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This paper concerns itself with the analysis of a type of periodically
switched network that might be used in time multiplex systems. The econom-
ics of the situation require that the ratio of the swilch closure time t to the
switching period T be small. Using this assumption, the analysis is performed
by successive approximations. More precisely the zeroth approvimation to
the transmission 1s oblained from a block diagram analogous to those used
in sampled servomechanisms. IF'rom the eonvergence proof of the successive
approximation scheme, it follows that when v/ T is small, the zeroth approxi-
mation 1s very close to the exact transmission. A discussion of some examples
is included.
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I. INTRODUCTION

One main contributor to the cost of transmission circuits is the trans-
mission medium itself. Thus it is important to share the transmission
medium among as many messages as possible. One possible method is
the frequency multiplex where each message utilizes a different frequency
band of the whole band available in the medium. An alternate method
is the time multiplex where each message is assigned a time slot of dura-
tion 7 and has access to that time slot once every T seconds. It is obvious
that the economies of the situation requires that = be as small as possible
and T as large as possible so that the largest possible number of messages
are transmitted over the medium. For this very reason the analysis of
periodically switched networks is of special interest in the case where
/T is small.

W. R. Bennett* has published an exact analysis of this problem without
any restrictions either on the network or on the ratio =/7'. It is believed,
however, that the analysis presented in this paper will, in most practical
cases, give the desired answer with a considerable reduction in the
amount of calculations. The simplification of the analysis is mainly a
result of the assumption that /7" is small.

Tirst the successive approximation method of solution will be discussed
in general terms. Next it will be shown that the zeroth approximation
to the transmission through the network can be obtained from the gain
of a block diagram analogous to those used in the analysis of sampled
servomechanisms. The nature of the zeroth approximation is further
clarified by some general discussion and some examples. Next it is shown
that the successive approximations converge. The convergence proof then
suggests some slight modifications of the block diagram to obtain a more
accurate solution.

1I. DESCRIPTION OF THE SYSTEM

The system under consideration is shown on Fig. 1. It consists of two
reactive networks N; and N. connected through a switch S which is it-
self in series with an inductance {. N; is driven at its terminal pair (1)
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Fig. 1 — System under consideration.
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Fig. 2 — Resonant circuit.

by a current source [, which is shunted by a one ohm resistor. N, is also
terminated at its terminal pair (1) by a one ohm resistor R, which is the
load resistor of the system. The switch S is periodically closed for a dura-
tion 7. The switching period is T. Thus if the switch is closed during the
interval (0, 7) it will be closed during the intervals (nT, nT + 1) for
n = 1,2 3, -+ . The inductance ¢ is selected so that the series circuit
shown on IMig. 2 has a resonant frequency f, = 1/2r; i.e., the time
during which the switch is closed is exactly one-half period of the circuit
of Fig. 2. '

The switch S acts as a sampler and, as a result of the well-known modu-
lating properties of sampled systems, the sampling period 7" must be
chosen such that the frequency 1/27 is larger than any of the frequencies
present in the signals generated by /o . Furthermore, in order to eliminate
all the sidebands generated by the switching, N, must have a high in-
sertion loss for all frequencies above 1/27T cps.

In the analysis that follows networks N; and N, will be assumed to be
identical: it should, however, be stressed that this assumption is not
necessary for the proposed method of analysis.* This assumption is
made because in the practical situation which motivated this analysis
N; and N, were identical since transmission in both directions was re-
quired.

In order for the system under consideration to achieve the maximum
degree of multiplexing, the closure time r of the switch will be taken as
small as practically possible and the switching period 7' as large as pos-
sible (consistent with the bandwidth of the signals to be transmitted).
As a result the ratio 7/7 is very small, of the order of 107" or less in prac-
tical cases. Consequently the resonant frequency f. of the series resonant
circuit shown on T'ig. 2, is many times larger than any of the natural
frequencies of N; and N, .

_ * The modifications required for the case where N, is not identical to N. are
given in Appendix IV.
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The problem is to determine the relation between Iy, the voltage
across R, , and /.

III. METHOD OF SOLUTION

Let us first write the equations of the system. Obviously the equations
will depend on the exact configuration of the networks N, and N, . For
simplicity we shall write them for the case where N, and N, are dissipa-
tionless low-pass ladder networks. As will become apparent later this
assumption is not essential to the argument. What is essential, however,
is the fact that both N, and N, should start (looking in from the switch)
with a shunt capacitor (" and a series inductance L, , the element value
of L, being much larger than £. Using a method of analysis advocated
by T. R. Bashkow,® we obtain, for the network of Fig. 3, the equations:

(f’!j1

L[ (ﬂ“ = —Rll — Vs + Igi':u

Cl“:=1.1—7:2

Co =7 = tno1 — 1
- =V, — € (l.a)
C =" =1, — A (Lb)

diy = [c-,: - (’;llA(l) (1‘(') R (l)

.ﬁ
I

(o'
Il

des _ A — i (1.d)

-« !
(h" Il
ar e T
dv,’

dr

-]
Il

/‘:n - 'in’—l
N I
di?’ =4 — 4
df 2 1
diy
dt

Ch

Ll l‘a’ — R r,’i1’ J
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where

Alt) = E [u(t — kT) — u(t — kT — 7)], (2)

k=—00
with () =1 for ¢>0, and u(f) =0 for & <O.

This system of linear time varying equations may be broken up irto
three sub-systems I, , R and I, . It is this subdivision that suggests a
successive approximation scheme that will be shown to converge to the
exact solution.

The zeroth approximation is obtained as follows: when the switch is
closed, i.e., A(f) = 1, the resonant current 7, is much larger than the cur-
rents 7, and 7,’. Thus, during the switch losure time, 7, and 7,’ are neg-
lected with respect to 7, in (1.b) and (..d). Hence when A(f) = 1 the
system R may be solved for ,(£), ex(f) and e;(Z) in terms of the initial
conditions. The resulting function e(t) and given function 7,(f) are then
the forcing functions of the system 7,. The other function e;(f) is the
forcing function of the system 7y. Under these assumptions, the periodic
steady-state solution corresponding to an applied current #%(f) = Toe™"
is easily obtained.

The zeroth approximation will be distinguished by a subseript “0”.
Thus z.(f) is the (steady state) zeroth approximation to the exact solu-
tion ,(f).

The first approximation will be the solution of the system (1), pro-
vided that during the switch closure time the funections 7,.(f) and 7,’(t)
in (1.b) and (1.d) are respectively replaced by the known functions
ino(t) and 7.0’ (1). And, more generally, the (k 4 1)th approximation will
be the solution of (1) provided that during the switch closure time, the
functions 7,(f) and 7,/(t), in (1.b) and (1.d), are respectively replaced by
the known solutions for 7,(f), and 4,/ (f) given by the kth approximation
It will be shown later that this successive approximation scheme con-
verges. Let us first describe a simple method for obtaining the zeroth
approximation.

IV. THE ZEROTH APPROXIMATION

4.1 I'ntroduction

The problem is to obtain the steady-state solution of (1) under the
excitation 7o(f) = I,e™'. Using the approximations indicated above,
during the switch closure time (that is when A(f) = 1) the system K
becomes
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dfi'g

r%=m—mmx (4)
¢ ‘%‘ — 4 ()AQ). (5)

Differentiating the middle equation and eliminating des/dt and des/dt
we get for 0 = ¢ < 7:
di, 2
e (C
in which we used the notation v{t) for the Dirac function and the knowl-
edge that

MW+%M@—%WW) (©)

14
B _ 50 — 8t — o). ™)
dt
Equation (6) represents the behavior of the resonant circuit of Fig. 2
for the following initial conditions:

i(0+) =0, (8)
di,(0+)  ex(0) — &5(0)
= 7 } 9

In Appendix I it is shown that the resulting current 7,(t) is, for the in-
terval 0 £t < 7,

(1) = Clea(0) — ea(0)]si(2), (10)
where
T . wi 1 .
J.— sin — = —wpsinwet for 02t <7
a() =42r T 2 (11)
10 elsewhere
with

_T_ /2
Q}(]—T /‘/;. (12)

Thus the zeroth approximation to the exact 7,(f) is given for the interval
0=t=Thy

in(t) = Clea(0) — €3(0)]sa(0).- (13)
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We shall now show that the zeroth approximation may be conveniently
obtained from the block diagram of Fig. 4.

4.2 Description of the Block Diagram

All the blocks of the block diagram are unilateral and their correspond-
ing transfer functions are defined in the following. Capital symbols repre-
sent £-transform of the corresponding time functions, thus 7y(p) is the
£-transform of ().

Referring to Fig. 1,

Eﬂ(P)
Lo(p) l1=0

Thus Zi:(p) represents the transfer impedance of Ny when its output is
open-cireuited (i.e., /. = 0). Since Ny and N, are identical we also have,
from R, = 1 and reciprocity, Zw(p) = FEi/I., where I, is the cur-
rent entering N .

The impulse modulator is periodically operated every T seconds,
and has the property that if its input is a continuous function f(¢) its
output is a sequence of impulses:

+nc
_Z f(0) 8(t — kT).

Zl'z(P) =

The transfer funetion S;(p) is defined by

-

Sip) = elsi(d)] = p;j:'wug cosh 27 77", (14)

Let Z(p) be the driving point impedance at the terminal pair (2) of Ny .
It is also that of N since N; and N. are assumed to be identical.

Let V(p) be the output of the first block, then, by definition, V(p) =
Zw(p)ly . Let v(f) be the corresponding time function. The voltage v(t)

IMPULSE
MODULATOR

—————=a

\—QJ_CSI(P) == 2z _Ea

2Z(p)

NOTE!
ALL BLOCKS ARE UNILATERAL

Fig. 4 — Zeroth-approximation block diagram.
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is the output voltage of N,, when N, is excited by the current source
Iy and the switch S remains open at all times.

4.3 Analysis of the Block Diagram

For simplicity, suppose that the system starts from a relaxed condi-
tion (i.e., no energy stored) at t = 0. Let z(t) = £7'[Z(p)]. Considering
the network N, as driven by 4, and 7, , it follows that the voltage es(()
shown on TFig. 3 is given by

el = o) — [ in@)ett = )l (15)
0

Similarly

ex(l) = f l io(t)z(t — ) dt'. (16)
0
Thus
ean(l) — en(l) = v(t) — 2 ft to(Nz(t — 1) dt. (17
0

These equations have been derived by considering Fig. 1. They could
have been also derived from the block diagram of I'ig. 4 as follows: let
Io(p) be the output of CSi(p). As a result, the output of the block
27Z(p) is 2Z(p)1o(p). When this latter quantity is subtracted from V(p)
one gets V(p) — 2Z(p)I(p), which is the £-transform of the right-hand
side of (17). Referring to the block diagram it is also seen that this
quantity is the input to the impulse modulator.

Thus we see that if 7,.(p) is the output of C'S,(p), then the input of
the impulse modulator is ex(f) — exn(t) by virtue of '(17). If this is the
case the output of C'S,(p) is given by Clex(0) — e30(0)]si(t), for0 =t < T,
which, according to (9), is 7.0(f).

Thus the block diagram of I'ig. 4 is a convenient way of obtaining the
zeroth approximation to the periodie steady-state solution.

In order to use the techniques developed for sampled data systems," *
we introduce the following notation? If f({) = £7'[F(p)], then we define
F*(p) by the relation

+w0
F*p) =L 3 Flp + jnw), (18)

T‘ N=—oo

where

Wy = — . (19)
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If f(0+) is defined by lim f(¢), then, provided f(0+) = 0,*
e—+0

FHp) = & [i 10 8t — -nT)]. (20)

Going back to the system of Fig. 4 we get”

: . [Z1a(p) To{p)]*C'S1(p) Z12(p)
Ba(p) = =T 50z @0
and
Ia(p) = [Z15(p) Lo(p) *C'Si(p) (22)

ST 208(p)Z ()]
where according to the notation defined by (18)

L@ = 5 3 Zulp + ue) op + jna),
4
S ZE = L T Silp + jne)Z(p + jnw).

fi==—00

It should be stressed that (21) and (22) are not valid when r is made
identical to zero. When = = 0, Si(p) = 1 for all p’s and since Z(p) ~
1/Cp as p — o the time function whose transform is Z(p).Si(p) is differ-
ent from zero at t = 0. In such a case (20) does not hold. I'rom a physi-
cal point of view, the feedback loop of Fig. 4 is unstable when r is identi-
cally zero since an impulse generated by the impulse modulator
produces instantaneously a step at the input of the impulse modulator.
This step causes an instantaneous jump in the measure of the impulse
at the output of the impulse modulator and so on. In short the feedback
loop is unstable.

It should be pointed out that if the power density spectrum of Iy is
zero for frequencies higher than w,/2, (21) reduces to

Ey 1 CSl(P)ZmQ (p)

R A A AN (23)

For certain applications it is convenient to rewrite (21) in a slightly
b * When f(0), as defined above, is different from zero, (20) should be replaced
y

= ™| = e 1
e I:z Ft) st u-nl):l = I"™*(p) + 2f(()-!-).

n=>0
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different form. Advancing the time function s,(f) by 7/2 seconds, one
gets the function () which is even in {. As a result its transform Sy(p)
is purely real, that is,

2
So(p) = =2 cosh &7,
P+ w 2

From an analysis carried out in detail in Appendix IV we finally obtain

[le (P) ID(P)]*SH (P)Zla(P)
2[Z(p)So(p)]* '

It should be pointed out that (23) is still valid when + = 0. Equations
(20) and (23) give the zeroth approximation to the gain of the system
for any driving current z(f).

In many cases it is sufficient to know only the steady-state response
Ey(p) toan input () = Ie™™". The response Ey(p), as given by (23)
[or (20)] includes both transient and steady-state terms. Since Io(p) =

Iy

Eqn(p) = (24)

— equation (24) gives

D — Jwo
1 +eo ) I
— Z le(p + ang) _‘—‘—B*——— SD(p)ZIE(p)
Eyw(p) = ( ne Pt Jnes = J”") . (25)
2[Z(p)Su(p)]

Since neither Sy(p) nor Z.(p) have poles on the imaginary axis, the
steady state includes only the terms corresponding to the imaginary
axis poles of the summation terms. Thus the steady-state response is of
the form

+

Jlwg—naw,)t
Z A" € ’
—oo

where, from (25),
A, = +£ozw(jwu)30(jwn — Jnw,) Zis(jey — jnw.) 26
2 Z Z[jwu + J(A - n)wx]Sﬂ[jwﬂ + J(I" - n)“’x]

k=—uw

V. TRANSMISSION LOSS

A practically important question is to find out a priori whether a
switched filter necessarily introduces some transmission loss.

The following considerations apply exclusively to the zeroth order
approximation. It will be shown that assuming ideal elements, the trans-
mission at de may have as small a loss as desired.
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By transmission at de we mean the ratio of the de component of the
steady state output voltage to the intensity of the applied direct current.
Thus we refer to (26) and set @, = 0 and n = 0. Suppose the lossless
networks N; and Ns are designed so that their transfer impedance Zi.
is of the Butterworth type, that is

1

1 4 ¥’

| Zu(jo) | =

where for our purposes M is a large integer.
In the following sum, which is the denominator of (26) when wo =
n=20

+a0
2 kz Z (Ghw,) So( ghes),
(where w, > 2 since the cutoff of the networks N oceurs at w = 1), the
terms corresponding to values of & > 0 will make a contribution that
vanishes as M — . This is a consequence of the following facts:

(a) Re[Z(jkw,)] = | Zi(jkw,) | *, since the networks Ny and N are
dissipationless. Hence for & # 0 and as M — = Re[Z( Jhwg)] — 0,
(b) Im[Z(jkw,)] = —Im[Z(—jkw.)],

(e) Sy(jw) is real.

Thus the imaginary part of the products Z(jkw,)So(jkw,) cancel out and
the real part (for k  0) decreases exponentially to zero as M — =.
Hence for sufficiently large M the denominator of (26) may be made as
close to two as desired.

It is easy to check that the numerator of (26) reduces to Iy, the in-
tensity of the applied direct current. Therefore the ratio of Ay, the de
component of the output voltage to /o may be made as close to one-half
as desired.

VI. A SIMPLE EXAMPLE

Since the approximate formulae derived in Section IV are somewhat
unfamiliar it seems proper to consider in a rather detailed manner a
simple example.*

Consider the system of Fig. 5. Assume that the current source applies
a constant current to the system and assume that the steady state is
reached. For simplicity let [oR = E.

The steady-state behavior of the voltages ex(f) and es(t) = es(t) is

* In addition, the limiting case of the sampling rate — =, i.e., T'— 0, is treated
in Appendix II.
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Ly
T I, R C= & e; ==C R ey

Y +A

Vi

Fig. 6 — Waveforms of the network of Fig. 5.

shown on T'ig. 6. It is further assumed that the duration = during which
the switch is closed is negligible compared to 7T, the interval between
two successive closures.
Let & be the average value of the steady-state voltage es(f). Thus é;
is equal to A, as given by (26) with wy = n = 0, namely,
Z122(0) Sq(0)

ey = Iy =

2 Y Z(jken) Soljke)

In this particular case

R _ ct
1 + pRC 1
p‘{‘ﬁ,

Z(P) = Zm(p) =

Since we assume 7 to be infinitesimal Sp(p) and Si(p) may be con-
sidered equal to unity over the band of interest. Using the expansion
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coth z =

w | =

+ 2 + ﬂ“ Z + nr®’
we obtain

C‘—I
)—~24“—ﬁ"1 21—Ccoth|:(p+ﬁ%)22:|
- ('P + J”wﬂ) + '

Hence
23 o ook \ 1 T)
T _Zn Z(Gkw,) = 2Z*(p) 0" C coth (Q—RC .

Thus finally
_ IyR? RC 1

ey = =F = ~.
1 T T T
C coth (QRC) coth (ZRC)

This last result obtained from the theory developed above is now going
to be checked directly. Referring to Fig. 6, where the notation is defined,
and noting the periodicity of the boundary conditions, we get

(Vo + &) =T,

(B — Ve '™ = E — (Vi + A).
Noting that es(t) = (Vi 4 A)e™"™, and solving for V, and A we fin-
ally get .

(27)

—URC
eat) = 1 + eT/rc’
By definition
- _1 ERC1 —¢ "%
L[ e = TR
or
_ RC 1
ey = E

(T
coth (ZRO)

This last equation checks with (27).

VII. NUMERICAL EXAMPLES

Consider the network of Fig. 7. The cutoff of both N, and N, occurs
at w = 1. In view of the sampling theorem good transmission requires
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Fig. 7 — Computed transmission loss.

that the signal be sampled at a rate at least twice as large as its highest
frequency component. Since the cutoff occurs at w = 1, the sampling
angular frequency should at least be equal to 2. For illustration purposes
we have taken w, = 2.67 and w, = 5 for the angular sampling frequency
The value w, = 2.67 corresponds to a cutoft at 3 ke and a sampling rate.
of 8 ke. The ratio 7/7 was taken to be 1/125. The transmission through
the switched network as given by the zeroth approximation is shown for
both cases on Fig. 7.

As expected the transmittance of the switched filter gets closer to that
of an ordinary filter as the switching frequency increases.

VIII. THE SUCCESSIVE APPROXIMATION SCHEME

The ideas involved in the successive approximation scheme are simple
and straightforward. One point remains to be settled, namely the con-
vergence of the procedure.

We shall assign a subseript 1 to the correction to be applied to the
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zeroth approximation in order to obtain the first approximation. Thus
adding ,,(¢) to 7.(t) we get the first approximation 7,(f) + 7.(f). More
generally the kth approximation is ijlﬁﬂ'm(t). The procedure will con-
verge if, in particular, the infinite series 3w _oie(l) converges.

8.1 Preliminary Steps

(a) Let us normalize the frequency (and consequently the time) so
that the switching period T is unity. Since the networks N; and N, must
have high insertion loss for w > 4(2x/T) = =, the pass band of N, and
N, must be the order of 1 radian/sec. As a result the element values of
the capacitor €' and the inductance L, (see Fig. 3) are also 0(1).

(b) For the excitation 7, = ¢™', the zeroth approximation derived
above may be written in terms of Fourier components:

—+o0
. i i2
iro (f,) C:wt E : Irﬂ,kebfh,

k=—c0

. +=° 10,
?:n[)(t) — em! E Ino,kehr“-

h=—w0

Let 7,; denote the complex conjugate of 7,0 , then
“+oo
'f:rﬂ(t’)i’rﬂ(t) = ' Z IrD.A-IrO,tc:!”(kic) t-
ey f=—00

Since the functions ¢™*'[k = --- —1,0, 1, --- ] are orthonormal over
the interval (0, 1) and form a complete set,’ we have from Bessel’s equal-

ity:
1 R o R
[ 1O dt = 3 1 Taxl = N,

where N(I,) denotes the norm of the vector 7., which is defined by its
components I (k= --- —1,0, +1 --- ). Similarly,

1 +o0
fo i@ P dt = 3 | Tuos | = N0,

(e) Since the switch is periodically closed we shall be interested in
the Iourier series expansion of A({):

+
A(f) = ’H,(l) —_ y(t — ,r) — Z Akbikﬁrt,

where Ag = 7 and
o

Al =

—0o0
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Since 7/T <« 1, and since the frequency has been normalized so that
T = 1, we have 7 < 1.
Using the convolution in the frequency domain, we have

+o0
?fu(j(t)A(t) Z ( Z Akfu 0 ﬂ) et(w+21rk)t.

If we introduce the infinite matrix ¢ defined by
Gy =Aiy (k= —0, -+, —1,0, 41, -+ ),

the convolution may be represented by the product, GI.o, where I, is
the vector whose components are I, x(k = --- —1,0,1, ---).

(d) Considering the network shown on Fig. 3, let E(p) be the ratio of
IL'(p) to I,(p). Taking into account the assumed identity between N,
and N it follows that

+1.(p) L'(p)
- = E(p).
L) |~ L) ~ 7
Using the system of (1) and, for example, by Neumann series expan-
sion of the inverse matrix, we get

1 2
L.Cp? L,FCzp‘*

(e) Considering now the effect of 7,(f) and 7,/(t) on .(t), (42) of
Appendix I gives I.(p) as a function of I,.(p) and I,’(p). In the present
discussion where we are interested in the steady state of #,.(t) it is es-
sential to keep in mind that since the switch opens at ¢t = 7, the memory
of the resonant circuit extends only over an interval 0 < t £ 7. To take
this into account we must modify the factor (wo’/2)/(p° + wo) of (40),
because the impulse response (which represents this memory) must be
identically zero for ¢ > 7. The resulting new expression is

B(p) = +o-

w
-§ —pr/2 T2 —pT7 /2
F(p):mepf[epl_i_epf],
or
w02 12 pT
i =0 P L
F(p) T wuze cosh 3

Since the time function whose transform is F(p) is non-negative for all
’s and since F(0) = 1, it follows that

|F(jo) | = 1. (28)
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8.2 Matriz description of the successive approximations

From the developments of Section IV, we know 4,o(£), Za0(t) and 2.o'(£)
or what is equivalent, the vectors Iy, I and I,". The first approxi-
mation takes into account the effect of 7,0(t) and %./(f) on #.(f). [See
equation (1.c) and (1.d)]. The time functions %,(t) and %.'(t) affect the
system R only during the interval (0, 7). Therefore we must consider the
vector G(I.o + I.') which corresponds to the excitation of the resonant
circuit. Since the opening of the switch after a closure time r forcibly
brings 1,(t) to zero we have

In=GFGIw+ Iw), (29)

where the matrix G has been defined above and the matrix F is a diago-
nal matrix whose diagonal elements F;, (k = --- —1, 0, +1 ---) are
defined by Fi. = F(jw, 4 j2k). Note that (28) implies that | Fi| = 1
for all k’s. Tt should be kept in mind that 7,0 + [, is the first approxima-
tion to the exact I,(p).

The next iteration is obtained by first taking into account the effect
of [, on the rest of the network:

]ﬂl =F 111 y
_ (30)
Inl, = Irl )
where E is a diagonal matrix whose elements £, (k = ---, —1, 0, +1,

..) are defined by Ep = E(jw. + 27kj), and then the effects of /.
and I," on [, that is,

];2 = G ]“ (; (In] + Inl’); (31)

combining (30) and (31), I,» = 2G F G K I, . A repetition of the same
procedure would lead to [ 2GFGE ., and in general I, 41 =
2GFGEIL,.

Since the nth approximation to 7,(p) is given by the sum E;LJI rk 5
the successive approximation scheme will be convergent only if the series

erk

k=0

converges. This will be the case if and only if the series
N4+2GFGE+ - + QGFGE)" + ---]ln (32)

converges.
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8.3 Convergence Proof

Consider a vector X of bounded norm corresponding to a time func-
tion x(f) having the property that x(f) = 0forr = { £ T and 2(f) # 0
for 0 < ¢ < 7. In the above scheme, the vector X would be 7., . Let us
define the vectors Y, Z, U and V by the relations

Y = EX, (33)
Z = G@GY, (34)
U=FZz, (35)
V = 26U, (36)
hence .
V=2GFGEX. (37)

We wish to show that N(V) =< aN(X) with ¢ < 1, since these inequali-
ties imply that the infinite series (32) converges.

Since (a) N, and No are low-pass filters with cutoff < = radians/see,
(b) E(p) = 1forp = 0, (¢) E(p) « 1/L.Cp" for p >> 1, only a few of
the F,’s will be of the order of unity In most cases I£_; , Iy, I, will be
smaller than unity, thus,

N(Y) = N(X). (38)

In view of the pulsating character of x(¢) the power spectrum of z(¢)
is almost constant up to frequencies of the order of w/7 radians/sec.
Because of the low-pass characteristic of K(p), the function y(t) associ-
ated with the vector Y is smooth in comparison to x(f), thus from (34),

N@ = [0 Fa= [ 1@ F it = eV (D),

where a = 0(1).
Since | Fi. | = 1 for all &’s, from (33), N(U) £ N(Z), hence N(U) =
brN(Y) with b = 0(1).

N(U) = brN(Y) with b = 0(1).
From (36) we have

N(V) =2 f0’|u(t) tdt = 2[01lu(i) [*dt = 2N(U).

Thus we finally get
N(V) = 2b7N(Y) where b = 0(1), (39)
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and since r < 1 we get from (38) and (39) N(V) = aN(X) with a < 1.
Hence the convergence is established.

IX. A MODIFICATION OF THE BLOCK DIAGRAM TO IMPROVE THE ZEROTH
APPROXIMATION

In principle it is possible to obtain a block diagram whose transmission
characteristic is equal to the first approximation. In many cases it is
not necessary to go that far. The first approximation takes into account
the effect of the currents #.o(t) and 7.’ (£) on the resonant circuit of Fig. 2.
Since during the switch closure time the currents 4,0 and 7,," cannot vary
much, let us assume that they remain constant for the duration of the
switch closure. '

Referring to the analysis of Appendix I and to (42) in particular, we
see that the current i, is increased by

wo  1.(0=) + &' (0-)
p* + wi 2p

bl

bin(p) =

or

é:(0—) — é&(0-) (1 — cos wol) 0=st<

u(t) =C 5

Defining Sa(p) = £7{4(1 — cos wot)[u(t) — u(t — )13, or

LIJ_IJ2 1 (ZPE + w"g) P

CSa(p)

Ea

cs,(p)

f
<
]
b

ﬁl‘{q

2Z(p)

C[an(P)Io(P)]*Sw(D) +C[PZ|E(P)[o(P)]*Se(D}
wac{fz@se]"+ [p20)s)]* |

Ea(p) =

Tig. 8 — Modified block diagram.
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and recalling that the input of the impulse modulator of Fig. 4 is
e2(0) — e3(0), it becomes obvious that the modified block diagram should
be that given by Fig. 8. The output of the modified block diagram is
given by?

Eip) = ClZ1(p) Li(p)])*S1(p) + ClpZia(p)Lo(p)]*Ss(p)

L+ 2CHZ(p)Su()]* + [pZ(p)S:(p)]*}

X. CONCLUSION

Let us compare the method of solution presented above with the more
formal approach proposed by Bennett. The latter method leads to the
exact steady-state transmission through a network containing periodi-
cally operated switches. This method is perfectly general in that it does
not require any assumption relative to the properties of the network
nor to the ratio of 7/T. As expected this generality implies a lot of de-
tailed computations. In particular it requires, for each reactance of the
network, the computation of the voltage across it due to any initial con-
dition. The method presented in this paper is not so general because it
assumes first that the ratio 7/7 is small; second the value of the induct-
ance { is very much smaller than that of L, (see I'ig. 3). The result
of these assumptions is that the system of time varying equations
may be solved by successive approximations with the further advantage
that the convergence proof guarantees that, for very small /7T, the
zeroth approximation will be a close estimate of the exact solution.

The zeroth approximation may conveniently be obtained by consider-
ing a block-diagram analogous to those used in the analysis of sampled
servomechanisms. FFurther the proposed method leads directly to some
interesting results, for example, as far as the zeroth approximation is
concerned, the de transmission may be achieved with as small a loss as
desired provided the lossless networks N, and N, are suitably designed.
Another advantage of the proposed method is that the simplicity of the
analysis permits the designer to investigate at a small cost a large num-
ber of possible designs.

Ifinally it should be pointed out that this approach to the solution of
a system of time-varying linear differential equations may find applica-
tions in many other physical problems.

AprrENDIX 1

ANALYSIS OF THE RESONANT CIRCUIT

Consider the resonant circuit of Fig. 2. Suppose that at { = 0, the left-
hand eapacitor has a potential e2(0) and the right-hand ecapacitor has
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a potential e3(0) and that at ¢ = 0 the current 7, through the inductance
{ is zero.
The network equation is

d . 2 (., _

faiy"‘a[ﬁrd!-*o

Now i,(0) = 0 and di,(0)/dt = [ex(0) — ex(0))/¢. Let 2/(C = wy’, then
di,(0)/dt = w,"Cle2(0) — es(0)]/2.

Using Laplace transforms,

@ + L) = pir0) + O
' (40)
I(p) = [e:(0) — (O] 5,
hence
() = wlC e(0) ;—@ sin wol (41)
and
q(t) = j; (1) dt = (YL;L’—Q(O)[ — cos woll.

If 27 /wy = 27,1.e., 7 = m/{C/2, which means that the duration of the
switch elosure is a half-period of the resonance of the tuned circuit, then

i) = }rC[ez(O) 2— e3(0)] sin r_tj
(t) = HC[EQ(O) 2ﬁ ed(O)] |:1 — CO0Ss 1:}].

It is clear then that, during the period r, the charge transferred onto the

T(TL)-LH Lo~~~ .

w? In(p)+In(p)
[F(p): p2+0woa n )Eh

Tig. 9 — Resonant circuit excited by current sources I, and I." .
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right-hand capacitor is ¢(7) = Cle.(0) — es(0)] and as a result at time
{ = r the right-hand capacitor has a voltage e,(0) and the left-hand
capacitor has a voltage es(0). Considering now the network of Fig. 9,
the equation is

i | 2.
@ + = =

‘ C

& li®) + /@),

Assuming all initial conditions* to be zero we get,

oo L.
1.(p) = - :’_0 - () n; ) (42)

ArreEnDIx II
STUDY OF THE LIMITING CASE T — 0

We expect that if the sampling period T — 0, which is equivalent to
stating that the sampling frequency w, — =, then the inductance £ — 0
and as a result the voltage e;(f) will be infinitely close, at all times, to
the voltage es(f). Thus, in the limit, everything happens as if the termi-
nal pairs (2) of N, and N, were directly connected. In that case the gain
of the system is

At (p)

QZ(p) Zlﬂ(p);

as is easily seen by referring to the Thevenin equivalent circuit of Ny .

Let us show that as T'— 0, (21) leads to the same result. First note
that both Z2l, and ZS, go to zero at least as fast as 1/p’ for p — =.
Hence the summations in (21) reduce to the term corresponding to
n = 0. Therefore,

_ ClZwul)*S, CZ1o1 07198, Zy'
Eap) = 11 2CIZS* 2 T T4 20zs, oz I

ArreEnpix III
ZEROTH APPROXIMATION IN THE CASE WHERE N, IS NOT IDENTICAL TO N,

Let, for &k = 1, 2; (' be the shunt capacitor at the terminal pair 2 of
Ny, Zi(p) be the driving point impedance of Ny, and Z:"* (p) be the
transfer impedance of N, . In the present case the capacitors ', and (s
are in series in the resonant circuit of Fig. 2. It can be shown that the

* Their contribution has been found in (40).
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charge exchanged during one-half period of the resonance is

201(»‘2

For the present case, (16) and (17) become

€2 (t)

I

v@—[ﬁ%ﬁﬁ—ﬂ%

t

a) = [ du)ml - 7 dn

I

Following the same procedure as before we are finally led to the block
diagram of Fig. 10 whose output is given by

2040,

I(i) * 12

[Z12 (P)Iﬂ(p)] 041_}_ s
20,C,

L G 20p) + Zao) IS

Sl(iﬂ) Zm(?) (P)

EA(P) =

ArpEnDIX IV
THE DERIVATION OF EQUATION (24)

Considering the method used in Section IV to derive the zeroth ap-
proximation, it is clear that during the switch closure the voltages e()
and es(t) vary sinusoidally, that is,

Gﬁ(t) = e(0) — erﬂ(()) ; 63(0) I:l — COS {f}:
ey(1) = e;3(0) + M |:1 — cos W-tj|
2 T

. | 2C,C; 57_)! — Z(a) E4
| Circ, P G

______

Zy(p)+Zz(p)

Fig. 10 — Zeroth approximation: modified block diagram for the case where Ny
and N: are not identical.
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Thus, it always happens that for ¢ = /2, i.e., at the middle of switch
closure time, ey(f) — es(t) = 0.

Therefore if we consider the time function ex(f) — e;(t) we have for all
k’s (_DD) 0: R o w}:

eg(!cT+72;)—ea(kT+%)=0.

If, for simplicity of analysis, we assume that the switch is closed during
the intervals —(v/2) + kT =t £ ++/2 + kT, then for all k’s,

eo(kT) — e3(kT) = 0.
Using (17), this condition implies that [V(p)]* — 2[l(p)Z(p)]* = 0

Now, remembering that 7,0(f) consists of a sequence of half sine waves
whose shape is defined by so(f) (which is by definition identical to s(f)
except for an advance in time of 7/2) it follows that I.,(p) = B(p)So(p),
where B(p) is the £-transform of the sequence of impulses whose measure
is equal to the charge interchanged between N, and N, at each switch
closure. Since [B(p)So(p)Z(p)* = B(p)[Su(p)Z(p)}*, then

_ [Zln(?))fo(ﬁ)]*
B = sz
From which it immediately follows that
_ (Z12(p) 1o(p))*So(p)
0 = s zmr
and
Ew(p) = [Z12(p) Io(p)]*So(p) Z12(p)
o 2ASZ@I*
where
+o0
(So@) Z@1* = 1 X Sulp + jnw) Z(p + jne)
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