link 8-4 (P2 applied to frag. 3-8)

(5) add link 1-9 (P2 applied to frag. 1-6-7-5).

One possible sequence for completing this construction is: 4-8 (P1), 8-2
(P2), 9-2 (P1), and 1-9 (P2). Another is: 1-9 (P2), 9-2 (P2), 2-8 (P2),
and 8-4 (P2).

As a second example, the construction of the network of Fig. 1 could
have proceeded as follows: Olympia-Salem (P1), Salem-Boise (P2), Boise-
Salt Lake City (P2), Helena-Boise (P1), Sacramento-Carson City (P1),
Carson City-Boise (P2), Salt Lake City-Denver (P2), Phoenix-Santa Fe
(P1), Santa Fe-Denver (P2), and so on.

The kind of intermixture of applications of P1 and P2 demonstrated
here is very efficient when the shortest connection network is actually
being laid out on a map on which the given terminal set is plotted to
scale. With only a few minutes of practice, an example as complex as
that of Fig. 1 can be solved in less than 10 minutes. Another mode of
procedure, making less use of the flexibility permitted by the construc-
tion principles, involves using P1 only once to produce a single frag-
ment, which is then extended by successive applications of P2 until the
network is completed. This highly systematic variant, as will emerge
later, has advantages for computer mechanization of the solution proc-
ess. As applied to the example of Fig. 1, this algorithm would proceed
as follows if Sacramento were the indicated initial terminal: Sacramento-
Carson City, Carson City-Boise, Boise-Salt Lake City, Boise-Helena,
Boise-Salem, Salem-Olympia, Salt Lake City-Denver, Denver-Cheyenne,
Denver-Santa Fe, and so on.

Since each application of either P1 or P2 reduces the total number
of isolated terminals and fragments by one, it is evident that an N-ter-
minal network is connected by N-1 applications.

III. VALIDATION OF CONSTRUCTION PRINCIPLES

The validity of P1 and P2 depends essentially on the establishment
of two necessary conditions (NC1 and NC2) for a shortest connection

network (SCN):
Necessary Condition 1 — Every terminal in a SCN s directly con-

nected lo at least one nearest neighbor.

Necessary Condition 2 — Every fragment in a SCN s connecled to at
least one nearest neighbor by a shortest available path.

To simplify the argument, it will at first be assumed that all distances
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between terminals are different, so that each terminal or fragment has
a single, uniquely defined, nearest neighbor. This restriction will be
removed later.

Consider first NC1. Suppose there is a SCN for which it is untrue.
Then [Fig. 3(a)] some terminal, ¢, in this network is not directly joined
to its nearest neighbor, n. Since the network is connected, ¢ is necessarily
joined directly to some one or more terminals other than n —say fi,
- -+, f» . For the same reason, » is necessarily joined through some chain,
C, of one or more links to one of fi, ---, f, — say to fi . Now if the link
t — fi. isremoved from the network and the link ¢ — n isadded [Fig. 3(b)],
the connectedness of the network is clearly not destroyed — fi. being
joined to ¢ through n and C, rather than directly. However, the total
length of the network has now been decreased, because, by hypothesis,
t — nisshorter than ¢ — fi. . Hence, contrary to the initial supposition, the
network contradicting NC1 could not have been the shortest, and the
truth of NC1 follows. From NCI1 follows P1, which merely permits the
addition of links which NC1 shows have to appear in the final SCN.

Turning now to NC2, the above argument carries over directly if ¢
is thought of as a fragment of the supposed contradictory SCN, rather
than as an individual terminal — provided, of course that the { — n link
substituted for { — f, is the shortest link from n toany of the terminals
belonging to t. From the validity of NC2 follows P2 — again the links
whose addition is permitted by P2 are all necessary, by NC2,in the
final SCN.

The temporary restrictive assumption that no two inter-terminal
distances are identical must now be removed. A reappraisal of the
proofs of NC1 and NC2 shows that they are still valid if » is not the
only terminal at distance ¢ — n from ¢, for in the supposedly contradictory
network the distance ¢t — f, must be greater than ¢t — n. What remains to be
established is that the length of the final connection network resulting

Fig. 3 — Schematic demonstration of NCI.
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from successive applications (N — 1 for N terminals) of Pland P2 is
independent. of which nearest neighbor is chosen for connection at a
stage when more than one nearest neighbor to an isolated terminal or

t is available. This is a consequence of the following considera-
tions: For a prescribed terminal set there are only a finite number of
connection networks (certainly fewer than CNND2 _ the number of
distinet waysof choosing N — 1 links from the total of N(N — 1)/2 possible
links). The length of each one of this finite set of connection networks is
a continuous function of the individual interterminal distances, d;; (as a
matter of f ct, it is a linear function with coefficients 0 and 1). With
the d,; specified, the length, L, of a shortest connection network is
simply the smallest length in this finite set of connection network
lengths. Therefore L is uniquely determined. (It may, of course, be
associated with more than one of the connection networks.) Now, if at
each stage of construction employing P1 and P2 at which a choice is to
be made among two or more nearest neighbors n, , - - -, n, of an isolated
terminal (or fragment) ¢, a small positive quantity, e, is subtracted from
any specific one of the distances d., , - -+, dw, — say from dp,, — the
construction will be uniquely determined. The total length, L', of the
resulting SCN for the modified problem will now depend on ¢, as well
as on the d,; of the original terminal set. The dependence on e will be
continwous, however, because the minimum of a finite set of continuous
functions of € (the set of lengths of all connection networks of the modi-
fied problem) is itself a continuous function of e. Hence, as e is made
vanishingly small, L’ approaches L, regardless of which “nearest neigh-
bor” links were chosen for shortening to decide the construction.

IV. ABSTRACTION AND GENERALIZATION

In the examples of Figs. 1 and 2, the terminal set to be connected was
represented by points on a distance-true map. The decisions involved
in applying P1 and P2 could then be based on visual judgements of
relative distances, perhaps augmented by application of a pair of di-
viders in a few close instances. These direct geometric comparisons can
of course, be replaced by numerical ones if the inter-terminal distances
are entered on the terminal plot, as in Fig. 4(a). The application of P1
and P2 goes through as before, with the relevant “‘nearest neighbors”
determined by a comparison of numerical labels, rather than by a
geometric scanning process. For example, P1 applied to Terminal 5 of
Fig. 4(a) yields the Link 5-6 of the SCN of Fig. 4(b), because 4.6 is
less than 5.6, 8.0, 8.5, and 5.1, and so on.
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When the construction of shortest connection networks is thus reduced
to processes involving only the numerical distance labels on the various
possible links, the actual location of the points representing the various
terminals in a graphical representation of the problem is, of course.
inconsequential. The problem of Fig. 4(a) can just as well be represented
by Fig. 5(a), for example, and P1 and P2 applied to obtain the SCN
of Fig. 5(b). The original metric problem concerning a set of points in
the plane has now been abstracted into a problem concerning labelled
graphs. The correspondence between the terminology employed thus
far and more conventional language of Graph Theory is as follows:

terminal < vertex

possible link « edge

length of link < “length” (or “weight”’) of edge

connection network < spanning subgraph

(without closed loops) <« (spanning subtree)

L=17.6 ©)]
(@) (b)

Fig. 4 — IExample of a shortest spanning subtree of a complete labelled graph.

(a) (b)

Fig. 5 — Example of a shortest spanning subtree of a complete labelled graph.
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shortest connection network <> shortest spanning subtree

SCN « 858
It will be useful and worthwhile to carry over the concepts of “fragment”
and “nearest neighbor” into the graph theoretic framework. P1 and P2
can now be regarded as construction principles for finding a shortest
spanning subtree of a labelled graph.

In the originating context of connection networks, the graphs from
which a shortest spanning subtree is to be extracted are complete graphs;
that is, graphs having an edge between every pair of vertices. It is
natural, now, to generalize the original problem by seeking shortest
spanning subtrees for arbitrary connected labelled graphs. Consider, for
example, the labelled graph of Fig. 6(a) which is derived from that of
Fig. 5(a) by deleting some of the edges. (In the connection network
context, this is equivalent to barring direct connections between certain
terminal pairs.) It is easily verified that NC1 and NC2, and hence P1
and P2, are valid also in these more general cases. For the example of
Fig. 6(a), they yield readily the SSS of Fig. 6(b).

As a further generalization, it is not at all necessary for the validity
of P1 and P2 that the edge “lengths” in the given labelled graph be
derived, as were those of Figs. 4-6, from the inter-point distances of
some point set in the plane. PI and P2 will provide a SSS for any con-
nected labelled graph with any set of real edge “lengths.”” The “lengths”
need not even be positive, or of the same sign. See, for example, the
labelled graph of Fig. 7(a) and its SSS, Fig. 7(b). It might be noted in
passing that this degree of generality is sufficient to include, among
other things, shortest connection networks in an arbitrary number of
dimensions.

A further extension of the range of problems solved by P1 and P2
follows trivially from the observation that the maximum of a set of

L=23.8

(a) (b)

Fig. 6 — Example of a shortest spanning subtree of an incomplete labelled graph.
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real numbers is the same as the negative of the minimum of the negatives
of the set. Therefore, P1 and P2 can be used to construct a longest
spanning subtree by changing the signs of the “lengths” on the given
labelled graph. Fig. 8 gives, as an example, the longest spanning subtree
for the labelled graph of Figs. 4(a) and 5(a).

It is easy to extend the arguments in support of NC1 and NC2 from
the simple case of minimizing the sum to the more general problems of
minimizing an arbitrary inereasing symmetric function, or of maximizing
an arbitrary decreasing symmetric function, of the edge “lengths’ of a
spanning subtree. (A symmetric function of n variables is one whose
ralue is unchanged by any interchanges of the variable values; e.g.,

ritae 4+ - - - a2 - - 2, sin 22 + sin 22 + - - -+ 4+ sin 22,
(s + @* + - -+ 4 2,512 ete.) From this follow the non-trivial generali-
zations,

The shortest spanning subiree of a connected labelled graph
also minimizes all increasing symmetric functions, and maxi-
mizes all decreasing symmetric functions, of the edge “lengths.”

L=-8

‘

(@) (b)

Fig. 7 — Iixample of a shortest spanning subtree of a labelled graph with
some “‘lengths’ negative. -

Fig. 8 — The longest spanning subtree of the labeled graph of Figs. 4(a) and
5(a).
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The longest spanning subtree of a connected labelled graph
also maximizes all increasing symmetric functions, and mini-
mizes all decreasing symmetric functions, of the edge “lengths.”

For example, with positive ‘“lengths” the same spanning subtree that
minimizes the sum of the edge “lengths” also minimizes the product and
the square root of the sum of the squares. At the same time, it maximizes
the sum of the reciprocals and the product of the arc cotangents.

It seems likely that these extensions of the original class of problems
soluble by P1 and P2 contain many examples of practical interest in
quite different contexts from the original connection networks. A not
entirely facetious example is the following: A message is to be passed
to all members of a certain underground organization. Each member
knows some of the other members and has procedures for arranging a
rendezvous with anyone he knows. Associated with each such possible
rendezvous — say between member ‘7 and member ‘"’ — is a certain
probability, p;;, that the message will fall into hostile hands. How is
the message to be distributed so as to minimize the over-all chances of
its being compromised? If members are represented as vertices, possible
rendezvous as edges, and compromise probabilities as “length” labels
in a labelled graph, the problem is to find a spanning subtree for which
1 — (1 — py) is minimized. Since this is an increasing symmetric
funection of the p;’s, this is the same as the spanning subtree minimiz-
ing = pi;, and this is easily found by P1 and P2.

Another application, closer to the original one, is that of minimizing
the lengths of wire used in cabling panels of electrical equipment. Re-
strictions on the permitted wiring patterns lead to shortest connection
network problems in which the effective distances between terminals
are not the direct terminal-to-terminal distances. Thus the more general
viewpoint of the present section is applicable.

V. COMPUTATIONAL TECHNIQUE

Return now to the exemplary shortest connection network problem
of Figs. 4(a) and 5(a) which served as the center for discussion of the
arithmetizing of the metric factors in the Basic Problem. It is evident
that the actual drawing and labelling of all the edges of a complete
graph will get very cumbersome as the number of vertices increases —
an N-vertex graph has (1/2)(N? — N) edges. For large N, it is convenient
to organize the numerical metric information in the form of a dislance
table, such as Fig. 9, which is equivalent in content to Fig. 4(a) or Fig.
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5(a). (A distance table can also be prepared to represent an incomplete
labelled graph by entering the length of non-existent edges as =.)
When it is desired to determine a shortest connection network directly
from the distance table representation — either manually, or by machine
computation — one of the numerous particular algorithms obtainable

1 2 3 4 5 6

1 - 67| 52|28 |56 |36

2(67| — |57]|73 (51|32

3|52|57| — 34|85 40

4128 | 73| 34| — 8.0 | 4.4

5|56 | 5.1 |85|80| — |46

636324044 |46 | —

Fig. 9 — Distance table equivalent of Figs. 4(a) and 5(a).

. i
2 3 4 5 6 2 3 5 6
6.7 |52 |28 (56|36 4 IiB I 3.4 { 8.0 | 4.4J

() | m
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{
5

4.6
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Fig. 10 — Tllustrative computational determination of a shortest connection
network.
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by restricting the freedom of choice allowed by P1 and P2 is distinetly
superior to other alternatives. This variant is the one in which P1 is
used but once to produce a single isolated fragment, which is then ex-
tended hy repeated applications of P2.

The successive steps of an efficient computational procedure, as ap-
plied to the example of Fig. 9, are shown in Fig. 10. The entries in the
top rows of the successive I tables are the distances from the connected
fragment to the unconnected terminals at each stage of fragment growth.
The entries in parentheses in the second rows of these tables indicate
the nearest neighbor in the fragment of the external terminal in question.
The computation is started by entering the first row of the distance
table into the I table (to start the growing fragment from Terminal 1).
A smallest entry in the F table is then selected (in this case, 2.8, asso-
ciated with External Terminal 4 and Internal Terminal 1). The link 1-4
is deleted from the F table and entered in the Solution Summary (Fig.
11). The remaining entries in the first stage F table are then compared
with the corresponding entries in the “4” row of the distance table
(reproduced beside the first F table). If any entry of this “added ter-
minal” distance table is smaller than the corresponding F table entry,
it is substituted for it, with a corresponding change in the parenthesized
index. (Since 3.4 is less than 5.2, the 3 column of the F table becomes
3.4/(4).) This process is repeated to yield the list of successive nearest
neighbors to the growing fragment, as entered in Fig. 11. The F and
“added terminal” distance tables grow shorter as the number of un-
connected terminals is decreased.

This computational procedure is easily programmed for an automatic
computer so as to handle quite large-scale problems. One of its advan-
tages is its avoidance of checks for closed cycles and connectedness.
Another is that it never requires access to more than two rows of distance
data at a time — no matter how large the problem.

SOLUTION SUMMARY

LINK LENGTH
1-4 2.8
4-3 3.4
1-6 3.6
6-2 3.2
6—I5 4.6

Tig. 11 — Solution summary for computation of Fig. 10.
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VI. RELATED LITERATURE AND PROBLEMS

J. B. Kruskal, Jr.! discusses the problem of constructing shortest
spanning subtrees for labelled graphs. He considers only distinet and
positive sets of edge lengths, and is primarily interested in establishing
uniqueness under these conditions. (This follows immediately from NC1
and NC2.) He also, however, gives three different constructions, or
algorithms, for finding SSS’s. Two of these are contained as special
cases in P1 — P2. The third is — “Perform the following step as many
times as possible: Among the edges not yet chosen, choose the longest
edge whose removal will not disconnect them” While this is not directly
a special case of P1 — P2, it is an obvious corollary of the special case
in which the shortest of the edges permitted by P1 — P2 is selected at
each stage. Kruskal refers to an obscure Czech paper® as giving a con-
struetion and uniqueness proof inferior to his.

The simplicity and power of the solution afforded by P1 and P2 for
the Basic Problem of the present paper comes as something of a surprise,
because there are well-known problems which seem quite similar in
nature for which no efficient solution procedure is known.

One of these is Steiner’s Problem: Find a shortest connection network
for a given terminal set, with freedom to add additional terminals
wherever desired. A number of necessary properties of these networks
are known® but do not lead to an effective solution procedure.

Another is the Traveling Salesman Problem: Find a closed path of
minimum length connecting a prescribed terminal set. Nothing even
approaching an effective solution procedure for this problem is now
known (early 1957).

REFERENCES

1. J. B. Kruskal, Jr., On the Shortest Spanning Subtree of a Graph and the Travel-
ing Salesman Problem, Proe. Amer. Math, Soec. 7, pp. 48-50, 1956.
. Otakar Bortivka, On a Minimal Problem, Prdce Moravské Pridovedecké Spdec-
nosti, 3, 1926,
3. R, Courant and H. Robbins, What is Mathematics, 4th edition, Oxford Univ.
Press, N. Y., 1941, pp. 374 el seq.

3]






