Fluctuations of Random Noise Power”

By D. SLEPIAN

(Manuseript received September 4, 1957)

The probability distribution of the power, y, of a sample of Gaussian
notse of time duration T is considered. Some general theory is presented
along with curves for the cumulative distribution and probability density of
y for several different power spectra and values of T.

I. INTRODUCTION

A random quantity of interest in many communication and detection
systems is the average power,
L

yv=g/,  NOa, (1)

-T2

of a sample of finite time duration, T, of a Gaussian noise, N(t). This
quantity has been discussed in some detail by Rice in his classic paper'
where he obtains expressions for the first few moments of y and an ap-
proximate probability density function.

In this paper the exact probability density function, f(y), and the
cumulative distribution funetion, F(y), of the average power are com-
puted for a number of ergodic (Gaussian noises and for a number of
values of 7. The results are presented as a series of curves which are dis-
cussed in the next section. It is hoped that they will be of use to those
designing specific systems.

II. SUMMARY OF COMPUTATIONAL RESULTS

I'ig. 1 shows the probability density function, f(y), for the random
variable y of equation (1) when N({) has mean zero and power spectrum

2a
= - - = < <
w(f) o F A asf=/=.
Noise with this spectrum will be referred to as RC noise (see 5.1).

* The research reported here was supported in part by the Office of Naval
Research under contraect Nonr 210(00).
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Fig. 1 — Probability density, f(y), for RC noise.

The curves are labelled by values of 8 = «7'/2. The curve marked
B = 0 is the probability density function for y = N*(t). Fig. 2 shows the
corresponding cumulative distribution functions, F(y).

For any B > 0, as y approaches zero, f(y) and F(y) approach zero
more rapidly than any power of .

As 8 becomes large, the density function f(y) peaks up around unity
which is the average power of N(f). The variance of y is given by
(28) 48 — 1 + ¢ **]. Tt approaches zero for large g like g

Figs. 3, 4 and 5 show f(y) when N({) has mean zero and power spec-
trum

w(f) = 20 2 ,

Wo 2 (%) (" = @)’ @)

w=2xf, —0 S f= =,

Noise with this spectrum will be referred to as RLC Noise (see 5.2).
The figures are respectively for the cases @ = 1, 10 and 100. The curves
are labelled by values of s = wT. The curves marked s = 0 are the
density function for y = N?*({). The corresponding cumulative density



FLUCTUATIONS OF RANDOM NOISE POWER 165

1.2
—
——
10, /‘#—ﬁﬁ
DEAF |
q = ——
=T 0.
2
w(f) =
(f) o2 + a2 f2
T
ﬁ‘_ k
1.6 2.0 2.4 2.8 3.2 3.6 4.0
|

Fig. 2 — Cumulative distribution, #(y), for RC noise.

functions, F(y), are shown on Figs. 6, 7 and 8. The spectra for ¢ =
10 and 100 are plotted on Fig. 9.

For any s > 0 and for any finite > 0, as y approaches zero, both
f(y) and F(y) approach zero more rapidly than any power of y.

Tor any fixed ¢, as s becomes large, the density function f(y) peaks
up around unity which is the average power of N({). The variance of y
is given by

o :%[T-1+ff—r+%87_31n VA — 1 1]
T 4@‘
(3)
.
3

For fixed @, it approaches zero for large s like 2Q/s.

If, however, s = w7 is held fixed and @ is permitted to increase, Figs.
3, 4 and 5 show that f(y) becomes less concentrated; that is, with
fixed integration time and fixed resonant frequency, fluetuations in
power become more pronounced as the relative width of the spectral
peak is decreased. Indeed, one has
sin® s

2 7

lim¢ =1+

Q>

so that



166 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958

lim lim ¢ = 1,

§»00 Q->00
whereas, as already noted,

lim lim ¢* = 0.

Qoo s2c0

In the limit Q = =, the Gaussian noise can be taken to be the single
frequency ensemble N(f) = a cos wit + b sin w, where a and b are in-
dependent normal variates with mean zero and variance unity. The
density for ¥ in this case is

J(y) = sec ge™? ™ Jo(iy tan ¢ sec ¢)

where sin ¢ = sin s/s and J, is the usual Bessel function (see Appendix
1). This density is plotted for several values of s in Fig. 10. It is to be
noted that this limiting noise, although stationary, is not ergodic. It is
this fact that causes the variance of y to be bounded away from zero as
s — . Quite generally, if N(2) has a purely continuous spectrum, the
variance of y will approach zero as the integration time becomes infinite.
If the spectrum of N(f) has line components, this will not be the case.
It is not difficult to give a qualitative argument as to why power fluc-
tuations in a fixed time interval increase as the power spectrum becomes
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Fig. 3 — Probability density, f(y), for RLC noise, @ = 1.0, s = w,T".
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Fig. 4 — Probability density, f(y), for RLC noise, @ = 10, s = woT'.
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Fig. 5 — Probability density, f(y), for RLC noise, @ = 100, s = w,T'.
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Fig. 6 — Cumulative distribution, ¥ (y), for RLC noise, @ = 1.0, s = wol

more peaked. Noise with the power spectrum (2) can be thought of as
the noise voltage produced across the resistor in a series RLC eircuit
when the applied voltage to the circuit is white Gaussian noise. The
larger the Q of the circuit, the more it tends to “ring” in response to an
impulse input; i.e., the longer the transients persist. An atypical excur-
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Fig. 7 — Cumulative distribution, #(y), for RLC noise, @ = 10, s = woT'.
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Fig. 8 — Cumulative distribution, F(y), for RLC noise, @ = 100, s = w,T'.

sion of the input voltage will therefore have a longer lasting effect in the
output of a circuit with a large @ than in a circuit with a small Q. To
obtain the same variance in power, then, the integration time must be
longer in the circuit with the large @ value. It would seem reasonable to
expect this argument to apply for any peaked spectrum, not solely for
(2).*

If the Q of the spectrum (2) is increased, how much must the integra-
tion time be increased to maintain roughly the same power fluetuations?
From (3), it is seen that for large Q, " is approximately 27 — 14 €7,
i.e., a function of

T

T =

DlE

8
Q
alone. Now Q measures the relative sharpness of the spectral peak, so
that wo/Q is a measure of the absolute width of the peak in radians/sec.
As a rough rule, then, power measurements from different members of
the family (2) will have the same fluctuations if their products “integra-
tion time” times ‘“absolute spectral bandwidth’ are the same. Fig. 11
shows ¢” as a funetion of 7 for Q = 1, 10, and 100. That r isa good meas-
ure of the fluctuation in power can also be seen by comparing the f
curves of equal r value in Iigs. 3, 4 and 5. They are almost identical.

* It seems to be very difficult to make any other qualitative statements re-
garding the relation between the shape of the noise spectrum and the density
function for y.
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On Fig. 11 the variance of y for bandpass noise with spectrum
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Fig. 9 — RLC spectra, @ = 1, 10, 100.
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Fig. 10 — Probability density, f(y), for RLC noise, @ = =.

and measures the relative width of the spectrum. This definition of Q,
causes the ¢ curves of this noise power to agree asymptotically with
those of the RLC noise power; namely ¢> ~ 2/r in both cases. Again,
when it is not too small,  seems to be a good measure of power fluctua-
tions. The variance in this bandpass case is given by

2
1 cos QpTysin %‘y—]
=t [ Q=g —— 2 Ny
0 Ty J

2

which ean be readily evaluated in terms of Si and Ci functions. The curve
for » = 100 coincides so closely with the curve for @, = 10 it could not
be shown on Fig. 11.

The asymptotic agreement of the variance of noise power for band-
pass and RLC noise permitted defining the @ of the bandpass circuit as
Qv = w(fu/26). These same considerations suggest defining the band-
width WV of the RLC spectrum by W = wy/26). For, in the bandpass
case, 7 = 2(28)T which is 27 times the bandwidth of the spectrum. For
the RLC noise, 7 = wpT/Q = 2T(we/2Q), whence the definition of W
follows.
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Fig. 11 — ¢* for RLC noise and bandpass noise, @ = 1, 10, 100.

The curves shown in Figs. 1-8 are believed to be accurate to two sig-
nificant figures. For comparison, some points computed from Rice’s
approximate formula for f(y) (equation 3.9-20 of [Ref. 1]) are shown on
Fig. 3. Rice’s formula is seen to fit the tails of f(y) well for large ¥, but
the central portion of the distribution is given accurately only for large
ralues of 7. However, the approximate cumulative distribution obtained
by integrating Rice’s formula agrees quite well with F(y) for a wide
range of r values as is seen in Fig. 6.
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The approximation in question assumes a x* type distribution

-1 — 2
2 (n/2) 18 (v/2¢%)

) =4—°2 .
e (3)

The parameters ¢ and n are chosen to make the first two moments of
this density agree with the true first two moments of y. That is, for the
normalization Ey = 1 adopted here, the equations ¢*n = 1 and 2n¢* =
serve to determine ¢ and n. These formulae give n = 2/¢%. Since for
large 7, ¢* ~ 2/7 for bandpass noise, n ~ r = 2(28)T. That is, for large
7, the bandpass noise acts like a x* variate with 2(25)7T degrees of free-
dom in agreement with an argument easily derived from the sampling
theorem.

III. GENERAL THEORY
Let N(f) be a Gaussian noise with mean zero and covariance
pt, U') = EIN@ON@))

where as usual ¥ denotes expectation. In studying properties of N(f) in
a finite time interval, say (—7/2, T/2), it is convenient to make an ex-
pansion in terms of an orthonormal set of functions, ¢.(¢),n = 0,1,2,....
We write

-] I'
N() = ; ni®, [t =5
where
T2
n; = f | N(t)q:.'(t) dt, 3 = 0, ], 2, .
_ri2
and

T/2
[, e0e@at=o5,  ii=012"

As is well known,” it is particularly convenient in this description of
the noise to choose as the orthonormal set, ¢;, the solutions of the
homogeneous FFredholm equation with p(¢, t') as kernel. That is, the ¢’s
are chosen so that

T2
)\i‘Pi(t) = f'”“ p({a tl)qp;(ll) r“‘, { t | = 9 T = Os 1121 Tt (4)
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For, with this choice of the ¢’s, it is easily shown that the n; are inde-
pendent Gaussian variates with mean zero and variance End) = i,
i=0,1,2,.... We assume in all that follows that the X's are so labelled
that do 2 M ; Ao =

Consider now the average power, ¥, of a finite sample of the noise. It
follows that

1 /2 ) )
y = = N*(t) dt = E n;
T Lri ]
- (5)
= > axl,
i}
where
SRRV
and
A;
a; = T. (6)

Equation (5) exhibits y as a linear combination of independent random
variables. The z; are independent Gaussian variables all with mean zero
and variance unity. The characteristic function, C'(£), for y then follows
readily. One has

C(p) = Ee'™ = Be'®=* = [] Ee*="
(7

o

11 (0 — 2izay) ™"

i=0

Il

Here, as throughout this paper, the positive square root of a complex
quantity is taken to have an angle between — (w/2) and + (7/2) radians
(the cut line is along the negative real axis).

TFrom the characteristic function (7), the semi-invariants of y can be
calculated. By definition® of the semi-invariants, &;,

log C®) = 375 68)"
From (7) and the expansion

log (1 —z) = E—

n=1 N
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it follows that

) 1 & 1 & — Zzga,)’"
log C(§) = 521()%(1_ 2ita;) :522
& j=0 & k=1 j=0
) (3 )k
=X
k= (i
where
ke = (b — D12 32,0t (8)

I'rom the semi-invariants, the moments of ¥ can be found as in Refer-
ence 3.

The formula (8) for the semi-invariants can be put in a convenient
form not involving the a; explicitly. From the well known expansion*

t tf ED J@J(t)‘PJ( )

and the orthonormal properties of the ¢’s, one finds
(k— 112" fﬂz ®
;= — t t) dt 9
Kk T L rta P (, ) ) ( )
where the iterated kernel p* (¢, ') is defined by

pV(t, ) = p(t, 1),
T2
p™ (L, 1) = f L, Pl D" V() dr, n =23, -
— T2

The determination of the higher order iterated kernels generally becomes
difficult in practice.

The expression (9) is of the form conjectured by Rice' on the basis of
computing the first four semi-invariants of y. The formula (7) was given
by Kac and Siegert’ and (9) was noted by Arthur® in a special case in
connection with the analysis of a frequency discriminator.

The probability density function for y is obtained as the Fourier
transform of C(£),

I o)
I (- 2i)™

and the cumulative distribution function can be written as

F@:ujﬂmm (11)
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Much of the remainder of this paper will be concerned with evaluating
(10) and (11) for specific noises.

IV. COMPUTATIONAL FORM FOR f(¥)

The evaluation of the integral (10) presents many difficulties even
with modern computing machinery. From the physical origins of the
problem under discussion, it is clear that for small values of 7', fan
must be a rather broad funection (non-localized), whereas for large values
of T it must approach a §-function centered at the point y = p(0, 0)
when the noise is assumed ergodic. The behavior of (10) therefore de-
pends in detail on the manner in which the a; approach zero with in-
creasing j.

One seemingly attractive approach to the problem is to truncate the
sum in (5) at ¢ = M and correspondingly obtain a produet with j run-
ning from 0 to M in the denominator of the integral in (10). Procedures
are described in the literature® 7 for computing the distribution of a
finite quadratic form in Gaussian variables. Estimates of the error due to
truncation can also be obtained rather readily. Unfortunately, the best
such estimates obtained by the author showed that for small values of
B or r, M must be taken quite large (50 or 60) to obtain answers guaran-
teed accurate to two decimal places. Furthermore, the convergence of
the computational schemes described® 7 turned out to be very slow. The

£ PLANE
Re § —
-Lhbg
c
-ib,
-iby
C
-Lbs

Fig. 12 — Cut lines and eontour in complex ¢ plane.
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following alternative approach which can also be applied to finite sums
of the form (5) was used to obtain the curves presented here.

The function T(1 — 2ita;))'” in the denominator of (10) has branch
points at —2b; , where

1T

TR
The b’s are real positive quantities, for the N’s are eigenvalues of a real
symmetric positive definite kernel and must be real positive numbers.
Line segment cut-lines are inserted in the complex &-plane from —ib.; to
—ibaj1,J = 0, 1,2, ... as shown in Fig. 12. When y < 0, the value of
(10) is zero as can be seen by closing the contour in the upper half plane.
When y = 0, the contour of integration in (10) is displaced from the
axis of reals to the contour, (', shown in Fig. 12. This displacement of
contour is easily justified if II(1 — 2ita;)""* is of exponential order less
than unity, a condition which will be fulfilled in the examples to be
treated. The change of variable { = if rotates the contour of I'ig. 12 by
90° in the positive direction. If one now collapses the closed contour
curves about the cut-lines and takes proper care of the convention al-
ready set forth for the square root sign, there results,

J) = 28— 1)L
where

1 bop+1 p—wt (ff

5 =1 Ay k=01,2,...
‘ T Jbay \/‘ D(i) 1

and where
p® = I (1 - i). (13)
i=0 b;
D(1) is closely related to the Freeholm determinant (Reference 4, Chap-
ter 11) of p.
In the application to be treated below,
D(t) = H(z) (14)
where
z = g(t) (15)

is a non-negative monotone increasing real funetion of ¢ for £ = b, . De-
note its inverse by { = h(z). Let
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2 = g(bi)

e = 3(2zmenn — )

de = (211 + 28)
fork =0,1,2,...and let

2= ¢ cosmx + d .

Then straightforward substitution yields

I, = j: 4/ 871'“%;2)‘” , k=0,1,2.., (16)
(2 — sz) (22k11 — 2)
Fy) = 2= 1), . (17
Similarly, one obtains
Fly) = 1 = 2 25(— 1) (18)

with
e DR (2) dx

I =~£ 1) 1/ H()

(z — z) (22040 — 2)

Equations (16) to (19) were used to compute the curves discussed in
Section II. The denominators of the integrals in (16) and (19) have no
zeros in the range of integration. By use of Gauss’s method of numerical
integration,® evaluation of the integral at x = 0 and 2 = 1 where the
denominator is an indeterminate form was avoided. In the applications
made, it can be shown that for sufficiently large %, I, and J; decrease
monotonely. Since the series (17) and (18) are alternating, an estimate
of the error made by terminating the series at a finite value of & can
be obtained. In all cases computed, it was never necessary to take &
larger than 18, to obtain 1 per cent accuracy in the final result.

(19)

V. DETERMINATION OF EIGENVALUES AND F(2)*

For stationary processes, the kernel of the integral equation (4) be-
comes a difference kernel; that is, p(f, ') = p(t — ') where p(x) is a
positive definite function. The Fourier transform of p, namely

w(f) = i 0 (2) dx

is non-negative and is the power density spectrum of the processes.

B An alternative method of evaluating H(2) is described in Reference 12.
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Analytie solutions to the integral equation (4) are known in this case
only for a relatively small class of kernels. Fortunately, this class is one
of considerable interest in communication applications. It is the class
of p whose spectra w(f) are rational functions of f?; i.e., ratios of poly-
nominals in f2. Such spectra are obtained by passing white noise through
a finite passive physical eleetrical network with lumped constants. De-
tails of the method of solution are given in References 9 and 10. It
must be pointed out that, even in this case, solutions can be carried out
practically only for polynomials of small degree.

5.1 RC Noise

If white Gaussian noise is applied to a series RC circuit, the voltage
across the capacitor has a power density spectrum proportional to

2a
a? + 4xf?
where « = 1/RC is the nominal cut-off frequency of the circuit. The co-
variance function corresponding to (20) is

p(t) = ¢ ", (21)

Solutions to (4) with this kernel are given in detail in both References
9 and 10.

w(f) = (20)

Let
aT
8= 5 (22)
Then
bk = 21—5[32+ 25'2]: k= Ov 1:21-": (23)
where the z; are non-negative roots of either of the equations
ztanz = g (24)
zeotz = —B. (25)

If the z; are labelled so that zo < 2z < z» <..., then it is readily seen
that z ~ k(r/2), so that b, ~ &*(x*/88). The convergence exponent (see
Reference 11, p. 14) of the sequence by is therefore 3. It follows then (Ref-
erence 11, 2.6.5, p. 19) that D(f) as given by (13) is an entire function of
order 3.

Now the function (¢7*?/8)[8 cos z 4 z sin 2] [cos z + B(sin z/2)], where
z = /28t — B is an entire function of ¢ of order 3. Its only zeros are



180 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958

at the points £ = by, k = 0, 1, 2,..., given by (23), (24) and (25). At
t = 0, it has the value unity. It is, therefore, equal to D(f) as can be seen
from Hadamard’s Factorization Theorem (Reference 11, 2.7.1, p. 22).

The quantities necessary to evaluate (16) and (19) are therefore all
known for this case:

—28 §
H(z)=%[30052—zsinzl[cosz+ﬁ‘¥]
1.w
W) = 556" + 2]

and the z, are given by the positive roots of (24) and (25).
The first two semi-invariants of y are found to be

0w =Ey =1,

1

Ey—1)=¢= &% 48 — 1 + ™).

K2

5.2 RLC Noise

If white Gaussian noise is applied to a series RLC circuit, the voltage
across the resistor has a power density spectrum proportional to

9

20 w
w(f) = a wﬁ 4 (9—)2 (w'l B wo‘l)ﬂ (26)
wy

where w = 2xf, Q = wol/R and wy’ = 1/LC. Introducing parameters u

and » defined by
2 2 2 1
w + v = — =2
“b ]

w = w, Reu = 0, Rev = 0,

one finds

20w + o
W T D+ o

w(f) =

and

1
w—v

p(r) = ['H(f"lrl — p(f"'fl]_ (27)
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In the special case Q = 3,
p(r) = (1 — wo| 7 e (28)

Solution of (4) with (27) or (28) as kernel is relatively straightforward
by the methods of References 9 and 10, although quite laborious. Details
can be found in Appendix 2.

Suppose @ and w, are positive real quantities. Then the eigenvalues

= 1'/2b, are given by

=gl +ad, k=012 (29)

where the z; are non-negative roots of either

&.m V2t 82

% cosz = (5 — 1) — Sin 2 + &+ r
V—?

(30)

or
1 2 2
9 cos 2 = (zz_r)smz Z +r )sm V2t + s . (31
P VZE T & )
Here
r= % s = wT. (32)

The eigenfunctions belonging to roots of (30) are of the form
Ay cos 3z + Vad + )t + By cos 3(za — Vi + st
while those belonging to roots of (31) are of the form
Cposin 2(ze 4+ V22 + Ot + Disin 3z — V2 + )L

It is interesting to note that when the X’s are ordered in the usual way,
the corresponding eigenfunctions do not in general alternate between even
and odd functions of .

The infinite product (13) with the b’s given by (29), (30) and (31)
can be written in closed form by arguments similar to those used in
Section 5.1. From (30) and (31), it is seen that asymptotically succes-
sive ze are separated by 7/2, so that b; grows like +* and one is again
dealing with an entire function of order 3.* For the pertinent quantities

* More generally, it ean be shown that for rational spectra if w(f) ~ f~*» then
An ~ n~?. (Private communication to author by A. Beurling.)
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of (16) and (19), one finds

H(z) = [(2— )Si%f—%'cosz
2 2
+ (P4 NVETS \/:E"’thf} (34)
.I:(z'! — 79 i:j — 2rcosz — (22 4+ 1) sin V2 + s \/ze—z:_-l;ZsE:]’
Me) = o [+ ) (35)

with the z; given as roots of (30) and (31).
The first two semi-invariants of y are

w = Ky =

2 l —2? TEe—zr 3 2 2 D
ua=0=§ﬁ|:27'_1+9 +2T'2—8281nh Vit =g,
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APPENDIX 1

Let N(f) = a cos wit 4+ b sin wet, where a and b are independent Gaus-
sian variates with mean zero and variance unity. Then y as defined by
(1) is obtained by direct integration as

y = aa + 8b

sin § 1 sin §
S IOE T R (T

Since y is the sum of independent random x* variables, the density for y
can be obtained as the convolution
v e—(x.’"a) ft(uﬂf)f"ﬁ)

= dx.
) o Vi Vot = r

The substitution + = (y/2)(1 + cos ) in this integral leads to

where
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arly:‘4)l(l,’a)+{llﬂ)] 1 x

(y) — _ 2 (,(yf-n(u’lf_ﬂ_l) cos do
! 2Veg T
_ (:_(Il."i)lflfﬂ)Jr(lfﬂ)] 7, [?’ il B } y] .
2v/af a B 4

Finally, if sin ¢ = sin s/s,

7(y) = secee " Jo(iy tan ¢ sec ¢).

APPENDIX 2

The power spectrum corresponding to the covariance (27) can be
written as

2+ o)p
W — O — )

where p = iw = 2mif. From Reference 9, then, solutions to (4) with
the kernel (27) must satisfy the differential equation

2 2 2
(Edﬁ - u2) (%2 - v2> o(t) = —%(NALU) % o(t)

w =

or
a d’ .
(& - @) (&-#)e0 -0 0
where
az-l-ﬂz ___uz_'_vz_z('u;'ﬂ),
a2B2 =u = mu4.
We choose a and 8 so that Rea = 0, Re g = 0. If a # B, then g isa

. . . . —al f — Bt
linear combination of the elementary functions e, ¢, e e e

It is easy to verify that if ¢ is a solution to (4) with a kernel p(t, 1) =
p( |t — ¢']), then o(t) + ¢(—1) and o(t) — ¢(—1) are also solutions.
We can, therefore, restrict attention to even and odd solutions of (4).
On substituting

() = A cosh at + B cosh gt
into (4), one finds

A a'r _ g -
Rl 7 e s il vy Ty LR
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u cosh el + a sinh ol % cosh BT + Bsinh 8T
A 2 > +B 2 2 0
u'l —_ 052 u‘_’ —_ '62 ’
(111)
» cosh 52?—1 + « sinh % v cosh % + A sinh %11
A + B . = 0.

v!_a“! v-_ﬁ?

The determinant of the system (iii) must vanish. A bit of algebra shows
this to be equivalent to

sinh 2 + @ =) M =0, (iv)
T Vit — ¢

where x = (a 4 B#)(T/2). It is not difficult to show that for positive wo
and @), this equation has roots only if @ and 8, and hence x, are pure
imaginary. Writing @ = 7z, (iv) become (30) and (ii) yields (29).

The substitution of

¢(t) = C sinh af + D sinh Bt

into (4) again yields (ii) and equations analogous to (iii) with sinh and
cosh interchanged. A similar analysis then gives (31).

If « = B, then from (i), ¢ must be of the form A cosh of + Bt
sinh af or C' sinh af + Dt cosh af. Substitution of these forms into (4)
yields equations which cannot be satisfied for positive w; and @ except
by the trivial solution A = B = C = D = 0.

2r cosh z + (&* + %)
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