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The problem is to determine how large a random sample is needed in
order to attain a preassigned probability P*(3 < P* < 1) that the sample
will possess a cerlain amount (or degree) of representativeness of the true
unknown (cumulative) destribution I' under study. The definition of repre-
sentativeness involves two preassigned constants k and g*(k = 2 is an
integer). For example, for k = 2 and any B*(0 < p* £ }) the sample
18 defined to be representative if the proportion of the total sample size fall-
ing on each side of the population median differs from % by at most g*.
In this case the degree of represenlativeness s defined as d;* = 1 — 26*.

This idea can be extended to any number k of disjoint, exhaustive cells
equi-probable under F,; tables and graphs are given for finite and infinite
populations for selected values of k, p* and P*. The definition is also
extended to cases tn which the experimenter is particularly interested in
parts of I' which are not equi-probable and/or parts of F which do not ex-
haust the whole sample space; tables and graphs accompany each applica-
lion.

These results are non-parametric, i.e., if the prescribed sample size is
used then the experimenter’s requirements for representativeness will be
satisfied whatever the unknown distribution. Derivations of exact and ap-
proximate formulae used in computing tables are given in the Appendices.

I. INTRODUCTION

This paper deals with the problem of determining how large a random
sample is needed in order to guarantee with preassigned probability P*
that the sample will have a specified amount (or a specified degree) of
representativeness of the true, unknown (cumulative) distribution F
under study. No & priori information is given about / and no assumptions
are made about the form of I'. The solution given is nonparametrie (i.e.,
distribution-free) so that the results obtained and the tables and graphs
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constructed are valid for any true underlying distribution. The case of a
finite population as well as that of an infinite population is considered;
in the latter case it is assumed only for ease of exposition that those
percentiles of ¥ which enter the discussion are uniquely defined and have
probability zero under F. (This will, in particular, be the case when F
has a density function without zero-stretches between points having
positive density.)

A definition of representativeness (and also a degree of representative-
ness) is given with respect to those parts of I which are between certain
percentiles which we denote by F~'(p:), the values of p; being pre-
assigned. The intervals between these percentiles will be called cells and
we shall only consider collections of patrwise disjoint cells. For example
the experimenter may want to guarantee with probability at least
P* = 0.90 that between 40 per cent and 60 per cent of his sample will
lic on each side of the population median. In this case we are interested
in the part of F' (or the cell) between #'(0) and F'(0.5) and also the
part of I (or the cell) between F'(0.5) and F'(1). By the definitions
below the common allowance g* is 0.10 and the degree of representative-
ness d,* is 0.80 (or 80 per cent). Then we enter Table I (or II) with
k=2, P* = 0.90 and 8* = 0.10 and find that the smallest sample size
needed to satisfy the experimenter’s requirement for representativeness
is n = 60. (It is instructive to note that the same solution would
hold for any two disjoint, exhaustive subsets of the sample space having
a common probability of 2 under F. However, the cases in which we
consider disjoint cells and, in particular, disjoint cells which start
from one end or both ends of the distribution are of considerably more
practical interest. The cell terminology will be used in the body of
the paper while the subset terminology will be used in the appen-
dices.)

In the above example the sample space is broken up into two dis-
joint, exhaustive cells which are equi-probable under F. This idea of rep-
resentativeness can be extended to any number k of pairwise disjoint, ex-
haustive cells equi-probable under F and in the numerical work the values
k= 2,3, 4, 5and 10 are congidered. The idea of representativeness can
also be used with cells that are not equi-probable and/or with cells that
do not exhaust the whole sample space. As an example of the first type
(cells not equi-probable) we might be concerned about whether a sample
is large enough to be simullancously representative of a single tail with
preassigned probability p < 3 under F and of its complement which has
probability (1 — p) > % under F. As an example of the second type
(non-exhaustive cells) we might be concerned about whether a sample
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is large enough to be representative of both tails (each having (say) a
common preassigned probability p < % under F), without any concern
about the middle cell between the two tails. For each problem tables
and graphs throughout this paper give the smallest required sample
size for selected values of P* and specified amounts (or specified degrees)
of representativeness.

Assuming for the moment that the density of F is known and that all
of its deciles are finite then we can plot an observed bar diagram (i.e.,
rectangles with different widths under the dashed lines in Fig. 1) and
the true density on the same diagram as shown in Fig. 1 to illustrate the
idea of a representative sample. By definition of a decile each of the ver-
tical strips bounded above by the curve has an area (or probability under
") of 0.1. The observed sample is considered representative relative to
this pattern of ten disjoint, exhaustive and equi-probable cells to within
a common allowance g* if simultaneously the areas of all vertical rectangles
differ from the theoretical value of 0.1 by at most 8¥(0 < g* = 0.1).
Then the degree d,* of representativeness as defined in Section I1I is
equal to I — 108*. We are interested in finding the smallest sample size
needed to guarantee a probability of at least P* that the above condition
will hold in a sample drawn at random from F.

This problem is related to the well-known problem' of Kolmogorov-
Smirnov since they both have the common purpose of determining
the sample size required to obtain a representative sample. Since their
definition of representativeness is different from the one treated here,
it is difficult to make a proper comparison of the two procedures. Another
remark on this comparison is made in Appendix IV,

II. DEFINITION OF REPRESENTATIVENESS

Let I denote the true unknown cumulative distribution and let F,* de-
note the observed sample distribution based on n observations. For any
given klet Cy, Cs, - - -, (i denote pairwise disjoint cells (not necessarily
exhaustive or equi-probable under F) which are defined by certain per-
centiles. The cells Cy, Cy, -~ -, (' are not known but their probabilities
under F are given positive numbers; let F(C;) denote the probability
assigned to C'; by the distribution F(i = 1,2, -+, k). (We are using F
and F,* as symbols for both point functions and probability measures
which are set funetions; clearly, the nature of the argument will prevent
any confusion.) Let 3,* denote specified positive numbers (which we shall
eall allowances) such that

0 <B* = F(C) G=12—--,k. (1)
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We shall be particularly interested in the special case g* = .* = --- =
B* = B* (say), whether or not the quantities F(C';) are all equal. Then
a sample is defined to be representative relative to a fixed pattern of
I disjoint cells Cy , Cy, - - - , C to within the allowances 8%, B.* - - - , Bi¥,
respectively, if we have simultaneously

‘Fn*(c!') - F(Cl) | _s-. Bi* ("!' = 1, 2, Tty k)' (2)

III. DEFINITION OF DEGREE OF REPRESENTATIVENESS

Although the quantities 8*(7 = 1, 2, - -+, k) are basic to the idea of
representativeness it may be useful, in a given problem, to combine them
to define a measure of the degree of representativeness. We define

v {1 -at) ®

where the subscript g denotes the fact that d,* is a geomefric mean. It
follows from (1) that 0 = d,* < 1 and that d,* can take on all the values
in this interval.

It should be noted that for any fixed set of values of F(C))
(i =1,2, -, k) if there is a common 5* then the right hand member of
(3) is a strictly decreasing function of g* for 8* = min F(C;). Hence, if
there is a common B* the values of d,* and §* uniquely determine each
other. When this is the case we may be interested sometimes in specify-
ing d,* (instead of 8*) and then using (3) to solve for the common g*.

We shall say that a random sample is representative relative to a fixed
pattern of k& disjoint cells €y, Cs, - -+, Cr to a degree d,* if for the com-
mon 8* = B*(d,*) satisfying (3) we have

|FX(C) — F(C) [ =8* (@=1,2--,k). 4

It should be emphasized that the chief interest of this paper is in the
concept of representativeness as formulated in Section II and that the
present definition of the degree of representativeness is to be regarded
as supplementary.

One possible criticism of the definition of d,* is that it may require a
positive (and sometimes substantial) number of observations to attain a
zero degree of representativeness (see, for example, the last and third
from last columns in Table IIT). However, since the practical use of the
concept of degree of representativeness is mainly for large values of d,*
this objection is not serious.
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It is possible also to define the degree of representativeness as an
arithmetic mean d.* of the bracketed quantities in (3) but then for a
common B* and different #(C;), because of (1), the value of d.* is re-
stricted to an interval J = d,* < 1 where J is positive and depends on
the values of the F(C)) (i = 1,2, ---, k). Clearly, if the F(C;) are all
equal and there is a common g* then d.* = d,*.

IV. CONSTRUCTION OF TABLES

The problem is to find the smallest sample size n such that the joint
probability of all the inequalities (2) [or (4)] is at least equal to a specified
value P* < 1, i.e., such that

P{|FXC) — F(C)| =BG =12, ---,k)} =z P~ (5)

The reader is cautioned that it does not necessarily follow that (5)
holds for any integer greater than n; however, since F,* converges almost
certainly to F (see page 20 of Reference 2), it follows that there exists
in each case a smallest number ' = n such that (5) holds for every
inleger greater than or equal to »’. For example, with & = 2, a common
Bg* = 0.20 and P* = 0.75 the condition (5) is satisfied for n = 3, for
6 and for any integer greater than or equal to n’ = 9.

Since the cells €'; are pairwise disjoint and the values of I(C) are given
({ =1,2, -+, k) the left member of (5) is determined for any particu-
lar sample size whatever the unknown distribution F. In the case of an
infinite population we use the multinomial distribution with k or k + 1
disjoint cells depending on whether or not the k disjoint cells are exhaus-
tive, i.e., on whether or not >_i,F(C’y) = 1. For the case of two dis-
joint, exhaustive cells this clearly reduces to a problem of the binomial
distribution which is closely related to the problem of finding confidence
limits on a population percentile by the use of order statistics. Similarly
in the case of a finite population we use the hypergeometric distribution
with % or k + 1 categories depending on whether or not Y i F(Cy) = 1.
The exact and approximate formulae for computing the left member of
(5) are given in Appendices I and II, respectively. The approximate cal-
culation involves several interesting geometrical digressions which are
discussed in Appendix IIT.

Table I gives for & = 2 and selected values of 8* and P* the required
sample sizes n and n’ and also the maximum drop in probability below
the specified 7* for all sample sizes between n and »’. In the remaining
tables only the values of n are given. Table 11 gives the required sample
gize for k = 2, F(C) = p, F(C.) = 1 — pfor p = 0.5, 0.2 and 0.1 (for
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TaBLE I

Sample size required to attain a probability P* that a sample will be
simultaneously representative to within a common allowance §* of two
disjoint and exhaustive cells separated by the median for any true dis-
tribution.

In each set the first entry is the smallest sample size required to satisfy
(4); the second entry is the smallest size required such that for all
sample sizes at least as large, (4) is satisfied; the last entry is the maxi-
mum deviation in probability below P* obtained for all sample sizes
between the first two entries.

P B* 0.01 0.05 0.10 0.15 0.20 0.25 0.40
0.50 1051 31 5 5 2 2 2
1199 59 14 10 5 2 2

(0.0264)| (0.1271)| (0.2266)| (0.1875)| (0.1250) (1)) (0)
0.60 1700 60 5 5 3 3 3
1850 79 24 10 8 3 3

(0.0162)| (0.0704)| (0.3266)| (0.2875)| (0.2250) ()] 0)
0.70 2600 100 20 8 3 3 3
2750 119 29 16 8 6 3

(0.0124)| (0.0382)| (0.1049)| (0.2078)| (0.3250)| (0.0750) (0)
0.75 3251 120 25 11 3 3 3
3399 150 39 16 9 6 3

(0.0077)| (0.0407)| (0.0769)| (0.1377)| (0.3750)| (0.1250) (0)
0.80 4051 151 35 14 9 4 4
4199 179 44 24 12 7 4

(0.0058)| (0.0328)| (0.0430)| (0.0518)| (0.0266)| (0.0750) 0)
0.85 5100 191 45 17 10 4 4
5250 219 54 27 15 10 4

(0.0052)| (0.0269)| (0.0434)| (0.0879)| (0.0766)| (0.1250) 0)
0.90 6700 260 60 28 13 8 5
6850 279 74 33 18 11 5

(0.0029)) (0.0129)| (0.0299)| (0.0360) (0.0796)| (0.0797) 0)
0.95 9551 371 90 37 20 12 6
9699 399 99 47 28 15 6

(0.0012)| (0.0070)| (0.0114)| (0.0230)| (0.0284)| (0.0423) (0)
0.99 16500 651 160 71 39 24 8
16650 679 169 76 42 26 12

[ (0.0003) | (0.0013)| (0.0022) | (0.0028) | (0.0015) | (0.0046) | (0.0017)

For n £ 150 the entries are all exact; for n > 150 the entries involve approxi-
mations. The pattern of increases and decreases of the probability as a function
of n was also used to obtain the first two entries for large n.
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selected values of g* and P*). Table III gives the required sample size
for the case of & pairwise disjoint, exhaustive and equi-probable cells
(Cy, Cy, -+, C) for kb = 2,3, 4,5 and 10 (for selected values of g*
and P*). Table 1V gives the required sample size for kb = 2, F(C,) =
F(C,) = pforp = 0.2, 0.1 and 0.05 (here the cells are disjoint and equi-
probable but not exhaustive). Table V considers the same problem as
in Table 11T and compares the required sample sizes for infinite popula-
tions, N = o, with those for finite populations of size N for N = 60,
120, 360. Tables VI and VII give illustrations of the error involved in
using the approximations used in Tables IV and V, respectively, instead
of an exact probability caleculation.

I'ig. 2 shows for selected values of P* that the sample sizes in Table I
and in the first portion of Table IT can be “linearized” for large n on a log-
log plot of n versus g*. TFigs. 3 and 4 show the same result for the last
and middle portion of Table II, respectively.

TasLr 11

Minimum sample size required to attain a probability of at least P* that
a sample will be simultaneously representative to within a common
allowance g* of two disjoint and exhaustive cells separated by the 100
pth percentile for any true distribution. (The degree of representative-

*
ness is then defined as d,* = /‘/(1 — Lf) (1 _8 \ )
p/\" 1-p

20th or 80th Percentile 10th or 90th Percentile

s0th Percentile (Median)
(p = 0.50) (p = 0.20 or 0.80) (p = 0.10 or 0.50)
P\“{* 0.01 0.05 0.10 | 0.15 | 0.20 0.01 | 0.05 0.10 | 0.15 | 0.20 0.01 0.05 | 0.10
0.50 1,051 31 5| 5] 2t 662 | 12 71 6 11| 355 14 17
0.60| 1,700 | 60 5| 5 31 1,062 | 32 7 6 11| 500 14 1t
0.70| 2,600 | 100 | 20| & 37 1,662 52 1001 9 1§ 900 | 20 1t
0.75 3,251 | 120 | 25 | 11 31| 2,062 | 72 10 9 1f| 1,100 | 40 11
0.80| 4,051 | 151 35| 14| 9 2,562 | 92 20 |12 11| 1,400 | 40 11
0.85 5,100 | 191 45 | 17 | 10 | 3,262 | 120 | 27 |12 | 3| 1,800 | GO 11
0.90| 6,700 | 251 60 | 28 | 13 4,262 | 160 37 | 15 5| 2,355 80 11
0.95) 9,551 | 371 90 | 37 | 20 6,100 | 232 | 50 | 20| 10 | 3,400 | 120 | 10
0.99/16,500 | 651 | 160 ‘ 71| 39 | 10,562 | 420 | 100 | 40 | 20 ‘ 5,900 | 220 | 15

For n =< 150 the entries are all exact; for n > 150 the entries are based on ap-
proximations together with a knowledge of the monotonicity pattern of the
probability of representativeness as a function of n.

 Small entries for certain pairs (8%, P*) indicate a condition too weak for prac-
tical usage.



TasLe III
Minimum sample size required to attain a probability of at least P* that
a sample will be simultaneously representative to within a common
allowance 8* of & equi-probable disjoint and exhaustive cells for any
true distribution. (The degree of representativeness is then defined as
d,* = 1 — kB8*).

k=12 k=3 k=4 k=35 k=10
P‘< 0.03 0.10 | 0.20 | 0.05 0.10 | 0.20 | 0.05 0.10 | 0.20 | 0.05 0.10 | 0.20 [ 0.05 | 0.10
0.50 | 31 5 2102 21| 6120 26| 9| 120] 30| 5| 100 | 20
0.60 | 60 5| 3| 141 ) 30| 6140 | 38| 9| 140 | 30| 5 | 100 | 20
0.70 | 100 | 20| 3 | 180 | 47 |12 | 180 | 43 |12 | 180 | 40| 5 | 120 | 30
0.75 120 25| 3 |222| 51|14 |200 | 52 |14 | 200 | 50 | 10 | 120 | 30
0.80 | 151 | 35| 9 (240 | 60 | 15| 240 | 60 | 14 | 220 | 50 | 10 | 140 | 30
0.85|191 | 45|10 | 300 | 72|15 | 280 | 66 | 16 | 240 | 60 | 15 | 160 | 30
0.90 | 251 | 60|13 | 360 | 90 (21 | 320 | 80 |18 | 280 | 70 | 15 | 160 | 40
0.95 | 371 | 90 | 20 | 480 | 120 | 29 | 400 | 100 | 27 | 360 | 90 | 23 | 200 | 50
0.99 | 651 | 160 | 39 | 741 | 180 | 45 | 600 | 146 | 38 | 500 | 120 | 35 | 260 | 60

For k = 3 probabilities were computed exactly only for » =< (200/k); for n >
(200/k) the approximation in Appendix 2 was used together with a knowledge of
the monotonicity pattern of the probability of representativeness as a function
of n.

TasLe IV

Minimum sample size required to attain a probability of at least P*
that a sample will be simultaneously representative to within a common
allowance 8* of any two disjoint equi-probable cells defined by percen-
tiles and having a common probability p under the true, unknown dis-
tribution. (The degree of representativeness is then defined as d,* =
1 —8%/p.)

Below 20th and Above Below 10th and Abave Below 5th and Above
Application 80th Percentiles 90th Percentiles 95th Percentiles.
(p = 0.20) (p = 0.10) (p = 0.05)
pe B* 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05
0.50 1,700 52 10 900 20 11 450 1t
0.60 2,262 72 10 1,255 40 17 600 1t
0.70 3,000 112 20 1,655 54 17 850 1t
0.75 3,500 132 30 1,955 60 11 | 1,000 1t
0.80 4,100 152 30 2,300 80 11 | 1,150 11
0.85 4,900 180 40 2,700 100 10 1,400 17
0.90 6,000 232 50 3,355 120 20 1,750 1t
0.95 7,900 300 70 4,455 160 35 2,250 80
0.99 12,562 492 120 7,000 274 65 3,650 130
Another Between 30th and 50th | Between 40th and | Between 45th
Application percentiles and be- 50th percentiles and and 50th per-
tween 50th and 70th between 50th and centiles and
percentiles 60th percentiles between 50th
and 55th per-
centiles

For n < 40 the entires are exact; for n > 40 normal approximation theory

was used. . . . .
t Small entires for certain pairs (3* P*) indicate a condition too weak for

nrantinal 1caoce
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TaBLE V

143

Minimum sample size required to attain a probability of at least P*
that a sample from a population of size N will be simultaneously repre-
sentative to within a common allowance 8* of k equi-probable disjoint
. and exhaustive cells for any true population. (The degree of represen-
tativeness is then defined as d,;* = 1 — kg*).
The four entries in each set below correspond to N = 60, 120, 360, <,

respectively.
=2 k=3 P =4 =35 k=10
}5\'\ 005 | 010 |0.20| 005 | 0.10 | 0.20| 005 | 0.10 [0.20] 005 | 0.0 [ 0.20] 005 | 0.10
0.50 20 5 21 40 19 6 40 20 7 40 | 20 31 34|10
20 5| 2| 55| 21 6| 60| 20| 7| 60| 20| 5| 54 |15
20 5 2 81 21 6 80 20 7 80 24 5| 74|15
31 51 2102 21 61120 26| 7120 30| 5100 20
0.75 | 40 15| 3| 47| 28 |12| 47| 26 (12| 45| 27| 8| 40|20
60 20| 31| 76| 37|14 | 74| 38|12| 72| 30| 8| 6025
91 95 | 31136 | 49 | 14| 130 | 40| 14 | 120 | 40 | 10 | 94 | 25
120 25| 3|222| 51|15 |200 | 52| 14| 200 | 50| 10| 120 | 30
0.85| 51 25| 9| 53| 30|14 | 50| 32| 14| 49| 30| 10| 40| 20
71 30 | 10 84 49 | 15 80 40 | 14 80 40 | 10 60 | 25
120 | 40|10 | 162 | 60 | 15| 150 | 58 [ 16 | 152 | 50 | 13 | 100 | 30
191 45 110 | 300 | 72 |15 | 280 | 66 | 16 | 240 | 60 | 156 | 160 | 30
0.90 | 51 30 /10| 54| 37 |15| 50| 38| 16| 51 30|13 | 40| 25
80| 40 |13 93| 51|19 | 90| 46|16 | 80| 40 |13 | 74| 25
151 50 | 13 | 180 72 (21 | 170 | 60 | 18 | 160 60 | 15 | 114 | 35
251 60 | 13 1360 | 90 |21 | 320 | 80 |20 |280| 70|15 | 160 | 40
—0—9; 51 3516 | 54| 42|21 50| 38| 18| 52| 37|15 | 47| 25
91 50119 04| 60 |25| 90| 58 (20| 92| 50 | 15| 74| 30
18| 70|20 | 201 | 88|27 |190| 80|25 | 180 | 70| 18 [ 120 | 40
371 90 | 20 | 480 | 120 | 30 | 400 | 100 | 27 | 360 | 90 | 20 | 200 | 50
0.99 60 | 45|23 | 55| 48 |27 | 57| 43| 25| 53| 40|20 | 49| 30
00| 70|30 |102| 7230|100 | 66|20 | 98| 60|23 | 80|40
231 | 110 | 36 | 240 | 120 | 42 | 220 | 100 | 34 | 212 | 90 | 25 | 154 | 50
651 | 160 | 39 | 741 | 180 | 45 | 600 | 146 | 37 | 500 | 120 | 30 | 260 | 60

For finite populations all entries withn = 2/8*

are based on exact computations;

the entries with n > 2/8* are based on the approximation in equation (Al17) of
Appendix IT. Another simpler approximation is given in equation (A18) of Ap-
pendix II.



TaBLE VI

Comparison between the exact value of and the normal approximation
to the joint probability that in a sample of size n from an infinite popu-
lation the number of observations falling in each of two tails with com-
mon probability p is between n(p — %) and n(p + 8%), inclusive,

= 0.10 =020 $=0.20
6* = 0.05 B* = 0.05 8* = 0.10
n = 10 Normal Approx. 0.1628 0.0973 0.5910
Exaet 0.1510 0.0941 0.6014
Error +0.0118 +0.0032 —0.0104
n = 20 Normal Approx. 0.5432 0.3654 0.7075
Exact 0.5566 0.3648 0.7171
Tirror —0.0134 +-0.0006 —0.0096
n = 40 Normal Approx. 0.6608 0.4655 0.8574
Exact 0.6731 0.4669 0.8736
Error —0.0123 —0.0014 —0.0162
TasLe VII

Comparison between the exact value of and the normal approximation
to the joint probability that in a sample of size n from a population of
size N the number of observations falling in each of & equi-probable cells
is between n(%b - 2—10> and n(% + ZLO) , inclusive.

N = « (Infinite Population)

k=12 k=3 k=4 k=35 k=10

n = 20 | Normal Approx. 0.4977 0.1166 0.1600 0.1172 0.0698

Exact 0.4966 0.1145 0.1618 0.0955 0.0669
Error +0.0011 | 40.0021 | —0.0018 | 40.0217 | 4-0.0029
n = 40 | Normal Approx. 0.5708 0.2196 0.2388 0.1962 0.1775
Exact 0.5704 0.2181 0.2363 0.1904 0.1478
Error +0.0004 | +0.0015 | 40.0025 | 4-0.0058 | 4+0.0297
n = 60 | Normal Approx. 0.6338 0.3974 0.3230 0.2876 0.3325
Exact 0.6338 0.3982 0.3174 0.2979 *
Error 0.0000 | —0.0008 | 4+0.0056 | —0.0103 *

N = 120 (Finite Population)

k=2 k=3 k=4 k=3 k=10

n = 20 | Normal Approx. 0.5357 0.1397 0.1984 0.1550 0.1092

Exact 0.5368 0.1359 0.1801 0.1547 0.1011
Error —0.0011 | +0.0038 | +0.0183 | 40.0003 | 40.0081
n = 40 | Normal Approx. 0.6651 0.2822 0.3705 0.3413 0.4291
Exact 0.6670 0.3084 0.3679 0.3313 0.3357
Error —0.0019 | —0.0262 | 40.0026 | 4-0.0100 | +0.0934
n = 60 | Normal Approx. 0.7969 0.6338 0.6115 0.6228 0.8507
Exact 0.7989 0.6104 0.6003 0.5972 *

Error —0.0020 | 40.0234 | +0.0112 | +0.0256 *
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Fig. 1 — Pietorial diagram of representativeness using deciles (& = 10).
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Fig. 2 — Minimum sample size » required to attain a probability of at least P*
that a sample is simultaneously representative to within a common allowance g*
of two disjoint and exhaustive cells each having probability p = !5 under the true
unknown distribution. (The degree of representativeness is d,* = 1 — 28%.)
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Fig. 3 — Minimum sample size n required to attain a probability of at least
P* that a sample is simultaneously representative to within a common allowance
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Fig. 4 — Minimum sample size n required to attain a probability of at least P*
that a sample is simultaneously representative to within a common allowance 8*
of the two disjoint, exhaustive cells separated by the 20th (or the 80th) per-
centile for any true distribution. [The degree of representativeness is d,* = (§)
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V. EMPIRICALLY OBSERVED MONOTONICITIES

It is interesting to note in Table III that for fixed 8* and increasing
k the sample size n required is nof monotonic but appears to reach a
maximum and then deerease. As a result of this it becomes possible to
to speak of the sample size n required for a sample to be representative
for any specified 8* regardless of the number k of pairwise disjoint, ex-
haustive, equi-probable cells considered, provided only that k < 1/8*.
For example, for * = 0.1 it appears likely from Table ITI that 90 ob-
servations would be sufficient to have a confidence of at least P* = 0.90
that the sample is representative in the sense of (2) for any one value of
k(k = 1,2, -+, 10).

Table VIIL, some of whose entries are taken from Table III, shows
numerically that for fized d,* the required sample size is a monotonically
non-decreasing function not only of P* but also of k; for fixed g*. Table I11
shows numerically that only the monotonicity with P* holds. The former
result is again shown in Figs. 5 and 6 which also emphasize the possi-
bilities of interpolation on k.

The above monotonicities and lack of monotonicities have not been
demonstrated mathematically.

TasLe VIII

Minimum sample size required to attain a probability of at least P* that
a sample will be simultaneously representative to a degree d,*=1— kB*
of k equi-probable disjoint and exhaustive cells for any true distribu-
tion.

d,* = 0.80 dy* = 090
ill

k=2 k=4 k=10 k=2 k=235 E=10
0.50 5 120 600 31 800 2500
0.60 5 140 700 60 950 2800
0.70 20 180 800 100 1150 3200
0.75 25 200 850 120 1250 3400
0.80 35 240 900 151 1400 3700
0.85 45 280 1000 191 1600 4000
0.90 60 320 1100 251 1850 4400
0.95 | 90 400 1250 371 2250 5100
0.99 | 160 600 1650 651 3150 6600

In comparing results for a fized degree d,* it should be noted that the sample
size appears to be a monotonically non-deereasing function of P* and also of k;
for a fized common allowance 8* only the monotonicity with P* holds as is evident -
in Table 1I. The remarks at the bottom of Table IIT apply here also.
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VI. CONFIDENCE BANDS—INFINITE POPULATION CASE

The experimenter will usually be interested in the confidence state-
ment that the above formulation allows him to make after the observa-
tions are taken. Suppose, for example, that he was interested in representa-
tiveness in each of &k = 10 pairwise disjoint, exhaustive and equi-probable

cells and that he specified g* = 0.02 (so that d,*

0.80) and P* = 0.85

and that he has taken 1,000 observations in accordance with Table VIII.
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Fig. 5 — Minimum sample size n required
to attain a probability of at least P* that a
sample will be simultaneously representa-
tive to a degree d,* = 0.90 of k equi-proba-
ble, disjoint and exhaustive cells for any
true distribution. The common allowance
B8* is given by g* = (1 — d,*)/k = 0.10/k.

F16. 6 — Minimum sample size n required
to attain a probability of at least P* that a
sample will be simultaneously representa-
tive to a degree d,* = 0.80 of k equi-proba-
ble, disjoint and exhaustive cells for any
true distribution. The common allowance
B*is given by g* = (1 — d,*)/k = 0.20/k.
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He can then make a number of confidence statements about the popula-
tion deciles F'(0.1), F7'(0.2), ---, F7(0.9) (and also about FY(0)
and F'(1) defined as the greatest lower bound of all z for which F(z) > 0
and the least upper bound of all @ for which F(z) < 1, respectively).
For example, if x,, denotes the mth (smallest) ordered observation, it
follows from the condition of representativeness that we have simul-
tancously with joint confidence greater than P* all of the inequalities

F'(0)

—w = < 1 Twoo < Fl(l) ==
e < FH01) < am wm < F(0.9) = ow
T = Fﬁl(O.Z) < Xaa1 Tee < FI(O.S) = Taw
.................... and e b (6)
o < FH08) < 2 T < FT(02) £ am
Ty = F'(O.E)) < ® —w < Fl(onl) = Towo
T = Fgl(l) = w —w = F_J(O) =

For example, F~'(0.2) must be greater than or equal to i and less than
22 1n the confidence statement since under the condition of represen-
tativeness all cells and, in particular, the last two cells on the left con-
tain between 80 and 120 observations, inclusive.

The right hand set of inequalities are in reverse order since they are ob-
tained by similar reasoning as the left hand set except that we start at
the right end of the distribution and work backwards. If we keep only
the stronger results in (6) for each decile and disregard the weaker ones,
then we obtain eleven (finite or infinite) line segments as in Iig. 7. We
can then state with joint confidence greater than P* that the unknown
distribution F has a (finite or infinite) point of contact with (or a saltus
passing through) each of the line segments; the two end segments are

1,00 -
w - —
o0 ==
e memmesas
)

5 0.60} ———————
= cmecmea=-
-
2040  =meeee
< | mm——
- -
Qo2 ==
o . ——
ol ! A S T T TN T B B B L I
Ly Tygo Laao Tazo | Laoo  Lsao | Leao | Freo Tas0 Lio00
X, Tz Xos  Tyer Lam Teor Xesr e Lpa L1

Tig. 7 — Confidence intervals for the deciles with joint confidence level P* =
0.85 for k = 10, n = 1000 and g* = 0.02 (which implies that d,* = 0.80).
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actually half-lines and in these cases we must allow 4+« and — = as
possible “points” of contact.

The above result then gives rise to two “staircases”, as in the middle
diagram of Fig. 8 such that any distribution contacting every line seg-
ment in Fig. 7 must everywhere lie between (or on the boundary of) the
two “staircases”. Hence we can state with confidence greater than P*
(see explanation below) that the two “staircases” form a confidence
band on the unknown distribution.

If we keep & and P* fixed and decrease g* (or increase d,* = 1 — Ig*)
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5. 0.60
- i
3
o 0.40
< -
g
b 0.20|-
a
oL [ L Ll 1l !
Xy Xig Xoaf X3z Xyg | Lpu Xag | Tz | Xige | |
Xas Tag  Xp3 Lgr Tizy Lyzg Tiyr Lias L5y
1,00 I
[ ]
u - .
< 0.80|-
U
2 -
: 0.60}-
J . dg:o,a
I 0.40}- .f.
g B PAT=0.02
S o.20f- | n =1000
& ] e |
[+ 1 I -
Tao | Tien Xaap  Xazo | Xaoo | Nszo Loao | Lrgo | | Iuo|
L2y Laa4 Lapy  Lagy Loy Tepr  Fie1 Lot Lga
1.00 I
w | |
< . [
g
0
- *
5 dg:O.Q
@ A*=0.01
aQ n =4000
0
o
« ’
0 | | | | 1 | | | ! | ! |
1
Lieg | Xrao lxwunw Xya40 ‘Imuu |IEE-IU' Lagao | Luao [ L3s60|
X Lem Toar Xper Lo Loser  Loga L3281 Tagas

Tig. 8 — Confidence bands which include the true distribution function with
confidence greater than P* = 0.85 for k = 10 and d,* = 0.5, 0.8, 0.9. Small circles
between the confidence bands represent ordinates of the sample distribution
function. The three figures above were constructed with observations obtained
from a table of random normal deviates (with different horizontal scaling applied
in each case).
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then the required sample size increases and the confidence band becomes
narrower. This is illustrated in the three diagrams of Fig. 8.

It should be noted that the inequalities (6) are implied by but do not
imply (i.e., they are not equivalent to) the condition of representative-
ness. Hence the confidence level associated with (6) is greafer than the
specified P*. To illustrate this we note from (6) the stronger inequalities

T'so é F-I(O.l.) < T2 ﬂnd L1160 é Fil(og) < To41 (7)

These inequalities (7) allow as few as 40 and as many as 161 observations
between F'(0.1) and F'(0.2), including endpoints. On the other hand
we have confidence P*, under the condition of representativeness, that
every such cell contains between 80 and 120 observations, inclusive. This
shows that the confidence level associated with the confidence band is
greater than the probability achieved for the representativeness of the
sample.

This method of obtaining a confidence band for the unknown dis-
tribution would be more valuable if we could obtain a simple way of
computing (or estimating more accurately) the actual confidence level
attained. For example, with & = 3, g* = 0.10 (so that d,* = 0.70)
and P* = 0.60 we obtain n = 30 from Table III, the probability achieved
for representativeness is 0.6369 and the confidence level associated with
the two “staircases” is 0.6825. The latter is obtained by using inequali-
ties similar to (6) and computing the probability exactly with a multi-
nomial distribution. The reader should note that the idea of a confidence
band containing the true, unknown distribution is not the main theme
of this paper but only an interesting by-product of the idea of the repre-
sentativeness of the sample.

APPENDIX I
Exact Formulac — Finite and Infinite Populations

The concept of the representativeness of a sample can be applied to
finite as well as infinite populations. Let N denote the total size of a
finite population; conceptually we may regard the population as being
partitioned into & subsets S; of size F(S;)(7 = 1,2, ---, k). We shall
assume that the sets S; are pairwise disjoint and, to simplify the discus-
sion, we also assume that the quantities N; = NFSH)GE = 1,2,--- k)
are positive integers.

Let z;: = 0 denote the random integral number of observations in the
observed sample of size n which fall in the set S,(7 = 1,2, -+, k). If
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the & sets S; are exhaustive then

Z’:zl i =n and Z]:=1 N,‘ = N. (Al)
We define for7 = 1,2, --- , k
c; = n[F(S;) — B:* and d; = n[F(8S:) + B, (A2)

which are non-negative but need not be integers. Then for a finite popu-
Iation the probability corresponding to the left number of (5), using the
hypergeometric distribution, is given exactly by

PuVN:ya: b (0= 1,2, -, k)] = 21_12[1 (Alr)/(nN) (A3)

where (nN) is the usual binomial coefficient and the summation in (A3)

is over all vectors X = [a;, 22, -+, 2} for which
C1§$,§d; (’b=1,2,,]{') (A4:)

If the & sets are not exhaustive then we define another set Si.,; which is
the complement of the union of the k sets S; and use (A3) with & replaced
by k& 4+ 1 in (Al) and (A3) but not in (A4), i.e., no condition is applied
to the (k + 1)th variable.

In the case of an infinite population we use the multinomial distribu-
tion. If the k sets S; are exhaustive, then using (A2) and letting p; =
F(S)H(E = 1,2, -+, k) the left hand member of (5) is given exactly by

1 k
Pa®lpi, 8% (i = 1,2, -, B)] = X f[?: [T (4s)
)

=1

where the summation is again over all vectors X = {x;,, 23, -+, a4}
satisfying (A1) and (A4). If the L sets are not exhaustive then we define
Si41 as above and the same expression (A5) is obtained with % replaced
by & + 1in (A1) and (A5) but not in (A4), i.e., no condition is applied
to the (& 4 1)th variable.

It is interesting to note that the results for the infinite case (N = =)
can be obtained from those of the finite case by letting N tend to in-
finity. Table V illustrates this numerically since the four entries in each
set correspond to N = 60, 120, 360 and =, respectively.

APPENDIX II
Approzimate Solulions — Infinite and Finite Populalions

Let x; denote the random integral number of observations in a sample
of size n which fall in the #th cell #+ = 1, 2, ---, k). If we let
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yi = x; — (n/k), then the two conditions E,-sl x:; = n and

Diayi=0 (A6)

are equivalent. Let [¢] denote the largest integer not greater than x.
We shall consider only the case of the equi-probable exhaustive sets.
In the case of an infinite population we wish to compute

P = P{n G = ﬁ.-*) << (} + ﬂ.—*)

(i= 1r2:"':k)

(A7)

k

Z T = Ny.
1=1

If we introduce a continuity correction and use (A6) then we obtain

P=P-b =y sali=12 -,k |Z'§:1 y: = 0} (A8)

where for each i(i = 1,2, -+, k)

1 L n 1 nj|  n
i = 5 i - — i 1 b =5 == = ¢
a =5+ [”ﬁ + f;] poond bi=g ["ﬂ ch T (A9
If n/k is an integer and * is the common value of B*i = 1,2, -+, k)
thena = s = -+ = @ = by = by = -+ = b = a (say) and (A8)
reduces to

P=P{lylSal =120 Xy =0 (A0

where ¢ = 1 + [ng*].

To compute (A10) fwo approximations are made. The k-variate multi-
nomial probability is first transformed by an orthogonal transformation
into a (k — 1)-variate distribution with homoscedastic and uncorrelated
variables and the first approximation is to replace the latter distribution
by a multivariate normal distribution with independent variables. The
region of integration is the infersection of the hypercube yi| £ a
centered at the origin with edge-length 2a and the hyperplane (A6);
the orthogonal transformation merely rotates this intersection about the
origin. These intersections are convex figures symmetric with respect to
the origin; for example, it is a regular centered hexagon for k& = 3. These
intersections, called Stott figures, are discussed in Appendix III. The
second approximation made in computing (A10) was to replace the
Stott figure by a (b — 1)-dimensional central sphere whose radius R
is determined by equating the two hypervolumes. Values of R for &k =
2(1)12 for any a are given in Table IX.
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TasLE IX
Intersection 9 of the hypercube of edge-length 2a centered at the origin
and the hyperplane 2y + 22 + -+ + @ = 0.

Dimension % of J (k) = Number of equally large Radius R of sphere with content
hypercube simplices in g equal to that of ¢
2 1 1.4142 a
3 6 1.2861 a
4 -+ 1.3655 a
5 230 1.4436 a
6 66 1.5225 a
7 23, 548 1.5995 a
8 2,416 1.6733 a
9 4,675,014 1.7443 a
10 156,190 1.8126 a
11 1,527,092, 468 1.8786 a
12 15,724, 248 1.0422 q

The content I(k) of g for all k is given by

ak-1 E ) ) )
1) = & _‘{}1 (@ — Dk — 287+ (D — 9 — -]
where the terms continue only as long as the arguments k, k — 2, -+ - are positive.
The radius R of a (k — 1)-dimensional sphere of equal content is obtained by

_ E+1
equating I(k) and (R,\/‘,-.-)*—l/I‘ (2L .

The orthogonal transformation referred to above is

r__ —1 P PR . o— gag.
e = m (Ul + Yo + + Yi 7aﬂt+1) (All)

(i=1,2,---,k
where ¥4, is defined to be identically zero. Then y.’ is identically zero
by (A6). The remaining ;" all have a common variance % since for each

ii=1,2 -, k=1
2 1 afe ‘ ,\7—1
= g (0 o ()

o05) (-1

and are pairwise uncorrelated sinee for 7 < j

(A12)
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o 1 {m'(k—l)
vl wi'j \/?,'(i + Dj(j+ 1 i

+2(3)(- )+z(;—z)(~—2)—z(,:—1) (A13)
(-5 - e (g)) -0

Ifwelet v =k — 1, let r = R/c = R+/k/n and let S denote the
central sphere of radius r then the approximate probability (dropping
primes) is given by

e o !

:Pix < 7

r

where y,” denotes a chi-square random variable with » degrees of freedom.
In the ease of a finite population of size N the only change in the above
discussion is to replace (A12) by

9 ni{N —=n .
Tyt = E(ﬁ) (3' = ],2, "‘,k - ]) (AIF))
thus increasing the value of »* and the value of P; this decreases n if P
is held fixed at any P*. If we let ny and n, denote the required values
for a finite population of size N and an infinite population, respectively,
for the same fixed k, 8* and P* then we obtain from (Al4) and (A15)

N —
N == Ny (-]_V——if\r)’ (A16)
or, taking the smaller solution in ny , we have for large N
ny o N = VP2 AN = U (A17)

Replacing N — 1 by N in (A16) we easily obtain for large N the simpler
result

1 1 1
— =~ — Al8
hy Mg N (A18)
The error in P involved in both of the above approximations (Al4)
and (A17) is evaluated in Table VII for N = 120 and N = = for se-
lected values of n, 8* and k.
If n/k is not an integer then the above discussion may not apply since
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a; may not equal b; in (A9). Assuming again a common 8* then we have
a common “a@” and a common “b” in (A9). In this case, averaging the
approximate probabilities obtained by using 2a and 2b alternately as
the edge-length of the hypercube was found to be satisfactory for com-
puting the tables of this paper.

APPENDIX IIT
Geometric Results and Eulerian (Diamond) Numbers

The problem here is to find the (4 — 1)-dimensional content (or hyper-
volume) of the intersection d of the centered k-dimensional hypercube
|y:| < a(@ = 1,2, -+, k) and the (¢ — 1)-dimensional hyperplane
i + y2 + -+ + w = 0. The geometry for even & and odd % is quite
different. The number of vertices of 9 for even & and odd %, respectively,

is
I o k=1 Y\
(Ic/2) and & ((k, _ 1)/2), (A19)

for example, for & = 3 we obtain the 3 (?) = 6 vertices (a, —a, 0),

(—a, a,0), (a, 0, —a), (—a,0, a), (0,a, — a) and (0, —a, a). The vertices
are all equally distant from the origin. All the edges of 9 have a common
length d = d(k) which equals 2an/2 for even % and a+/2 for odd k. The
intersection ¢ is a convex figure which is symmetrie with respect to the
origin and is known as a Stott figure.” The Stott figure can be parti-
tioned into an integral number J(k) of (kK — 1)-dimensional simplices
which are not necessarily regular but are such that each simplex has the
same content as a regular (K — 1)-dimensional simplex with edge-
length d. Hence, using a result on page 125 of Reference 8, the content
I(k) of g is given by

=\ k-1 -
1) = (‘“2/2) @ \—/Ii) ). (A20)

The integers J(k) are given in the middle column of Table IX; for ex-
ample, the integer 6 for & = 3 indicates that there are six equilateral
triangles in the centered hexagon.

D. Slepian’ has shown that for even k the integers J(k) can be found
by generating a “triangle” of numbers using the recurrence relation

Sig =08, + i8S G =1,2--) (A21)

with boundary conditions S;,; = S;; = 1 for all j; then the desired
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quantities are
Sio= J(2) (1=1,2,---). (A22)
Similarly for odd / he showed that we can use the recurrence relation
Ty = (2 + DTy 4+ i+ DTisa Gy =1,2---) (A23)

with boundary conditions Ty ; = 7,0 = 1 for all j; then the desired
quantities are

Tii=J@2i+1) (=12 ). (A24)

Iig. 9 shows these numbers in two diamond-shaped patterns and ex-
plains another interesting way of obtaining these numbers.

EVEN CASE ODD CASE

(1 )
" /l\ 23 \23 1
m/\m" @) »3 }QJ}Q 4) \0‘ (OB 3/\5 4&3 ;L/}%\
VA VAR A\ /7RSS A
| 26 66 26 1 | 76 230 76 1
/ \ \ / \
EVAVAVA VAVAVAL
57 302 302 57 237 1682 1682 237
RARAR S RVaAvaAva
5
}191 2416 el 10}543 23,548 \05(13
LV RV
.3,49 1.5,5\19 25?,723 259,7\23
YA Wy
156,190 4,675,014
/N /A
Fig. 9 — Combinatoric derivation of certain Eulerian (diamond) numbers.

The number at any vertex V is obtained by considering any one path from the top
vertex to V, multiplying the cireled numbers encountered in this path, and sum-
ming the results obtained over all possible downward paths from the top vertex
to V. In particular, the values on the vertical diagonal (of the diamond) are the
values of J(k) in Table IX. It is interesting to note that the sum of all the un-
cireled numbers in the mth row is 27! (m — 1)!for the odd case and m! for the even
case. This is shown above for m = 1, 2, 3, 4, 5 and would hold for all m if this
pattern were continued indefinitely. The circled numbers are obtained by num-
bering the parallel diagonal lines starting with one at the “top,”’ using all pos-
itive integers in the even case and only odd integers in the odd case.
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The integers J(k) arise in connection with combinatorial problems.
As an example for even k, suppose we draw at random m balls in sue-
cession from an urn containing m balls marked 1, 2, ..+ | m. Let X de-
note the number of times that the observed number increases, (say)
always counting the first draw as an increase. Then it can be shown that

P[X = J] = Sj.m-l—l—j/m! (.7 = 11 21 T m), (A25)

i.e., the mth row of the left diamond Fig. 9 divided by the sum m! of
that row gives the elementary probability distribution of X.

The problem of computing (A25) also arose in the work of V., H.
Moore and W. A. Wallis* and M. MacMahon® who referred to it as
Simon Newcomb’s problem. J. Riordan® has studied the numbers J(k)
for even & and Carlitz and Riordan® call them FEulerian numbers (to
be distinguished from the classical Euler numbers); an explicit formula
as well as a generating function appears in these papers. The S;, ; are
related to the Eulerian numbers 4, ;. (defined in Reference 5) by S; ; =
Aiji-

Explicit expressions for J(k) for odd and even & are obtainable from
(A22), (A24) and the more general results

o5 = z (=D (LN — o) (A26)
Ty = 3 (~DCENRG — @) + 1 (A27)

due to D. Slepian.” It is easily shown that these formulae satisfy the
corresponding recurrence relations as well as the boundary conditions.
By an induction and symmetry argument applied to (A21) and (A23)
and the boundary conditions it is easy to prove that

S,"_,' = Sj,; ﬂlld T.‘,J' = T,'." . (AQS)
Substituting (A26) and (A27) in (A28) gives rise to interesting, non-
trivial identities. For completeness we also give the generating functions
derived by D. Slepian?

@ Sl'.j tiuj _ tu(e' _ eu)
ii=1 (3. + j —_ 1)[ - ter — et (AQQ)
2 Saitu’ _ [ t—u :l
AT A (A30)
a0t _ ttu
1 LY tu _ (t u)g (A31)

=0 (2 4+ ! e — ue
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The final result for the content I(k) of ¢ can, using the above be
written as a single expression

k—1 \//: L3/l @ ]ﬂ) k—1
5) = Y — E— 2 A32
10 = YR 0t () k- 20 @)
for all I: where [z] denotes the largest integer not greater than x. It has
heen pointed out by J. W. Tukey that (A32) can also be obtained by proba-
bilistic considerations and that it appears in Laplace’s “Theorie Ana-
lytique” (Book 2, page 260).

APPENDIX TV
Remarks on the Conjidence Bands

It should be remarked that other assumptions on the true, unknown
distribution can be used in conjunction with the confidence bands ob-
tained in Section VI. It has been pointed out by J. W. Tukey, for example,
that in the case of the first diagram in Fig. 8 the experimenter might be
willing to assume that the true distribution is unimodal and that the
mode 2, is such that 2, =< 2 . Then on purely geometrical considera-
tions it can be shown that the confidence band can be modified as shown
in the first diagram of Fig. 10. Briefly, if the true distribution enters any
one of the three deleted triangles with any slope s then in order to get
out again without leaving the confidence band the slope must get larger
than s. But this contradicts the assumption that the density steadily
decreases after xe .

Similarly, with the same problem, if the experimenter assumes that
the true distribution is unimodal and that 273 < @m = s then the first
diagram of Tig. 8 can be modified as in the second diagram of Fig. 10.
The assumption of unimodality is reasonable in many different practical
applications but has not often been utilized in statistical techniques.

It is possible to formulate a problem for fixed P* and n which requires
the determination of that & which makes the mazimum (or some average)
vertical width of the confidence bands as small as possible. For example,
for P* = 0.85 and n = 240 the value £ = 10 minimizes the maximum
vertical width. It should be pointed out that if the experimenter’s prin-
cipal interest is in finding confidence bands with small vertical widths
then this procedure appears to be quite inefficient compared with that
based on the Kolmogorov statistic.'

A proper comparison is difficult since the nominal P* is a lower bound
and not the correct value of the confidence level associated with the pro-
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Fig. 10 — Modified confidence bands which include the true distribution func-
tion with confidence greater than P* = 0.85 for &k = 10 and d,* = 0.5.

posed confidence bands. As mentioned in the body of the paper the de-
velopment of a confidence band is just a by-product of the main theme
of this paper which is the representativeness of the sample.

VII. CONCLUSION

Definitions of representativness and of degree of representativeness are
given and tables are included which give the sample size required to
guarantee with preassigned probability P* that a random sample will
satisfy a condition of representativeness, the definition of which is
agreed upon in advance. Thus, for experimenters who wish to know n
advance how many observations will be needed for a distribution study,
the problem has been given a precise nonparametric formulation and the
solution has been found for some cases.

This formulation also leads to confidence bounds on the unknown
distribution after the observations are taken. Examples are given to illus-
trate this.

The tables for the case of pairwise disjoint, equi-probable and exhaus-
tive cells may also prove to be useful for the problem of detesmining the
sample size required to obtain simultaneous confidence limits (on a
preassigned level P*) for all of the cell probabilities of a multinomial
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distribution. Further investigation is needed to state precisely the con-
ditions under which these tables can be used for this related problem.
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