Runs Determined in a Sample by an
Arbitrary Cut

By PAUL S. OLMSTEAD
(Manuseript received August 9, 1957)

This paper, after making a critical review of the literature pertaining to
runs above and below in a fixed sample, provides the following extensions:

1. Sample arrangement distributions for runs of length at least s on one,
each, and either side of any selected cut for samples of 10 and 20,

2. Sample arrangement distributions for runs of length at least s on one,
each, and either side of the median for samples of 10, 20, 40, 60, 100, and
200,

3. Sample arrangement distributions for runs of length at least s on each
side of all possible cuis for samples of 10, 20, 40, and 100,

4. Asymptotic values of the probabilities of such arrangements when the
sample size and length of run are large,

5. Convenient charts and tables for probabilities of 0.01, 0.10, 0.60, 0.90,
and 0.99 to facilitate use by engineers and scientists, and

6. Discussion of a simple application.

The inclusion of the case for runs of length at least s on each side of all
possible cuts should prove very useful because it provides a quantilative
measure for a common operational procedure for which the exact proba-
bilities were heretofore unknown.

I. SUMMARY

This paper discusses certain nonparametic measures for use in de-
tecting the presence of assignable causes in experimental data. Specifi-
cally, it assumes that a sample of n observations of a characteristic, X,
has been obtained and that a particular arrangement, X, , X», ---- X, ,
e.g., by the time order of determination or other considerations, increases
the value of the sample as evidence. Assuming a cut at a particular value
of X, such as A4, such a series may be divided into groups of consecutive
observations that lie, alternately, above and below the cut. The length
of such a group is called a run.
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The paper also presents charts, tables, and formulas relating to such
sample arrangement distributions for runs above and below any selected
and all possible cuts or demarcation values. Specifically, it contains:

a. A review of the literature relating to runs above and below (Sec-
tion IT).

b. Appropriate charts and tables for the convenience of the engineer
or other user (Section IT and III).

¢. An example (Section 1I1) and reference to others (Section II).

d. A procedure for obtaining the probability that a randomly selected
arrangement of a sample of size n will contain one or more runs of length
at least s on each side of at least one of all possible cuts or demarcation
values that do not coincide with one of the numerical values in the
sample (Section VI).

e. Relationships between n and s for constant probability (Section
VIII).

f. The probability that a randomly selected arrangement of a sample
of size n will contain one or more runs of length at least s on each side
of a selected cut or demarcation value such that n; numerical values are
above and n, numerical values are below (n = n; + ns). Similar prob-
abilities are given for arrangements with runs above, with runs below
and with runs on either side of such a cut or demarcation value (Section
V).

g. Simplified formulas for runs above and below the median that are
equivalent to those given by Mosteller' (Section V).

h. Asymptotic values of these probabilities for both n and s large
(Section VII).

II. HISTORICAL BACEGROUND AND DISCUSSION

Runs above and below the average, the median, or some other selected
value have been used by a number of engineers to assist in detecting and
identifying assignable causes of variation in connection with research
and development work. In order to have a clear picture of the problems
of such work, it may be worthwhile to set down some statements which
characterize it:

a. A repetitive process that has not been examined for control by
statistical methods and that has not subsequently been brought into
control is very unlikely to be in statistical control,

b. Causes of lack of control often occur sporadically, being present for
relatively short intervals of time,

c. Such causes of lack of control may often be detected by taking ac-
count of order either in manufacture or in taking observations, and
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d. A basis for determining what fractions or portions of the observa-
tions may have been affected by an undesired cause is the application of
statistical tests to the pattern of the individual values of the measure-
ments in the order in which they were obtained.

Runs above and below have been particularly useful in assisting in
the identification of such assignable causes. Their use in engineering has
progressed through the following steps:

1. Using a procedure based on the work of Cochran,’ Shewhart® showed
the distribution with respect to length of the runs above and below the
average. It was his observation that a run of length 7 was often asso-
ciated with a cause that could be found. Cochran had derived the dis-
tribution of runs of lengths s (our notation) of two complementary events
E, and E, of known probability, p, and ¢ = 1 — p, respectively. In
applying Cochran’s formula, Shewhart chose two statistics, X and p,
from his observed data. Recognizing that this might invalidate the use
of Cochran’s formula, he suggested to the writer that this loophole could
be avoided by working out the distribution for run lengths relative to
the median. This distribution was worked out and recorded in a mem-
orandum dated October 14, 1940.

9. About the same time, Mood® was working on his “Distribution
Theory of Runs” for which the distribution relative to the median is a
special case. He included in his results expressions for the variances and
covariances. Campbell' made use of the distribution of lengths of run
relative to the median.

3. The next step was to obtain the distribution of possible arrange-
ments with runs of at least a given length relative to the median. Mood®
gave a general analysis of the problem, which was supplemented in a
form more easily comprehensible to the engineer by Mosteller.! Mosteller
gave criteria based on sample size at given probability levels for length
of run on one side and on either side of the median. While this paper was
in preparation, Olmstead had been examining the problem of the prob-
ability of arrangements with runs of at least a given length on each side
of the median. When this was brought to Mosteller’s attention, his paper
was revised to include this case which had its inception in the engineering
idea that if two cause systems were operating in separate periods they
would be likely to produce separate groups of high and low values.

4. Following this, attention was given to the distribution of arrange-
ments, as indicated in Section V of this paper, where division for runs
above and below was made at some location other than the median.
Validity in use of the probabilities ealeulated on this basis was dependent,
on the choice of division location prior to the test and often left the en-
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gineer and the statistician uncertain concerning the risks that were being
taken when the division location was chosen after looking at the data.
Because of assumption (a) above, this did not worry the engineer as
much as it did the statistician, particularly when the engineer could find
a cause associated with long runs identified in this way. The fact that
he usually found such a cause indicated that some other way of consider-
ing the problem from the viewpoint of mathematical statistics would be
fruitful.

5. The obvious next step was to find a procedure for counting all of
the possible arrangements of # numbers, no two alike, that would have
one or more runs of length at least s on each side of at least one of all of
the possible division points that do not coincide with one of the numeri-
cal values in the sample. One way of doing this is first to write down or
plot all (n!) possible arrangements of the » numbers. Assume that the
numerical values of the numbers are the y-coordinates and the order
in which they occur in an arrangement is indicated by the z-coordinates
of such a plot. All such plots could then be examined to see what y-divi-
sion not at one of the y-values would give the longest run of consecutive
y-values on each side of the division. In this way, each arrangement
would be assigned to a category where a particular length of run was
equalled or exceeded on each side for at least one of the possible y-divi-
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Fig. 2 — Length, s, of run on each side of median versus sample size, n, for

selected values of probability, P.
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Fic. 3 — Length, s, of run on either side of median versus sample size, n, for

selected values of probability, P.

sions. The process presented in Section VI is the mathematical equivalent
of carrying out such a count. This process is gratifying to the engineer
and the statistician alike because of the freedom permitted in setting the
division location after examining the data so as to obtain the longest
lengths of run on each side of the selected value. Use of this information
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Fia. 4 — Length, s, of run on each side for any cul versus sample size, n, for
selected values of probability, P.

was made first in an article by Walker and Olmstead.® Its part in de-
tecting the type of an assignable cause appeared first in an article by
Olmstead.’

6. In connection with the investigation undertaken for this paper,
the asymptotic relationships for determining probabilities when n and s
are large have been obtained (Section VII) and the results compared
with those given by the exact relationships. The exact relationships ap-
plying to the median have been calculated for sample sizes of 60, 100,
and 200 extending this information beyond the range usually covered
by research workers. For the convenience of such workers, four charts
(Figs. 1, 2, 3, and 4) have been prepared to show the relationships be-
tween s and n for P = 0.01, 0.10, 0.50, 0.90, and 0.99 for the primary
types of runs.

I[II. WORKING TECHNIQUES

As just mentioned, Iligs. 1, 2, 3, and 4 present graphically five per-
centage points of each of the four “above” and (or) “below” run dis-
tributions for all sample sizes from 10 to 2,000. The same information is
furnished in tabular form in Tables I, II, I11, and 1V, How these are de-
rived and calculated is discussed later (Sections V, VI, and VIII). Spe-
cifically, the four types of distribution thus made available are:

a. The probability, P, of the event that the length of the longest run
on one pre-chosen side of median equals or exceeds s; if above, the prob-
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ability is designated P(s/—, medium); if below, P(— /s, median). The
notation, P(s/—, median) may be read — the probability that an ar-
rangement will contain a run of length at least s above the median.

b. The probability of the event that the length of the shorter of the
longest run above and the longest run below the median equals or ex-
ceeds s: designated P(s/s, median), where s/s means that there is a run
of length at least s, on each side of the median.

e. The probability, P, of the event that the length of the longer of
the longest run above and the longest run below the median equals or
exceeds s: designated P(s, median), where s means the longer of (s/—
median) and (— /s, median).

d. The probability, P, of the event that the length of the shorter of

TaBLE I
Minimum sample sizes, n, that exceed selected probabilities, P, for a
given length, s, of run on one side of median caleulated from Table
XVI and equations (23) and (27) to three significant figures.

Probability, P
Run Length
5
0.01 0.10 0.50 0.90 0.99
1 2 2 2 ' 2
2 4 4 6 8 12
3 6 6 12 22 38
4 8 10 22 54 100
5 10 16 46 116 230
6 14 26 92 260 490
7 18 44 182 530 1044
8 26 78 360 1104 2140
9 38 142 714 2240 4370
10 56 256 1424 4530 8980
11 86 480 2850 9190 18240
12 140 930 5680 18540 37200
13 234 1838 11330 37600 75500
14 410 3630 22700 75700 151700
15 748 | 7160 45300 151700 303000
16 1446 14190 90600 303000 607000
17 2830 28100 181200 607000 1214000
18 5530 | 56100 362000 1214000 2430000
19 10860 117300 725000 2430000 4850000
20 21500 235000 1450000 4850000 9710000
Examples of use:
Observed Data Probability, P
Case 1 n = 96 s = 4 0.90 < P <0.99
2 54 10 P < 0.01

3 56 10 0.01 < P <0.10



TasLe IT
Minimum sample sizes, n, that exceed selected probabilities, P, for a
given length, s, of run on each side of median calculated from Table
XVI and equations (24) and (27) to three significant figures.

Probability, P
Run Length
5
‘ 0.01 0.10 0.50 0.90 0.99
1 2 2 2 2 2
2 4 4 6 10 14
3 6 8 14 26 44
4 8 14 30 68 116
5 12 26 68 152 252
.6 20 50 140 322 552
7 34 98 290 676 1164
8 62 194 596 1390 2390
9 116 390 1208 2830 4930
10 216 782 2440 5650 10140
11 446 1182 4910 11750 20700
12 884 2360 9840 23800 42500
13 1762 4720 19890 48600 86700
14 3510 9450 39900 98600 174200
15 6990 18900 80500 197300 348000
16 13930 37800 161300 395000 697000
17 27900 75600 323000 789000 1394000
18 55500 151200 645000 1578000 2790000
19 111000 302000 1290000 3160000 5570000
20 222000 605000 2580000 6310000 11150000
TapLe IIT

Minimum sample sizes, n, that exceed selected probabilities, P, for a
given length, s, of run on either side of median caleulated from Table
XVI and equations (25) and (27) to three significant figures.

Probability, P
Run Length
s
0.01 0.10 0.50 0.90 0.99
1 2 2 2 2 2
2 4 4 1 8 10
3 6 6 8 16 28
ra 4 8 8 16 36 64
i 5 10 14 30 76 136
6 12 20 58 152 282
7 16 32 106 296 568
8 22 52 200 580 1150
9 32 86 388 1174 2310
10 42 150 758 2350 4640
11 62 262 1488 4720 9330
12 94 500 2920 9460 18730
13 156 962 5860 10660 37700
14 256 1876 11250 21300 75700
15 418 3670 22600 42600 151600
16 766 7330 45200 85300 303000
17 1472 14090 90100 170500 606000
18 2860 27900 180300 341000 1213000
19 5570 556500 361000 682000 2430000
372 % 10000 111100 o1 AAn 4aninnn | snmanan
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TasLe 1V
Minimum sample sizes, n, that exceed selected probabilities, P, for a
given length, s, of run on each side of any cut calculated from Table
XVI and equations (26) and (27) to three significant figures.

Probability, P
Run Length
5
0.01 0.10 0.50 0.90 0.99

1 2 2 2 2 2

2 4 4 6 8 12

3 6 8 12 22 34

4 8 12 22 48 76

5 12 18 46 96 162

6 16 34 86 192 380

7 24 58 166 382 668

8 38 108 324 760 1342

9 66 204 638 1518 2690
10 118 400 1266 3030 5410
11 228 790 2530 6070 10870
12 444 1568 5050 12130 21500
1: 878 3130 10070 24300 43100
14 1750 6220 20100 48500 86200
15 3480 12490 40300 97000 172300
16 6790 25000 80600 194100 345000
17 13860 49900 161100 388000 689000
18 27700 99900 322000 776000 1379000
19 55400 199800 644000 1553000 2760000
20 110800 400000 1289000 3110000 5510000

TaBLE V
Speedometer readings at one minute intervals.

Time MPH Time i MPH i Time MPH l Time MPH
1 48 15 | 55 oo 52 43 60
2 50 16 53 30 58 44 58
3 48 17 48 31 55 45 55
1 50 18 50 32 57 16 57
5 52 19 50 33 58 47 57
6 19 20 55 34 58 48 53
7 50 21 55 35 58 19 57
8 17 22 55 36 58 50 58
9 51 23 55 37 58 51 58
10 50 24 5 | 38 58 52 56
1 9 | 2 51 | 39 55 53 58
12 52 26 53 10 56 54 63
13 53 27 | 52 41 57 55 60
1| 53 51 | 42 56 | 56 50
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the longest run above and the longest rin below a cut chosen to maxi-
mize this length equals or exceeds s: P(s/s, any cut) with meaning similar
to that for P(s/s, median) but for the case where the cut has been
chosen to maximize the shorter of the longest runs on each side.

The use of these distributions can be illustrated by the calculation of
the various run length statistics for a specific example. The 56 speedom-
eter readings presented in Table V and TFig. 5 were observed at one
minute intervals during a driver’s first trip on a toll highway with
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separate traffic lanes. In this instance, nine observations occur at the
median (55) with 22 above and 25 below. This is not unusual in experi-
mental work where ties are likely at or near the median. (It should be
pointed out that the occurrence of ties makes this a difficult example.
Later, this example will be modified by removing a trend and then it
will be simpler. Consideration will first be given to runs with respect to
the median and then to “any cut.”) Various methods of resolving such
ties are possible. The most conservative is to use a tied median to termi-
nate a run. The least conservative is to use the tied median or medians
for inclusion in the run. Intermediate between these is to consider all
possible allocations and their effects on run length. Here, in order to ob-
tain 28 above and 28 below the median, it is necessary to allocate the
nine tied at the median so that 6 will be above and 3 below. The run
length associated with each such combination would then be obtained
and, if desired, the average computed. In this case, the lengths of the
various runs obtained by these three methods are as follows:

Run Lengths, s Per

. P Cent

Type of Run ; Limit for P £ 0.01 Below

o Gonl Average [t o Limi

Above 7 13.7 18 11 (Table I) 33
Below 14 15.8 21 11 (Table I) 0
Each Side | 7 12.8 18 8 (Table 1I) 1
Either Side 14 16.6 21 11 (Table I1I) 0
Each Side, Any Cut 14 — I — 9 (Table IV) —

It will be observed that only one answer results for the “each side of
any cut.” Also, three of the five tests on the most conservative basis are
above their respective limits for a P of 0.01 and all on the other bases.
This happens quite frequently in engineering problems.

It is apparent, however, in this case, that there is a consistent trend
throughout the set of data. In Fig. 6, this has been removed and the
median lies between the 28 points above and the 28 points below. The
following statistics are obtained:

Run Lengths, s

Type of Run P for Observed Run

Observed ’ Limit for ‘

. Run P = 001 I
Above 9 11 (Table I) 0.03
Below | 5 11 (Table I) 0.60
Each Side 5 8 (Table 1I) ' 0.42
Either Side 9 11 (Tuble 11I)| 0.05
Lach Side, Any Cut 9 9 (Table IV) | 0.008

1
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In this case, only the statistic for the longest run on each side of any
cut has a P as low as 0.01. Two others were of the order of 0.05 and the
remaining two near 0.50. The explanation of the indicated nonrandom-
ness was identified with human behavior under conditions of learning.

This example raises a question about the treatment of odd sized sam-
ples, where the median is a single observation. These may all be reduced
to even sized samples by omitting the median. This is unnecessary in the
case of the longest run on “each side of any cut” where the P values for
a given s for the odd sized sample lie between those for the adjacent even
sized samples.

IV. SOME SPECIFIC SAMPLES

Table VI presents the values of probabilities P(s/—, n;/n.) and
P(—/s, m/ns), for every possible separation of 10 = n; + n. observa-
tions into n; on one side of a cut and 7, on the other. Table VII does the
same for 20 = n; 4+ n, observations. Similarly, the values of P(s/s, ni/n.)
and P(s/— or — /s, ny/ns) are given in Tables VIII and IX, and Tables
X, and XI, respectively.

In Tables XII, XIII, and XIV, the table presented by Mosteller' for
the three kinds of runs with respect. to the median, that is, where n;, =n,,
has been extended to include samples of 60, 100, and 200.

The values of P(s/s, any cut) for n = 10, 20, 40, and 100 are given in
Table XV. It will be noted that the values of the probabilities in this
table differ only slightly from those in Table XIII for P(s/s, median).
For large sample sizes, other considerations suggest that the s-values

TasLE VI

Probability of an arrangment with a run of length at least s on “one
side” of a demarcation value for n, + n. = 10 calculated from equation

(1) or (2).

Total on the “one side”, i.e., m or n2

Length of Run
5

9 8 7 6 5 4 3 2 1
1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
2 1.000 | 1.000 | 1.000 | 1.000 | 0.976 | 0.833 | 0.533 | 0.200
3 1.000 | 1.000 | 0.967 | 0.786 | 0.500 | 0.233 | 0.067
4 1.000 | 0.933 | 0.667 | 0.357 | 0.143 | 0.033
5 1.000 | 0.667 | 0.333 | 0.119 | 0.024
6 0.800 | 0.400 | 0.133 | 0.024
7 0.600 | 0.200 | 0.033
8 0.400 | 0.067
9 0.200
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TasLe VIII
Probability of an arrangement with a run of length at least s on “‘each
side” of a demarcation value for n, + n. =

10 caleulated from equation

(4).

Length of
| omam | : ; : :
1 1.000 1.000 1.000 1.000 1.000
2 0.200 0.533 0.833 0.960
3 0.067 0.224 0.333
1 0.029 0.056
5 0.008

TasLe IX

Probability of an arrangement with a run of length at least s on “each
side’” of a demarcation value for n; 4+ ny =

20 calculated from equation

(4).
Length 1 6 i 8 9 1
af Run morm| 19 15 i 16 3 1 13 12 1 10
1 1.000| 1.000| 1.000| 1.000] 1.000| 1.000| 1.000{ 1.000| 1.000| 1.000
2 0.100 0.284 0.509| 0.718| 0.871| 0.958| 0.990| 0.999( 1.000
3 0.016| 0.060| 0.140 0.260) 0.413| 0.581) 0.727| 0.784
kS 0.004| 0.017| 0.046| 0.100 0.179| 0.245 0.274
5 0.001{ 0.006| 0.012| 0.042) 0.056| 0.064
6 0.000{ 0.002| 0.007| 0.011| 0.013
7 0.000{ 0.001] 0.002| 0.002
8 0.000| 0.000, 0.000
9 0.000| 0.000
10 0.000
TasLE X
Probability of an arrangement with a run of length at least s on “either
side” of a demarcation value for n; 4+ ns = 10 calculated from equation
(5).
Length of 3 -
| mom |y : ; : ;
1 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 0.992
3 1.000 1.000 0.967 0.795 0.667
4 1.000 0.933 0.667 0.362 0.230
5 1.000 0.667 0.333 0.119 0,040
6 0.800 0.400 0.133 0.024
7 0.600 0.200 0.033
8 0.400 0.067
9 0.200




TasLe XI

Probability of an arrangement with a run of length at least s on “either
side” of a demareation value for ny + n. = 20 calculated from equation

(5).
Length . ; 7 2 9 0
of ]f”" ::' gﬂ.. 110 123 | 117 155 1611 13 12 11 }{;
1 1.000] 1.000/ 1.000 1.000/ 1.000{ 1.000| 1.000{ 1.000{ 1.000| 1.000
2 1.000/ 1.000 1.000 1.000| 1.000{ 1.000| 1.000, 1.000| 1.000| 1.000
3 1.000| 1.000/ 1.000 1,000 1.000/ 1.000{ 0.999/ 0.989| 0.966/ 0.956
4 1.000/ 1.000 1.000 1.000/ 0.996) 0.971| 0.901| 0.787| 0.684| 0.640
5 | 1.000{ 1.000] 1.000 0.986/ 0.920] 0.790, 0.622| 0.452| 0.337| 0.293
6 | 1.000 1.000/ 0.982 0.889| 0.721| 0.527| 0.351| 0.217| 0.134| 0.106
7 | 1.000 0.995/ 0.898 0.707| 0.492 0.309| 0.177| 0.092| 0.046/ 0.032
8 1.000| 0.947| 0.751| 0.509, 0.307| 0.167| 0.082| 0.035| 0.014| 0.007
9 | 1.000 0.853| 0.579) 0.341| 0.179, 0.083| 0.034| 0.012| 0.003| 0.001
10 1.000/ 0.711| 0.421| 0.217| 0.098! 0.038| 0.012| 0.005| 0.001| 0.000
11 0.900] 0.568| 0.295 0.130( 0.049| 0.015| 0.004| 0.001| 0.000
12 0.800( 0.442) 0.196/ 0.072( 0.022| 0.005 0.001| 0.000
13 0.700| 0.332] 0.125| 0.036| 0.008 0.001| 0.000
14 0.600| 0.237| 0.070| 0.015| 0.002| 0.000
15 0.500) 0.158| 0.035| 0.005 0.000
16 0.400( 0,095 0.014| 0.001
17 0.300( 0.047| 0.004
18 0.200{ 0.016
19 0.100
TasLe XII

Probability of an arrangement with a run of length at least s on ‘“‘one
side” of median calculated from equation (1) or (2).

Length of Run
5

Sample size, n

10

20

40

i
W — OO W= Ut H- SO b=

16

—_
=]

18
19
20
21

22 or over

| 0.02381

1.00000
0.97619
0.50000
0.14286

1.00000
0.99994
0.86973
0.45713
0.17849
0.05960
0.01703
0.00395
0.00065
0.00006

1.00000
1.00000
0.99225
0.79885
0.44954
0.20733
0.08697
0.03438
0.01290
0.00458
0.00153
0.00047
0.00014
0.00004
0.00001
0.00000
0.00000
0.00000
0.00000

0.00000

| 0.00000

60

100

200

1.00000
1.00000
0.99956
0.92695
0.63645
0.33935
0.15952
0.07046
0.02996
0.01235
0.00494
0.00192
0.00072
0.00026
0.00009
0.00003
0.00001
0.00000
0.00000
0.00000

0.00000

1.00000
1.00000
1.00000
0.99049
0.84289
0.54439
0.29185
0.14251
0.06642
0.03015
0.01344
0.00589
0.00255
0.00108
0.00045
0.00019
0.00008
0.00003
0.00001
0.00000
0.00000
(.00000

1.00000
1.00000
1.00000
0.99994
0.98093
0.82160
0.54174
0.30295
0.15520
0.07621
©0.03656
0.01731
0.00813
0.00378
0.00175
0.00080
0.00037
(.00017
0.00007
0.00003
0.00001
000000

69
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TasLE XIII

Probability of an arrangement with a run of length at least s on “each
side” of median calculated from equation (6) or (4).

Length of Run
5

Sample Size, n

10 20 10 60 100 200
1 1.00000 | 1.00000 1.00000 1.00000 1.00000 1.00000
2 0.96032 | 0.99989 1.00000 1.00000 1.00000 1.00000
3 0.33333 | 0.78582 | 0.98519 | 0.99912 | 1.00000 | 1.00000
4 0.05556 0.27412 0.66809 0.88729 0.98159 0.99987
5 0.00794 | 0.06356 | 0.24933 0.44250 | 0.72496 | 0.96284
6 0.01288 | 0.06820 | 0.14723 | 0.33308 | 0.68619
7 0.00249 | 0.01647 0.03992 | 0.10591 0.31377
8 0.00045 | 0.00379 0.00992 | 0.02919 0.10573
9 0.00008 | 0.00085 | 0.00238 | 0.00747 0.03027
10 0.00001 0.00019 0.00056 | 0.00185 | 0.00800
11 0.00004 | 0.00013 | 0.00045 | 0.00203
12 0.00001 0.00003 0.00011 0.00051
13 0.,00000 | 0.00000 | 0.00002 | 0.00013
14 0.00000 | 0.00000 | 0.00000 | 0.00003
15 0.00000 | 0.00000 | 0.00000 | 0.00001
16 or over 0.00000 | 0.00000 | 0.00000 | 0.00000
TapLe XIV
Probability of an arrangement with a run of length at least s on “either
side” of median calculated from equation (5).
Sample Size, n
Length of Run
: 10 20 10 60 100 200

1 1.00000 | 1.00000 1.00000 1.00000 1.00000 1.00000
2 0.99206 | 0.99999 1.00000 1.00000 1.00000 1.00000
3 0.66667 | 0.95564 | 0.99931 1.00000 1.00000 1.00000
4 0.23016 | 0.64014 | 0.92961 0.98660 | 0.99938 1.00000
5 0.03968 | 0.29342 | 0.64975 0.83041 0.96082 | 0.99901
6 0.10632 | 0.34646 0.53147 0.75569 | 0.95701
7 0.03157 0.15747 0.27911 0.47779 0.76970
8 0.00741 0.06497 0.13100 | 0.25582 | 0.50017
9 0.00122 | 0.02495 | 0.05754 | 0.12538 | 0.28031
10 0.00011 0.00897 0.02414 0.05846 | 0.14443
11 0.00302 | 0.00975 | 0.02642 | 0.07108
12 0.00093 0.00380 | 0.01168 | 0.03411
13 0,00028 0.00144 0.00506 | 0.01613
14 0.00008 0.00052 | 0.00216 0.00753
15 0.00002 | 0.00018 | 0.00090 | 0.00349
16 0.00000 | 0.00006 | 0.00038 | 0.00160
17 0.00000 0.00002 0.00016 0.00074
18 0.00000 | 0.00000 | 0.00006 | 0.00034
19 0.00000 | 0.00000 | 0.00002 | 0.00014
20 0.00000 | 0.00000 | 0.00000 | 0.00006
21 0.00000 | 0.00000 | 0.00002
22 or over 0.00000 | 0.00000 | 0.00000




RUNS DETERMINED IN A SAMPLE BY AN ARBITRARY CUT 71

TasLE XV
Probability of an arrangement with a run of length at least s on “each
side” of at least one of all possible demarcation values calculated from
equation (22).

Sample Size, n
Length of Run
5
10 20 40 100

1 1.00000 1.00000 1.00000 1.0000

2 0.97937 0.99997 1.00000 1.0000

3 0.46190 0,89748 0.99713 1.0000

4 0.08413 0.44121 0.83760 0.9986

5 0.00794 0.12994 0.43401 0.9125

6 0.02943 0.15840 (0.5863)*

7 0.00559 0.04544 (0.2561)*

8 0.00093 0.01179 0.0876

9 0.00013 0.00277 0.0263
10 0,00001 0.00066 0.0073
11 0.00015 (0.0020)*
12 0.00003 (0.0005)*
13 0.00001 (0.0001)*
14 or over ]‘ 0.00000 (0.0000)*

* Values in parentheses were interpolated or extrapolated.

will increase by unity. All this is in accord with the experience of the
engineer who did not hesitate to use available information for P(s/s
median) as being a good first approximation to P(s/s, any cut).

V. SAMPLE ARRANGEMENT DISTRIBUTIONS WITH RUNS OF LENGTH AT
LEAST § ABOVE AND BELOW ANY BELECTED CUT

Assume a finite sample of n = n; + ne numbers, of which n; have
the common property of being above the selected cut and, similarly,
ns are helow. Clearly, the n. numbers may be considered as providing
(ns + 1) cells or partitions of the n; numbers above. Some of these cells
or partitions will, of course, be empty, particularly when n, is less than
(na + 1). If at least s of the n; numbers are to be in one partition, it
would first appear that the number of ways would be proportional to
the number of possible partitions, ns 4+ 1, and also to the number of ways
in which the partition boundary points, n. , may be selected from the
remaining numbers, n — s, i.e., the combination of (n — s) things taken
ns at a time. This, however, gives an over-estimate because it counts
twice each arrangement that has two partitions of s each, three times
for each arrangement that has three partitions of s each, ete. Taking
these factors into account, it is found that the number of ways of par-
titioning the n, numbers by means of the n, numbers so as to obtain one
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or more partitions that contain s or more elements is:

ny

[SE] (_1) i1 (nZ + 1) fn - JS)

= 7 ( Tz )

Having this, we may write down the probability of an arrangement of

n numbers that will contain at least one run of length s or more among
the n; numbers that are above our demarcation value by dividing by

(o)

P = L () (.

() "

In a similar manner, we may, by interchanging n, and n., write down
the probability of an arrangement of n numbers that will contain at
least one run of length s or more among the n, numbers that are below
our demarcation value:

s = S o (ST ()

n ) J m
n

To assist in determining the probability that an arrangement will
contain at least one run of length s or more on each side of the demarca-
tion value, let us assume that we have partitioned the #; numbers above
into 7 runs of which at least one is of length at least s. These r runs may
be associated with (r — 1) runs or partitions of the 7. in only one way,
with (r + 1) runs of the n, in only one way, but with 7 runs of the 7,
in two ways. Each of these sets of possible runs must contain at least
one run of length s or more. The resulting partitioning count for s, n,
and r is:

* Some readers may wish to note that

(::1) P(S/—, 711/7?,2)

is the coefficient of zm in the expansion of (1 4+ z 4 22 4 - )= — (1 + z +
24 .. 4 ogsmtl
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=y .
Bni,r) = 3 (—1) (’”) (("“ -1 —ils - 1)) fori=1,2 (3)*
i=1 J r—1

and B(n,,r — 1) and B(na, r + 1) are obtained by substituting (r — 1)
and (r + 1) respectively for r in (3). All that is needed to secure the
desired probability is to find the count of the possible arrangements in
both n, and n. corresponding to each r, sum with respect to r and divide
by the total possible arrangements:

P(s/s, m/ns) = % "l_il;ﬂ BOu, DB, r — 1) + 2B(ns , 1)
(m) ) (4)

+ B(n, r + 1.

To find the probability that an arrangement will contain at least one
run of length s or more on etther side of the demareation value, it should
be noted that (4) is counted in both (2) and (1). Thus, this probability
is simply:

P(s/— or — /s, mi/ns) = P(s/—, ny/ns)
*‘I‘ P(—/S, 'ﬂl/’ﬂz) — P(S/S, T’L]/ﬂz)
where the probabilities on the right hand side of (5) are given by (1),
(2), and (4) respectively.
When the median is used as the demarcation value, n, = n,, so that

P(s/—, median) = P(— /s, median). In addition, by rearranging terms,
P(s/s, median) may be written in the simplified form:

1 ny—s+l1 R
P(s/s, median) = T) > [B(u,r) + Blm,r + D) ©)
Il r=0
ny

where B(n, , r) and B(n,, r 4+ 1) are defined by (3) as before. Equation
(6) has been used for the new calculations reported here. (See Section IV)

VI. SAMPLE ARRANGEMENT DISTRIBUTIONS FOR RUNS OF LENGTH S OR
MORE ON EACH SIDE OF AT LEAST ONE OF ALL POSSIBLE DEMARCATION
VALUES

When this derivation was first discussed with a mathematical statis-
tician, he questioned whether anyone would want a eriterion based bn

o He;é, B(n;,r) = B(n;, r,s) i3 the coefficient of ™ in
(z4+ 22+ o)t — (24 224 oo 4 z=1)mtl
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such a distribution. To make it clear that the engineer does want it,
assume that we have a set of data and Tables VI to XI, inclusive. The
engineer might look for the longest run on either side of the median.
Having found it, he might pick a demarcation value that would just
include this run. This would give him, for instance,

m + ne
ng < !
2

on one side of his demareation value and

n + ne
> !

on the other side. He might then look for the longest run on the n, side.
This would give him two long runs that might be equal in length or one
shorter than the other. In either case, he could obtain a value of s for
the length of run that is equalled or exceeded on each side of his de-
marcation value. If his total sample happened to be 20, he could obtain
P(s/s, ni/ny) from (4) or Table IX for ny, ns, and s. This probability,
however, is based on his having chosen n; and n, before the experiment
and therefore does not indicate what the true probability associated
with this process is. At the same time, it is reasonably certain that this
is a procedure that many engineers would be inclined to follow if they
did not have prior knowledge concerning where to set the demarcation
value.

To facilitate the solution, it will be assumed that no two of the n
values in a sample of size n are identical. For the analysis given here,
n is taken to be even. Study of small samples shows that when n is odd,
P(s,n — 1)< P(s,n) £ P(s, n + 1). Taking (6) (with the median as
initial cut) as a starting point, assume that the demarcation value is
moved so that (ny + 1) values are on one side and (ny — 1) values on
the other. This adds a fraction of the total arrangements with runs of
length s or more on each side of the new demarcation value equal to:

A]_P(S/S, m + 1/?11 - 1)

1 ni—s
= > B — L,n[Am + 1,r — 1)
2?’11 =1 (7)
(™)

4+ 24(m + 1,7) + Al + 1,7 + 1)]

where B(n; — 1, r) is given by (3) above and
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r—1 .
Ay + 1,0 =72 (=Dlr + s — (. + 1)
j=0

+ G+ D — D) (’" ; 1)

_ l:(nl Floe i 1))
()] e

-0 g ()

_|:(‘n1+1—s—j(s—1))
_(nl+1—2j—j(s— 1))].

The essential points in the derivation of (7) and (8) may be perceived
most easily by considering some typical computations. Suppose that
we wish to derive A P(4/4, 6/4), having previously derived all of the
values of P(s/s, 5/5) from (6). The possible combinations with a run of
at least 4 on each side of a cut with 6 above and 4 below have the follow-
ing orders:

1. 6 above and 4 below, or 4 below and 6 above,

2. 5 above, 4 below, and 1 above, or 1 above, 4 below, and 5 above, and

3. 4 above, 4 below, and 2 above, or 2 above, 4 below and 4 above.

The simplest of these is the first. Starting with the value of P(4/4, 5/5)
as given by (6), we now wish to determine how much additional proba-
bility is associated with moving the cut from the median to a point where
6 are above and 4 are below. Since there are 6 possible locations in the
new arrangement for the value that was moved from below to above
the cut and ('g) ways for arranging 6 above and 4 below, the total pos-
sible combinations of these provides the factor given in the denominator
of (7), in this case 6('s). Since there is only one combination possible
for 4 items taken 4 at a time, B(4, 1) as given by (3) is as might be ex-
pected unity. Then, since we must have at least one run above the cut,
A(6, 0) must be 0. The first important question relates to the value of
A(6, 1). Since there is only one run of 6, it is easy to see that a run of
length 4 or more must have occurred above the median if the value
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moved from below is now in position 1, 2, 5, or 6 in the new run. Hence,
there are only two possible locations for the value moved that give new
combinations that have not been counted with respect to the median.
At this point, it will be observed that for this case, r = 1, this value is
given by 2s — (n; + 1). Since there is exactly one run on each side of
the new cut, the coefficient 2 appears before the A(m + 1, 7) in (7) to
take account of the two ways that these runs may be arranged, namely,
6 above followed by 4 below and 4 below followed by 6 above.

Now consider the ways in which we may have two runs with the
restriction that one must be of length 4 or more. This is to be given by
A(6, 2). In this case, there are two such run combinations, one with runs
of lengths 5 and 1, and one with runs of lengths 4 and 2. Obviously, the
value that was moved could not have been in the short run in either case
because these arrangements would have had long runs of length 4 or
more that would have been counted with respect to the median. In the
case of the run of length 5, it could not be on either end but in the run
of length 4, it could be at any one of the positions in the run. We also
observe that with two runs of dissimilar lengths, the positions of the
runs may be interchanged. This gives in this case a factor 2. Hence, we
find that A(6, 2) is2-3 4 2-4, or 14. To conform with (8), this sum would
have to be written as 2-3-2 4+ 2-1, although, at this point, it may not be
clear that this is a reasonable thing to do. However, by extending the
investigation step by step, it is found that the various terms in (8) are
required. Specifically, the j becomes necessary when n + 1 becomes
greater than 2s — 1 and the binomial coefficients with terms in 2s are
introduced so that any combination that already has a run of length s
on the basis of the median will not be counted again.

Obviously, this process may be continued by moving the cut to in-
clude (n, + 2) values on one side and leave (n; — 2) values on the other.
Proceeding in this way, the fraction added in going from (n, + 7 — 1)
values above and (ny — ¢ + 1) values below to (m + ) above and
(ny — 17) below is given by:

AP(s/s,my + i/m — 1)
1 (n—i)—(s—=1)

T n ) (ng"'l ) L Pmoio ©

1 — 1

Ay + 4,r — 1) + 24 + 4,0) + Al + 4,7 + 1)]

where B(n, — 1, r) is defined by (3) above and
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AGu +4,r) =7 Z (=D r+s—(m+)+ G+ D —1)]

€3

o GRS | ERT D

) [(n; + i — sr— j(s — 1)) B (m T 25;— i(s — 1))]'

One of each of these A’s is added in going from the median to each
side. Therefore, the desired probability of an arrangement with runs
of length s or more on each side of at least one of all possible demarcation
values is:

(10)

n—#§

P(s/s, any cut) = P(s/s, m/m) + 2 2, AP(s/s,n+i/m — 7). (11)
i=1

VII. ASYMPTOTIC DISTRIBUTIONS

Intuitively, the asymptotic distribution of arrangements with 0, 1, 2
ete., runs of length s or more for ny/n = e, a constant, would be ex-
pected to become Poisson Exponential as n becomes large. Referring to
Mood,” the expected number of runs of length s or more on one side of a
demarcation value is his expression (3.13), which may be written:

(8)
E(r,) = (na + 1) 'I:ffﬁ ~ ne;"es for n; and n. large  (12)

where E(ry,) is the expected number of runs of length s or more on the
side of the cut designated 1; superscript (s) designates a factorial mo-
ment, e.g.,

n® = nin — 1)(n —2) -~ (n —s+1) (13)

and ¢, and e. are written for ny;/n and n./n, respectively.
The variance is his expression (3.13), or

) (25) e
_ (no + D',y F o+ 1) %

.(1 — (a4 1) ’::T(:) (14)

/

&"1«"1;' = Ou ,n(Ql)

2 g1 32
~ nefea(l — s e — )

~ ney'es = E(r,) fors, m, and n. large.
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Corresponding expressions for the side designated 2 may be obtained
by interchanging the subscripts, 1 and 2, in equations (12) and (14).

Mood® also derives an expression (3.18) for the covariance of num-
bers of runs equal to or greater than specified lengths on the two sides
of the demarcation value. For runs of length s or more on each side, this
becomes:

+1 +1
n{’ )ﬂz(s ) 21?,1(3)1112“) _ (‘n1 + 1)(’1‘12 + 1)”1(')712‘8}
n(ﬂn) n(?c—-l) n(a)n(l)

Orygres

(15)

a2
~mne'e(see — s+ 1)
2 +1 +1
~nse' e’ fors, m, and n. large.

From (14) and (15), it is clear that the covariance between long runs
on the two sides becomes negligible for s, n; , and n. large and the occur-
rence of long runs on each side may be treated as independent.

Since Mood® has shown (his Theorem I) that the distribution of the
number of runs of length s or more on one side is asymptotically normal
and by (12) and (14) above, the first two moments are those of a Poisson
Exponential, the asymptotic probabilities of arrangements with runs of
length s or more may be approximated by:

On side 1:
P(s/—, m/na) =1 — ¢ """ (16)
On side 2:
P(—/s, m/na) =1 — ¢ """, (17)
On each side: -
P(s/s, m/na) = (1 — ¢ ") (1 — e "), (18)
On either side:
P(s/— or — /s, ny/ng) =1 — g nerealen T et (19)

When the median is being used as the demarcation value, that is, when
e; = ey, these become:
On side 1 or on side 2 alone:
P(s/—, median) = P(—/s, median) = 1 — ST (20)

On each side:

P(s/s, median) = (1 — ¢ "% "), (21)
On either side:

P(s/— or —/s, median) = 1 — e Mt (22)
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Asymptotic relationships of this type do not add much to the solution
of the practical problem of calculating probabilities associated with
samples of 100 or less. They do, however, suggest that doubling sample
sizes for a given probability should increase s by unity. This is in close
agreement with the calculations for finite sample sizes. This observation
suggested the treatment in the next section.

VIII. RELATIONSHIPS BETWEEN 8§ AND 7 FOR CONSTANT PROBABILITY

From (20), (21), and (22), it is clear that, for constant probability, s
is asymptotically a simple function of n for each of the arrangement dis-
tributions considered for runs relative to the median. Specifically, we
obtain:

On side 1 or on side 2:

. log n — log (— log, (1 — P)) _

1
log 2

where P = P(s/—, median) (28)

= P(—/s, median);
On each side:

¢ logn — log (— log, (1 — VP) :
log 2 o0
\\’hel'e P = P(S/S, nledi&n) :

On either side:
. - logn — log (— log, (1 — P))
log 2 (25)
where P = P(s/— or — /s, median).

After considering equations (23), (24), and (25), it is quite obvious that
an equation similar to (24) in the same way that (25) is similar to (23)
could be written, i.e.;

.- log n — log (— log. (1 — +/P))
log 2 (26)
where P = P[(s/— or —/s)/(s/— or —/s), median]

but what is the meaning of P? It is clear that the P in (26) is approxi-
mately the square of the P in (23). So far, however, no analytic justifi-
cation for (26) has been obtained, although the P in (26) is obviously



TasLE XVI

Constants for equation (27) calculated from equations (23) to (26) and
tables VII to X

&8 I Equation

25

26

Differences at # equal to

Table| P A B C
10
VII0.001] 5.151 | 126.6 —266.5 0
0.01 4.863 | 53.19 |—105.1 0
0.02 | 4.445 | 39.61 —79.16 0
0.025] 4.306 | 35.34 —71.08 0
0.05 3.127 | 28.03 —57.71 0
0.10 | 3.127 13.95 —32.83 0
0.50 0.5207| —3.126 —0.1306| 0
0.90 |—2.576 | —6.757 10.96 0
0.95 |—3.442 | —7.244 13.84 0
0.975/—4.227 | —7.185 15.44 0
0.98 [—4.441 | —7.326 16.29 0
0.99 |—5.128 | —7.164 17.78 0
0.999 —7.829 0.3596 8.278 | 0
VIII|0.001|—0.3002| 23.36 —32.54 0
0.01 | 0.0467| 10.93 —13.30 0
0.02 | 0.0048 8.596 | —11.14 0
0.025/—0.0005] 7.612 —9.868 | 0
0.05 |—0.0672| 4.695 —6.288 | 0O
0,10 |—0.2136 1.668 —2.139 | 0
0.50 |—1.573 | —4.142 6.576 | 0O
0.90 |—3.660 | —6.518 13.04 0
0.95 |—4.408 | —6.591 14.75 0
0.075/—5.039 | —6.665 16.21 0
0.98 |—5.218 | —6.728 16.72 0
0.99 |—5.822 | —7.068 18.19 0
0.999|—7.430 | —6.861 23.26 0
IX|0.001| 4.879 | 154.6 —324.2 0
0.01 4,902 | 73.86 |—145.9 0
0.02 | 4.764 | 55.83 |—109.5 0
0.025| 4.611 51.88 |[—102.5 0
0.05 | 4.432 | 35.72 —71.31 0
0.10 3.847 25.64 —54.79 0
0.50 | 2.524 1.680 | —13.88 0
0.90 1.141 | —9.694 7.601 0
0.95 | 0.759 |—12.16 12.83 0
0.975| 0.422 |—14.08 17.14 0
0.98 | 0.356 |—14.74 18.61 0
0.99 | 0.081 |—16.61 22.91 0
0.999|—0.600 |—21.68 34.97 0
X|0.001|—4.176 | 60.34 —69.24 |40.01
0.01 |—2.176 | 39.32 —49.98 |40.01
0.02 [—1.762 | 34.71 —47.65 0
0.025|—1.427 32.01 —45.06 0
0.05 [—0.830 | 26.26 —41.04 0
0.10 |—0.356 | 21.25 —38.10 0
0.50 | 1.069 1.932 | —14.67 0
0.90 | 1.136 |—10.55 5.014 | 0
0.95 | 1.369 |—17.16 18.39 0
0.975 1.222 |[—19.89 24.12 |-0.01
0.98 1.007 |—19.78 24.69 |—0.01
0.99 | 0.679 |—21.66 30.15 |—0.01
0.999| 0.408 |—29.73 48.79 0
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Fra. 7 — Differences between interpolated values of s computed from Tables
X1I to XV, inclusive, and appropriate equations (23) to (26), inclusive, for P = 0.01
and 0.99.

the maximum value possible for P(s/s, any cut). Nevertheless, as we
shall see below, it appears to predict empirically the large sample be-
havior of runs above and below any cut even better than (23), (24), and
(25) predict the large sample behavior of the other types of run.

I'or this comparison, values of s corresponding to particular values of
P were interpolated (in a few cases, extrapolated) from the exact deter-
minations of Tables XII to XV. Since the distributions for each sample
size in these tables had been found to be mildly deviant from log-normal,
the interpolation process first obtained a three point log-normal rela-
tionship in the P area of interest by changing the s-scale to an (s + a)-
scale. Here, a is the constant that must be added to s to produce the log-
normal relationship in the interval under consideration. Values of s for
each P, n, and type of run were obtained to four decimal places.
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In each case, the difference between the interpolated value and that
given by the appropriate equation (23), (24), (25), or (26) was calcu-
lated. At this point, it was found that some of these differences for a par-
ticular P and type of run could be approximated by linear equations in
1/n or 1/4/n. In view of this, all have been fitted by the equation:

A 4By C
Vo nl Vw

The constants, A, B, and C, have been recorded in Table XVI. The
agreement between the values given by this equation and the differences
on which they were based seldom exceed 0.02. Thus, it was assumed that
(27) provided a reasonable approximation for extrapolation to the
larger sample sizes for which values are shown in Tables I to IV and in
Figs. 1 to 4.

To illustrate the agreement with (27), some typical results for P’s of
0.01 and 0.99 are given in I'ig. 7. All show that the differences converge
in a reasonably uniform manner to zero at infinity.

As = 27
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