Properties of Control Chart Zone Tests

By S. W. ROBERTS

(Manuseript received September 10, 1957)

This paper is concerned with the stalistical properties of lests com-
posed of the standard control chart lest supplemented by one or more
tests for runs of points in various zones into which the conirol chart is
partitioned. The basic properties of the resultant tests, called zone tests, are
illustrated graphically. A procedure for determining the propertics of many
zone lests of practical inlerest is described.

I. INTRODUCTION
1.1 General

In using an X control chart to maintain control of a process average,
we periodically measure n units of the product and plot the average
measurement X, on the control chart in its chronological position. The
control chart presents a pictorial summary of production history that is
useful in: (a) detecting changes in the process average, and (b) pro-
viding clues to the causes of such changes. Various run tests have proved
useful in application (b)." Most of the literature on run theory pertains
to this application. There are tests for runs up and for runs up and down;
there are tests for the number of runs and for the lengths of runs. The
control chart is particularly suitable for run tests. We shall consider the
use of a particular type of run test in application (a).

In application (a), as each point is plotted we decide whether or not
to look for trouble (to take action to eliminate the cause of the change
in the process average). Using the standard control chart test,” * we look
for trouble if a point falls in a zone outside of two control limits sym-
metrically placed on either side of a line representing the nominal proe-
ess average. The control limits, called the 3¢ (3-sigma) limits, are placed
at Xy + 3(¢’/+/n), where Xy’ and ¢’ are the nominal process average
and standard deviation, respectively, and n is the sample size, or num-
ber of units of product measured for each point. We shall assume that
X,/ and o’ are known, and that ¢’ remains fixed.
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In using a statistical test to decide at each point whether or not to
look for trouble, we are subject to two types of errors:

(1) We make Type 1 errors when we decide to look for trouble when
in fact none is present.

(2) We make Type 2 errors when we decide not to look for trouble

when trouble is actually present.
Few Type 1 errors are made when the standard control chart test is
used — an average of about one point in 370 falls outside of the 3¢ limits
when the process average is at its nominal level. Type 2 errors occur at
consecutive points following a change until the test used indicates that
a change has occurred. Small changes may result in long sequences of
Type 2 errors because the probability of a point falling outside of the
3¢ limits may be small, though larger than it was when the process aver-
age was at its nominal level. This definition of the two types of errors
makes a sharp distinetion between the presence and absence of trouble —
a distinetion more theoretical than practical — in order to simplify the
exposition of the subject.

Experience indicates that, in general, the standard control chart test
maintains an economic balance between the two types of errors in a
wide range of industrial applications (Reference 2, pp. 276-7; Reference
3, p. 11). However, other tests may be more attractive economically in
applications where early detection of relatively small changes is impor-
tant. It has been suggested (Reference 4, p. 128) that supplementary
run tests may prove useful in such applications. Various run tests are
used in practice to supplement the standard control chart test,* but
little has been published on the properties of the resultant tests, though
it is quite apparent that each additional supplementary run test em-
ployed decreases the number of Type 2 errors made and increases the
number of Type 1 errors,

There are several alternative ways to reduce the number of Type 2
errors made; we can:

(1) Set the limit lines closer to the nominal process average X’

(2) Increase the sample size.”’

(3) Replace the standard test with a single test for runs of points
outside of appropriate limits.5

(4) Supplement the standard test with one or more run tests.

(5) Temporarily modify the sampling procedure — e.g., increase the
sample size or frequency of sampling — whenever a point falls outside
of “warning” limits but inside of the “action’” limits (3¢ limits)." ”

* See footnote, page 89.

t After the page proofs of this paper had been received, the author was advised
of Reference 9, which deals primarily with the test 7y2(L, , La).
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(6) Use a control chart for a statistic other than X. ; for example, plot
points representing the moving average of k consecutive X, ’s.

The improvements generally require extra information or more com-
plicated tests, or they result in an increased frequency of Type 1 errors.

In this paper we study the properties of various run tests that either
replace or supplement the standard control chart test in application (a).
We limit our study to a particular type of run tests which we call “zone
tests’ because they test for runs of points in various zones into which
the control chart is partitioned. For example, we study such tests as
T (3, 2),7 which ealls for action if a single point falls outside of the 3«
limitg or if two of three consecutive points fall outside of a 2¢ limit line.
We limit our studies to tests used on charts of the statistic X, ; zone
tests can be useful on other charts, but their properties depend on the
properties of the particular statistic plotted. Our results apply for any
sample size and frequency of sampling.

We use T(L:) to denote a test for & consecutive points outside of one
of the pair of limit lines at X" = Li(o’/+/n), and T\ (Ls) to denote the
test for & out of & 4+ 1 consecutive points outside of the limit lines. If
we combine two tests, we let Tix,(Ly, , Li,) denote the combined test
that ealls for action on the occurrence of either type of run; &y and ks are
integers less than nine, either primed or unprimed.

IFor simplicity of notation we may eliminate the brackets on the test
notation if the subseripts provide sufficient information. For this purpose,
we adopt standard limits for certain runs. Thus we may use T, rather
than 7(3) to denote the standard control chart test. Also, we use the 2¢
limits, the 1o limits, and Xy itself as standard for runs of lengths 2, 4, and
8, respectively. Thus Ty» means T'(3, 2), and 7'y means T's(0). We use
an asterisk to denote one-sided tests — those with limit lines on only one
side of Xo/. Test Ty* has a single limit line, at X" + 3(a’/+/n).

1.2 Process Model

We use a process model in which the process average is X’ = X/ + A,
where A is subject to change. A picture showing how A changes with time
would show a series of rectangular pulses (positive or negative) of vari-
ous heights, separated by periods with A = 0. The beginning of a pulse
corresponds to the occurrence of an assignable cause of variation, and
the height of the pulse is a funetion of the particular cause. The pulse
ending corresponds to the elimination of the trouble. The distribution of

t Read subscript as 1, 27,
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the lengths of the pulses depends on the test we use to detect changes;
the test should be designed to keep the lengths reasonably short.

The sample average, X, , is assumed to have a normal distribution
defined by its expected value X’ and standard deviation ¢’/~/n.

Whenever A = 0, the process average is at its nominal level, and we
say the process isin State 1. Whenever A = 0, there is trouble present,
and we say the process is in State 2. We assume that no additional
changes occur while the process remains in State 2.

At each point we look for certain runs that rarely occur in State 1.
In the absence of such runs there is no indication that the process is not
in State 1, and accordingly we do not look for trouble. We do not at-
tempt to define the probability that the process is in State 1 at any
point. In this model, we stop the process to look for trouble on the first
occurrence of a run for which we are testing. When the process starts
again it is assumed to be in State 1; consequently, the testing procedure
ignores previous points.

Relatively straight-forward mathematics can be used to describe the
properties of certain tests acting within the framework of this process
model. Alternative, and perhaps more realistic, assumptions can easily
lead to much more complicated problems of description. In many cases
the results obtained here can be used to describe qualitatively the prop-
erties of tests applied to more complex processes,

1.3 Measuring the Two Types of Decision Errors

As each point is plotted on the control chart we decide either that the
process is in State 1 — in which case we leave it alone — or that it is
in State 2 — in which case we look for trouble. We make a Type 1 error
when we say that the process is in State 2 when actually it is in State 1;
Type 1 errors initiate needless action. We make a Type 2 error when we
say that the process is in State 1 when actually it is in State 2; Type 2
errors fail to initiate needed action. We generally make a series of con-
secutive errors of Type 2 before detecting the change in state.

Let the random variable y denote the number of points plotted while
the process remains in State 2. Then y — 1 consecutive errors of Type 2
are made. Let E(y) denote the expected, or average, value of y; then
E(y — 1) is the average length of a series of Type 2 errors.

FE(y) depends on A, the amount by which the process average changes;
we sometimes note this dependence by writing E(y; A). E(y; A) is a
monotonically decreasing function of the magnitude of A; that is, the
larger the change, the smaller is E(y). In other words, tests are more
sensitive to large changes than to small changes.
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Fig. 1 — E(y) versus A for 7'1(Ly) for various limits.

Fig. 1 shows curves of E(y) versus A for T(L,) for L, = 2, 2.5, 3, and
3.5. Note on the curve for Ti(3), for example, that K(y) = 15 at A =
1.5 (¢//A/n); this means that following a change of this magnitude, an
average of 15 points are plotted before a point falls outside of a 3¢
limit. Note that as A approaches zero, F(y) approaches 370, which cor-
responds to the average number of points between consecutive Type 1
errors while the process remains in State 1.

In Fig. 1 and later figures the abscissa is A, and it is measured in units
of o'/+/n, which is the standard deviation of X,. The particular ab-
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scissa that applies to a change of a given physical magnitude is propor-
tional to +/n; for example, if = is doubled in the above example where
A = 1.5(¢’/+/n), then the appropriate abscissa on Fig. 1 increases from
1.5 units, with ordinate E(y) = 15 on curve Ty, to 1.5+/2 = 2.121
units, with E(y) = 5.4. The positions of the curves relative to one an-
other are independent of n.

If the process were to remain in State 1 indefinitely, E(y; 0) would
represent the average number of points between consecutive Type 1
errors, and 1/[E(y; 0)] would be the asymptotic probability of a Type 1
error. In comparing tests with respect to Type 1 errors, we compare
their values of K(y; 0).

In comparing tests with respect to Type 2 errors, we compare their
values of E(y), or E(y — 1), for various non-zero values of A.

1.4 Comparing the Statistical Properlies of Various Zone Tests

We are primarily interested in the distribution of y. The distribution
of y for all of the zone tests we consider can be adequately summarized
by one parameter — its average value E(y) (see Section 3.1). Therefore,
in comparing the statistical properties of various tests, we compare their
curves of E(y) versus A. I'rom such curves we can determine the asymp-
totic probability of Type 1 errors, 1/[E(y; 0)], and the average number
of consecutive Type 2 errors, E(y — 1; A), for any A different from zero.

Figure 1 illustrates how the properties of zone tests can be changed by
changing the limit lines. By changing the limit lines of T,(L;) from L, = 3
to I, = 2, we reduce E(y) for all values of A: when A > 0, this means
that the Type 2 errors are reduced; when A = 0, this means that
Type 1 errors are increased.

A choice between two tests should be based partially on the relative
values of the two types of decision errors. We can fix the Type 1 errors
at any desired level by an appropriate setting of the zone limits; then
the Type 2 errors alone serve as a basis of comparison.

II. SUMMARY OF RESULTS

Section 4 shows how to determine the distribution of ¥, and in partie-
ular its average value FE(y), for one-sided tests T,*(Li) and Tw*(L,),
for any k. Simple substitutions into equations for the above one-sided
tests allow us to determine the properties of any test of type T*{(L; , L)
or Ty*(L;, Li). We then determine the properties of two-sided tests
from the properties of the corresponding one-sided tests.

We show that the average values of i in any two separate tests provide
upper and lower bounds to the average value of y in their combined test.
Thus with subscript ¢ denoting test 7', , ¢ denoting 7', , and #f de-
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noting the test 7., combining 7', and 7', , we have upper bounds
Efllz(y; A) = 'Efl(y; A)! Ehf:(y; A} é b!t::(y; A): (1)
and a lower bound
1 < 1 1 -
Eion(y; )~ Ey(y; 8 Eu(y; A)

An application of (2) to the determination of the properties of two-sided
tests in terms of the properties of their component one-sided tests yields

T 1 1
By 8) = B 8) B —a) @)
where the asterisks denote one-sided test results.

We can determine the properties of the following tests: Ti(Ls),
To(Ly), TulLy, L) and Ty (Lr, L), for any k. With L, = 3, the last
two types of tests supplement the standard control chart test T.(3)
with one other zone test.

Equations (1) support the logical conclusion that the more criteria
we have to indicate the presence of trouble, the more quickly we will
look for trouble when it is present as well as when it is not present. Thus,
in supplementing the standard control chart test with other tests, we
decrease the Type 2 errors at the expense of more frequent Type 1 er-
rors. The question of how far to go in supplementing the standard control
chart test must be answered in light of the relative importance of the two
types of errors in the particular application considered.

Section III presents a series of charts to show the properties of several
particular tests, including Ty, Tw, T, Ths, and Tyas . The last test*
illustrates the effect of supplementing 7'y with more than one additional
test; its properties were determined through the use of Monte Carlo
techniques. We also show £(y) versus A for several tests when their zone
limits are translated away from the center line so that their Type 1
errors are comparable to those of T . It is through such translations of
zone limits that we can offset the undesirable effect on Type 1 errors
that occurs when we add new tests to our testing procedure.

2

III. CHARTS SHOWING PROPERTIES OF VARIOUS ZONE TESTS

3.1 Distribution Function of y

The cumulative distribution function of the random variable y,
(); = Prob (y > j), is shown in Figs. 2 and 3 for various zone tests.

* This test is similar to one that has been used by the Western Electriec Company
in its quality control training program; somewhat different criteria for taking
action are used and therefore the statistical properties differ.
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The curves are applicable only at integral values of j. If 4 > j, there
have been no indications of a changed process average in the first j
points following the change from Xy to Xy + A.

Tig. 2 shows curves for Ty, T, Ty ,and Ts for A = 0, ¢'/+/n, and
2(a’/v/n). Tig. 3 compares Ty, Tw , T, and Tyaws for A = o'/+/n;
it illustrates the effect of additional tests on the distribution of .
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Fig. 2 — Cumulative distribution of y for 7'y, 7'y, Ty , and Tsfora = 0, ¢’/+/n,
and 2(¢’/V/n).
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The curves of IFigs. 2 and 3, plotted on semilogarithmic paper, can
be approximated for practical purposes by straight lines. Thus, the dis-
tributions are approximately geometric, or discrete exponential, dis-
tributions that can be described by a single parameter E(y) and an
initial value. It is for this reason that E{y) adequately summarizes their
statistical properties.
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Figs. 2 and 3 illustrate the fact that single tests for long runs, such as
Ts, do not become fully effective immediately following a change.

3.2 Curves of E(y) Versus A for Tests with Standard Zone Limils

Figs. 4, 5, and 6 illustrate typical curves of E(y) versus A. Iig. 4
shows curves for 7'y, Ty , Ty, and T . Iig. 5 shows the effect of broad-
ening the criteria for looking for trouble — T calls for action only if
two consecutive points fall outside of a 2¢ limit, whereas T calls for
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action whenever 7. does and also whenever two points falling outside a
2¢ limit are separated by a single point not falling outside of the 2 limit.
E(y) is less for Ta than for T for all values of A; this difference is re-
flected in the curves for Ty and Ty, which supplement 7 with Ts and
T, respectively.
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Fig. 6 illustrates the effect of supplementing 7' first with 7% and then
with Ts, T, and Ty . Notice how the Type 1 errors become more
frequent as Type 2 errors decrease.

3.3 Curves of E(y) Versus A with Limils Set for a Selected Probabilily
of Type 1 Errors

Fig. 7 shows curves of % (y) versus A for tests for k (& = 1, 2, 3, 4, 6, 8)
consecutive points outside of limits that are set for each & so that the
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probability of a Type 1 error is comparable to that of T . Tests for long
runs clearly are most effective against small process changes, while T
itself is most effective against large process changes.

Iig. 8 shows curves for Ty, T5(0.065), and Ths(3.19, 0.19). The last
test is composed of the first two tests with all zone limits translated away
from X.. Notice that T, and Ts(0.065) taken individually are more
effective than 7'5(3.19, 0.19) in certain ranges of A. Fig. 9 illustrates

400

300

200

150 \\§
\

100 WK

o A

70 !

éo N\VAN

5 AN\
T, \

40 M

Te,Ta Wi‘ \
AR

b U O ~NODWO

— Tg (0.065) ]

Te (0.36)

l

N\ ——ti
&‘-—-_________M;El)

|
N1 (1.78)
2 -"'1"-—~

1.5 Ti(3)

///j
/|

o} 0.5 1.0 1.5 2.0 2.5 3.0 3.5
o'
A IN UNITS OF ——
n

Fig. 7 — E(y) versus A for Tw(Ly) for k = 1, 2,3, 4, 6, and 8 with limits set for
the same probabilities of Type 1 errors.
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the same general ideas as Fig. 8, with the addition of 745 With its zone
limits translated away from Xy'.

Because logarithmic scales are used for E(y), the differences
E\(y) — Ey) between curves for T) and other tests are distorted;
Fig. 10 shows the difference on an arithmetic scale for two of the curves
of Fig. 9.

Fig. 11 supports the theory that Ty (L) is slightly more sensitive
to small changes than T.(L.) when the limits are set so that the two
tests have the same probabilities of Type 1 errors. Further graphical
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Fig. 10 — The difference between ordinates of curves of Fig. 9 shown on an
arithmetie scale.
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support is given by curves for 7%(1.93) of Fig. 9 and T2(1.78) of Fig. 7.
No analytieal proof has been developed.

IV. DETERMINING THE STATISTICAL PROPERTIES OF ZONE TESTS

4.1 General Procedure

With the control chart partitioned into mutually exclusive zones A,
B, C, D, ---, R, we represent a sequence of points falling consecutively
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into zones B, C, D, and B, for example, by the sequence bedb. The lower
case letters such as b serve a dual purpose — they denote the fact that a
point falls into a particular zone, and they denote the probability of that
particular event, or outcome. For example, the probability of a particular
sequence bedbedb is b°c’d’. Where there is danger of confusion, we may
denote outcome b by € and its probability by ps . A sequence bedb is
considered to represent the outcome of a sequence of independent trials,
each of which has fixed probabilities of outcomes a,be, -« -, 7.

Since the control chart points represent an average measurement X.
that has a normal distribution with average X,/ + A and standard de-
viation ¢’/+/n, we use normal probability tables to determine the proba-
bility b, which remains constant from point to point as long as the proc-
ess remains in a given state. If ®(z) is the area under the normal curve
above z, and if zone B is between limit lines at X/ + L(o'/+/n) and
X + Li(¢'/+/n), where L. = L, then probability

;J=¢(LE_A\@)—¢(L1—A\,/E) .

/
a a

When the process changes from State 1 to State 2, the probabilities
of points falling into the various zones change. At the first point in State
2, zone tests see one point from State 2 preceded by a sequence of points
from State 1; at each subsequent point in State 2 a single point from
State 1 is dropped from consideration, until at last all points considered
are from State 2. The zone tests are such that the probability of a point
from State 2 falling into a critical zone is greater than the probability of
a point from State 1 falling into the same zone. Consequently, the proba-
bility of the occurrence of a run of points in a critical zone is greatest if
all of the points are from State 2. For simplicity and clarity we neglect
points from State 1 while considering the results of testing points
from State 2. This means that T, for example, does not become effec-
tive until the eighth point in State 2 appears. This simplifying assump-
tion will affect the results little; its effect can be eliminated by caleulat-
ing the probability of detecting the change in the first few points and
adjusting our results. As an illustration, 75(0.065) of Fig. 7 should ap-
proach 7.1, rather than 8, as A approaches infinity.

If & control chart is partitioned into three mutually exclusive zones
A, B, and €, outcomes a, b, and ¢ are associated with the events that
points fall in the respective zones, and probabilities a, b, and ¢
(@ + b + ¢ = 1) are the corresponding probabilities of the events, or
outcomes. The possible outcome of the first j trials, or points, can be
enumerated by the ordered expansion of the multinomial (@ + b + c)’.
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For example, with j = 2, we have:
(@404 ¢ =aa+ ab + ac 4+ ba + bb + be + ca + b + cc.

The probabilities of the various sequences occurring are obtained simply
by multiplying the individual terms; for example, sequence aa has prob-
ability a’. The probability of a particular event such as the event that
either a or b occurs at least once in the first two trials is determined by
selecting those sequences in which this event occurs and cumulating
their probabilities; in this case it is @ + b° + 2ab + 2ac + 2be.

If we wished to determine the probability @; of no occurrences in the
first j trials of an event ¢ (a run of eight consecutive points in zone A,
for example), we could enumerate all of the 3’ possible outcomes, pick
out those we were interested in, and determine their probabilities. This
procedure becomes very tedious as j increases, and we soon look for
shorteuts. We attempt to find a recursion equation defining ; in terms
of a limited number of terms Q;_;, Q;—., ete. If we can find such an
equation, we need to enumerate all pertinent outcomes only to the point
where the equation becomes effective.

A recursion equation for @, , together with a set of initial conditions,
leads to a generating function Q(s) whose power series expansion ex-
hibits Q; as the coefficient of s’:

Q) =14+ Qs+ Q5"+ - + Q" + -+ = 2 70Q,8. (1)

The generating function is useful in obtaining moments of the distribu-
tion of y. In particular, we obtain E(y) by setting s = 1 in the equation
for Q(s): E(y) = Q(1).

The simplest zone tests are those in which a point is classified in one
of two categories; it represents either event ¢, with probability p or
event g, with probability ¢ = 1 — p. We arbitrarily call ¢, a success
and ¢, a failure.* We call a test for success runs a simple run test. A
compound run test is composed of more than one simple run test; for
example, a test for a run of two consecutive points above the +2¢ limit
is o simple run test, but a test for a run of two consecutive points above
the 4+2¢ limit or below the —2¢ limit is o compound run test composed
of two simple run tests. A simple run test classifies points in two ways;
a compound run test classifies points in more than two ways.

The test for a run of two consecutive points above the +2¢ limit is a
one-sided zone test; the test for a run of two consecutive points above

* This terminology may seem incongruous, since we hope for events ¢, , which

we term failures. Alternatively, we could change the definition, and say that we
test for failure runs, but this conflicts with standard terminology.



102 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1958

the +2¢ limit or below the —2¢ limit is a two-sided zone test. We derive
the properties of two-sided tests from those of one-sided tests.

In Sections 4.2 and 4.3 we present recursion equations and generating
functions for Q;, the probability that y > 7, for the following simple
run tests:

(1) k consecutive successes E=1,234,---,

(2) k successes in k + 1 (or k) consecutive trials k = 2,3, and 4.
In addition, we describe a procedure for extending & in (2) to any value.
Equations for E(y) are also presented. The results apply to one-sided
zone tests.

Section 4.4 describes a procedure for determining the properties of
two-sided zone tests from the properties of one-sided zone tests.

Section 4.5 presents a procedure for determining the properties of any
run test combined with a test for a single point in a critical zone. Simple
substitutions into the equations for a particular one-sided zone test lead
to a description of the properties of that test in combination with the
standard control chart test T7*.

Section 4.6 develops upper and lower bounds to E(y). Section 4.7
shows how to determine easily the properties of some tests whose zone
limits are non-standard. Section 4.8 discusses the use of Monte Carlo
techniques for determining the properties of tests more complex than
those considered here.

4.2 The First Occurrence of k Consecutive Successes

We separate those sequences of outcomes having no occurrences of k
consecutive successes in the first j trials (that is, ¥ > j) into mutually
exclusive categories according to whether the last failure occurred on
trial j,j — 1,j — 2, - -+ orj — k + 1. With @; denoting the probability
that y > j, we let @;, ; denote the probability that y > j and that trial
j — i resulted in a failure and the succeeding 7 trials resulted in successes.
Then, since 7 can be no greater than k& — 1, we have the equation:

Q= Qo+ Qin+ Qi+ -+ + Qs (5)

We enumerate the possible results:

Sequence
Endings Probabilities of Occurrence
""""" q Qio = q(Qi—10+ Qaa + -+ Q1)
-qp Qin = pqQi—e.0 + Q2 + -+ + Qieii)
""" qapp Qi = p%q(Qia0+ Qisn + -+ + Qi_3,k-1)
----- gppp  Qin = P9@Qis.0 + Qican + -+ + Qiai-)

app -+ p Qi1 = P q(Qi—k0 + Qickn + - + Qiki)
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The equations on the right reduce to Q;; = p'¢Q,;_._1 . We obtain the
desired recursion equation by summing over all values of 7,

Q= Qi + peQi2 + P'¢Qia + -+ + Q. (6)

We can use (6) to calculate Q; for j = k, noting that @; = 1 forj < k.
We obtain the generating function of @; from (6),

Qs) = 1_—?’*‘# (7)
1 — s + qpksk+1'
Then FE(y) is obtained by setting s = 1 in (7),
By = =2 (8)
qp*

These results are well known.?

4.3 The First Occurrence of k Successes in k + 1 Consecutive Trials

As in the preceding section, we separate those sequences having no
occurrence of the event in question — in this case k successes in k + 1
consecutive trials — into mutually exclusive categories according to
whether the last failure occurred on trial j, 7 — 1,7 — 2, - -+,orj — k 4+ 1.
In the current problem, however, we are also interested in the location
of the next-to-the-last failure since if the event in question has not oc-
curred there must be at least two failures in the preceding & + 1 trials.
If the last failure was on trial j — (k — 2), for example, there must be
at least one other failure in the preceding two trials. Here an enumera-
tion of possible results yields:

%ggf;;: Probabilities of Occurrence

""""" qQie = q(Qi—10 + Qi+ o+ Qv+ Qi) (9.0)
""""" ap Q;in = pg(Qia.y + Qicaa + -+ Qisaka) (9.1)
........ qpp Qi» = p2q(Qi_a.0 —+ e+ Q,‘-a,k_n) (9.2)

qp - ppp Qi = P 2q(Qi_t-n.0 + Qj—ti-n.1)

0.(k — 2))
qpp -+ ppp Qa1 = pFg(Qik.0). 9.(k = 1))
Pp - - PPP,

E—1ps

Each equation in (9) has one term less than the equation immediately
above it. We adopt a standard procedure for deriving a recursion equa-
tion for @, from equations (9). First we find from (9.0) that:

Qio = Q. (10)
Then we substitute (10), with j reduced by k, into (9.(k — 1)):
Qivr = P7¢Qi0 (11)
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Next we translate the final term on the right-hand side of (9.0) to the
left-hand side, and substitute (10) and (11), the latter with j reduced
by one. Then, if we multiply through the new (9.0) by p and reduce j
by one, its right-hand side is identical to that of (9.1). Then we have

Qjn = PqQi—2 — P'¢Qir>. (12)

We substitute (10) and (12), with j reduced by (k — 1), into (9.(k — 2))
to obtain

Qipo =P ¢Qix + P7Q i — pﬂk_‘zqu jo2k—2 . (13)

We proceed step by step, taking equations from the top and then from
the bottom, to find equations for the @;’s in terms of @;’s. Then we
add all of the equations together to obtain the recursion equation for
Q, , which will depend on some of the k(i + 1)/2 immediately preceding
Q;’s. The recursion equation is used with k(k + 1)/2 initial @;’s to de-
rive the generating function Q(s).

4.31 The First Occurrence of Two Successes itn Three Consecutive Trials

As in (9), we have:

Sequence Endings Probabilities of Occurrence
q Qi = ¢@j—10 + Qicro) (14.0)
qp Qi1 = pg(Qi-a.0). (14.1)

Then Q0 = ¢Qi1, Q1 = pgQ,—s, and the recursion equation is
Q; = qQi + pg'Qis, i>2. (15)
With (15) and the initial conditions @y = @1 = 1 and Q: = 1 — 7,
we derive the generating function for Q; :
1+ ps + pgs
Q) = (16)
— qs — pg’s
E(y) is obtained by setting s = 1 in (16);

N _1+ptopg
B P +4q 17)

4.32 The First Occurrence of Three Successes in Four Consecutive Trials
The initial conditions are:
Q=0 =@ =1,
Q=1-7,
Q=1-79p —3p%q
Q=1—p" —3p'¢ = 3p¢.
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For j > 5 we follow the standard procedure to find a recursion equation

for @; in terms of the 3-4/2 = G preceding ) ;'s:
Qi = 4Qis + paQis + P¢'Qis — PR, J>5. (18)

The generating function is

Q(s) _ 1 + ps + pQSE + pﬂqsﬂ _ p{lqs4 _ qu?sﬁ

— 19
1 — gs — pgs* — p°s' + pPePs? ’ (19)
and the expected value of y is
1 2 2 3
By = LEptr e (20)

P+ g+ ¢

4.33 The First Occurrenee of Four Successes in Five Consecutive Trials
Here the 4-5/2 = 10 initial Q,’s are:
Q=Qq=0Q=0G=1,  Q=1-7,
Qs = Q1 — 4p'y,
Qs = Qs — 4p'¢,
QO = Qs — 4p'¢" — 39,
s = Qi —4p'¢' — ¢’ — 2p°¢,
Q= Qs = 4p'¢" = 11p°q" — 9p'¢" = p'¢’.
For j > 9 the following recursion equation holds:
Qi = qQi1 + pgQie + P'¢Qia + 20'¢Qss
—p'¢Qis — p'¢'Qju.
The generating function of @ is
1+ ps + p's’ + p's’ —L— 92hpaqs4 r—z;::qsﬁ s
0fs) = —P4s —pqs —pqs (22)

I = gs — pgs* — pig’s* — 2p'¢’s®
+ piq-lsl + pﬁq-iSlU

(21)

Then
9.2 98 o442 62 63
E(y)=_l__+p+-3p+~pq. PUZ PO PO TP (g3
Pl + ¢ — 2¢° + p¢* + pP¢’)

4.4 Properties of Two-Sided Zone Tests

The results presented in Sections 4.2 and 4.3 are applicable to the
study of the statistical properties of one-sided zone tests for runs of
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points in the zone above an upper limit line at X + Li(e’'/v/n). Gen-
erally, we also test for the same types of runs below a lower limit line
at X,/ — Li(¢’/A/n), in which case the test is a two-sided zone test and
each point falls into one of three mutually exclusive zones.

Let A denote the zone above the upper limit, B denote the zone be-
tween the two limits, and C' denote the zone below the lower limit. Con-
sider an infinite sequence of independent trials having possible outcomes
a, b, and ¢ with fixed probabilities a, b, and ¢. When the outcome of the
jth trial completes a pattern of outcomes describing an event e we say
that e occurs on the jth trial. Event ¢ is defined by a set of outcome pat-
terns and a counting, or testing, rule. If when e occurs on the jth trial
we treat trial 7 4+ 1 as though it were the first trial, ignoring the results
of the first 7 trials, then e is a recurrent event.’®

Let
u; = Probability that e occurs on the jth trial,
f; = “ « « «  for the first time on the jth trial,
Q; = Probability that e does not occur in the first j trials.

Denote the generating functions of u;, f;, and @, by U(s), F(s), and
Q(s), respectively.

The following equation can be used to determine the @’s in terms of
the f’s:

1—-F
Q(s) = 1—@
— 8

If € is a recurreni event the following equation holds [Reference 8,

p. 243):

—l<s<l1l (29

wj = f; + ficny + fimaue + -0+ frga. (25)
Equation (25) leads to the following identity (setting fo = 0, w0 = 1):

1

U(s) =
From (24) and (26) we have

(1 —-98Uls) = —l1<s<l1, (27

1
Q(s)’ .
for recurrent event . We shall consider only recurrent events which have
finite recurrence times; in these cases F(1) = fi + fo + -+ = 1, and
U(1) is infinite. The limit of (1 — s)U(s) as s approaches unity from
below is (using L’Hospital’s Rule):

lim (1 — 8) U(s) = 2 =1 1 (28)

F) ~ Q) B
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where y denotes the number of the trial of the first occurrence of ¢, and
E(y) denotes its expected value. E(y) is also the average recurrence time
(average number of trials between consecutive occurrences) of recurrent
event e.

Consider recurrent events ¢ , e, and ¢, defined, respectively, by the
sets of outcome patterns «, 8, and « or 8 and a counting rule that re-
quires counting to start from seratch on trial 7(j > 1) if and only if the
event under consideration occurs on trial 7 — 1. Assume that ¢ and e
are mutually exclusive — that is, they cannot both occur on the same
trial,

For an example, let the single pattern a ¢ e define the set « and the
pattern ¢ a ¢ define the set 3 — then the set @ or 8 has the two patterns
a ¢ a and ¢ a ¢. Consider an outcome sequence:
trial number: 1 2 3 4 5 6 7 8 9
trial outcome: ¢ ¢ a ¢ a ¢ a b a
The event ¢ occurs on trials 3 and 7; the event e oceurs on trial 4; and
the event e occurs on trials 3, 6, and 9.

Let E\(y), Eax(y), and E(y) denote the average recurrence times of
€1, €, and €q, respectively. Under what conditions can we determine
Ewu(y) from known values of Ei(y) and Ea(y)?

Consider events " and e” defined by outcome patterns e and g, re-
spectively, and a counting rule that requires counting to start from
seratch on trial j if and only if either e1” or e” occurs on trial j — 1.
Events ¢” and &” differ from ¢ and e only in counting rules. In the
example previously considered, we see that ¢” occurred on trials 3 and
9, and e” occurred on trial 6. Either ¢” or &” (but not both) occurs on
every trial on which €, oceurs; this leads to the equation

e, = w4+ ua (29)

where w2, ; , w1, ;7 , and ws,;” denote, respectively, the probabilities that
e, &”, and &” occur on trial j.

Multiplying (29) through by s’ and summing over j from one to in-
finity, we obtain an equation relating the generating functions of the
probabilities in (29):

Un(s) = Uh"(s) + Us"(s) — 1. (30)

The constant appears because u, = 1 in all cases.

Events ¢” and &” are recurrent events, and equations (25) through
(28) can be used to determine their mean recurrence times E,”(y) and
E."(y). (The fact that (25) applies allows us to eall ¢” and &" recur-
rent events).
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If we multiply through (30) by (1 — s) and take the limit of each side
as s approaches unity (see (28)), we obtain

(N .
Eu(y) E"(y) By (y)
In any sequence of trial outcomes, if a pattern in @ occurs for the first
time on trial j, then & occurs for the first time on trial j, and «” occurs
for the first time either on trial j or on a lafer trial; &” will occur for the
first time on a later trial if e” occurred while this first pattern in a was
being formed. Thus we have

E(i) = B () (32)

where the equality sign holds if and only if no pattern in g overlaps a
pattern in e. A pattern in g overlaps a pattern in « if the terminating
outcomes of the former correspond to the beginning outcomes of the
latter. Thus outcome pattern ¢ a ¢ overlaps a ¢ @ because the terminating
outcomes a ¢ of the former correspond to the beginning outcomes a ¢ of
the latter. If no pattern in 8 overlaps a pattern in « then the occurrence
e,” does not ““cancel out’”’ the beginning of any patterns in «, and there-
fore ¢ and &” always occur on the same trials.

From (31) and (32) we have

[ 1 n 1
Ew(y) — Fa(y) Ei(y)
where the equality sign holds if and only if & and e, are defined by non-
overlapping patterns, in which case we shall say that e and e; are non-
overlapping events. From our example it is clear that mutually exclusive
events are not necessarily non-overlapping.

We can use (33) to find E(y) for two-sided tests in terms of the £*(y)’s
of the component one-sided tests. Note that a given change A looks like
a —A to one of the component tests. Then

1 < 1 n 1 .

E(y;8) = E*(y;4)  E*(y; —4)

For A = 0, E(y; 0) £ (E*(y; 0)/2). The equality sign holds in (34) for

T},—(Lk) and le(.rq , Lj‘) For Tj,-'(LJ,-) and le'(Ll , Lk), (-'J)tl:) defines lower

bounds which are very close approximations to E(y). For T'» equation

(34) leads to a lower hound of 510.6, which compares with the true

value E(y; 0) = 510.7. The degree to which the approximation ap-

proaches the true value depends on the probability of overlap, which in

cases we consider is very small; for this reason we can consider (34) to
be an approximation rather than a lower bound.

(31)

(33)

(34)
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4.5 Properties of Tests Combining T:(L,) with One Other Test Whose
Properties Are Knoun

Consider any test 7" for which we partition the control chart into mu-
tually exclusive zones A, B, C', - -+, R. The possible outcomes of the first
J trials can be enumerated by an ordered expansion of

@+b+e+ -+ 1)

With the letters denoting the probabilities of points falling into the
various zones (¢ + b + ¢ + -+ 4+ r = 1), we pick out all of those
terms corresponding to outcomes in which the event ¢ does not occur,
and denote their sum by

Q.; = gia, bye, -~ 7). (35)

Clearly Q..;, or g;, is the sum of a series of terms such as a’bc” - -
representing the probabilities of particular outcomes.

If we wish to find the probability @,.,; of no oceurrences of event e and
no occurrence of a point falling in zones A or B, say, we simply eliminate
from g, those terms in which either @ or b occurs. We can do this by sub-
stituting zeros for e and b wherever they occur in g; : Q1,; = g0, 0, ¢,
d, -+, r). By multiplying and dividing each remaining term in ¢;0, 0, ¢,
d, ---,r) by (1 —a — b)’, we derive an alternative expression:

bl

¢ o
=g (00— & *
Qe y’(’o’l—a——b’l—a—b’
(36)
r _
"1—(;—_7)) (1 —a—b),
showing that the conditional probability of no e given no points in A
or B uses the same function required for @, ;. This enables us to write
the generating function of Q. as
¢ d
—a—-01—a-1""’

r
":m,(l —a — b)é"),

Q”(S) =h (0, 0, 1
(37)

where h(a, b, ¢, -+, r; 8), defined fora + b+ e+ - +r = 1, is the
generating function of ;.

The principles are best illustrated by an example. Consider the prob-
lem of finding #1.*(y), the expected number of the trial of the first occur-
rence of & consecutive points above X' + Li(e’//n) or a single point
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above X + Li(c’/A/n), where L, < L. We use an asterisk to denote
the fact that a function applies to a one-sided test. We let a be the
probability of a point falling above both limits, b be the probability of
falling between the two limits, and ¢ be the probability of falling below
both limits. Then we substitute a + b for p, and ¢ for ¢ in (7) to obtain

1= (a+ b
Q) = 1 — s + cla + b)ksttt”

Following (37), we find Qu.*(s) by substituting 0 for a, /(1 — a) for
b, ¢/(1 — a) for ¢, and (1 — a)s = (b + ¢)s for s in (39),

1 — b

(39)

* =
Qu*(s) 1= 0 F o)s + s’ (40)
We set s = 1in (40) to obtain
. 1 — b
Evn*(s) = (41)

1 —(b+¢) + cb*’
The properties of any test combining T:(L:) with one other test whose
properties are known can be determined in a similar way.
4.6 Lamits of E(y) in Compound Tests
A development similar to that in Section 4.4 will show, for example, that
1 1 1 1
= + + —,
Fras(y) Ei(y) Ex(y) Ei(y)
where Fj.3(y) pertains to recurrent event eps , whose set of outcome pat-

terns is composed of those of recurrent events e , e, and e .
It can also be shown that

Elau(?j) = Eu(y) = El(y) (43}

for example. Clearly we cannot increase the recurrence time of an event
by increasing the different outeome patterns which define the event.

(42)

4.7 Translating Limits to Obtain a Selected Probability of Type 1 Error

By supplementing 7'} with other tests, we increase the probability of
Type 1 errors. We can adjust the probability of Type 1 errors to any
desired level by resetting the zone limits. With more than one set of limit
lines, we have some freedom in setting the limits. A procedure that has
the important attribute of simplicity translates all of the limit lines away
from the central line X" by the same amount. The properties of the re-
sultant test can be derived directly from the properties of the original
test.

We first determine the properties of one-sided tests whose limits are
translated; from these results we determine the properties of the cor-
responding two-sided test.
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If Q*(Ly,, Li,; A; s) is the generating function of Q; for test T*
with limits at Xg’_+ Lk_l(cr’/ﬁ) and Xy + I,(¢'/+/n) and with the
process average X' = X, + A, then (neglecting points from State 1):

o

QF(Liy, Liy; Ay 5) = Qi (L;\-1 + h, L, + R A — h—5=; S) . (44)
vV'n

This equation says that the probabilities involved are identical if we
translate the limits by a given amount or if we translate the process
average in the opposite direction by the same amount. The truth of this -
stems from the fact that the probabilities depend on the position of the
process average X' relative to the zone limits.

If we wish to set the limits so that the probability of a Type 1 error
is siq, say, for a two-sided test, we can proceed as follows:

(1) draw the curve of E(y) versus A for the corresponding one-sided
test (the abscissa is assumed to be in units of ¢’/4/n),

(2) translate this curve to the right (or left) until E(y; 0) = 1000,

(3) measure the amount A of the translation, and translate the zone
limits away from (or toward) X,’ by an amount h(¢’/+/n) (control
chart units).
The translated E(y) versus A curve represents the new one-sided test.
The curve for the corresponding two-sided test can be derived using

(34); it will have a value E(y; 0) = 500.

4.8 Monte Carlo Technigues to Determine the Properties of Zone Tests

We can determine approximately the properties of zone tests by using
Monte Carlo techniques on modern high-speed computers. First we
generate a random series of numbers with a known distribution. Then,
using the appropriate correspondence between limits within the distri-
bution and zone limits, we translate the random numbers into a random
sequence of zone designations, which we test for oceurrences of the events
in question. We keep score of the number of points until the event finally
occurs. We then start counting again as though the sequence were just
starting. By running through a great many cycles, we obtain an approxi-
mation to the distribution of the cycle length y, and an approximation
to E(y) for the particular value of A that applies to the limits we used.
We repeat the process with different limits for different values of A.

Within the limitations of the computer, this technique can be used
for any zone test. We used it to approximate the properties of Tioss

for A = 0, ¢’/+/n, 2(¢’//n), and 3(a’//n).
V. CONCLUSIONS

If we supplement the standard control chart test with another zone
test, we increase its sensitivity to process changes at the cost of more
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frequent errors of Type 1 and a more complicated testing procedure;
see Figs. 5 and 6. We can restore the original probability of Type 1
errors by changing the zone limits; in the following discussion we shall
assume that this has been done, thereby simplifying the comparison of
various tests. We shall say that a zone test 7', of the type we are con-
cerned with is better than T for a particular value of A if E,(y) < Ei(y)
for that A.

In general, the curve of E(y) versus A for a test T is below the cor-
responding curve for T for A in a range 0 < A < A, and above for
A > A,. The crossover point A, in the cases we considered varied from
1.7 (¢//+/n) for Ts(0.065) (Fig. 7) toover3.5 (¢'/A/n) for T2 (3.13, 2.13)
(Fig. 9).

Consider a test Ty, that combines T and T, and has its zone limits set
so that its probability of Type 1 errors is the same as for T and for
7, . In the cases we have considered (see Figs. 8 and 9) T}, essentially
effects a compromise between 7' and 7' — for small changes it is better
than 7, but not as good as T, ; for large changes it is better than T,
but not as good as T, ; for A near A, it is better than T) and better
than T, .

In the cases we have considered, tests T (L) appear to be slightly
better than tests T%(Li) for small changes.

The reason that zone test T, is better than 7' for small changes seems
to be due to the fact that it bases its decisions on a history of & consecu-
tive points; in effect, it makes some use of a sample size kn rather than
n. The cost of the increased effective sample size is paid during the first
I — 1 points in State 2, where 7 has a higher probability than 7', of
detecting a change. The probability that a point falls outside of a 3¢
limit remains fixed from sample to sample, and after the initial £ — 1
points in State 2, this probability is less than the probability that 7'
will detect a run. Large changes are likely to be detected by 7T before
T, becomes effective; but when changes are small the corresponding
values of E(y) are large, and we can expect T, to detect the change be-
fore T does (see Fig. 7).

We have assumed that sample averages X, are plotted on the control
chart. In light of the above discussion the possibility of pooling data
from k consecutive samples and plotting a statistic based on the in
measurements involved appears promising.

A preliminary study of zone tests on charts of moving averages of &
consecutive equal-sized samples has been made. The statistic (or point)

Yrkn g = (Xn.j + Xr(,j—l + =t + X}l-,j—l-’+1)/k

can easily be determined graphically in many cases. I'or example, the
point Y, ; is halfway between points X, ;1 and X, ; on the straight
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line connecting them — vertical rulings on cross-section paper ordinarily
used will spot points exactly. Points Yy, ; can be similarly derived from
points Vo, ;s and ¥, ;. Fig. 12 shows curves of E(y) versus A for T
used on points Yy, ;(k = 1, 2, 4); limit lines were assumed to be at
X =+ 3(¢'/Akn). The curve for k = 1 is, of course, the curve T of
earlier figures; the curve for k = 2 was derived using tables of the bi-
variate normal distribution; the curve for & = 4 is an approximation
based primarily on the results of a study making use of Monte Carlo
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techniques. We cover the possibility that the first point in State 2 will
fall outside of its control limits by assuming the existence of prior points
in State 1; all three curves approach E(y) = 1 as A approaches infinity.

In comparing Fig. 12 with Figs. 7, 8, and 9, it appears that T used
on moving averages provides an effective test for detecting shifts in
process averages. Further study is required to determine the effective-
ness of other run tests and of combinations of run tests applied to various
moving averages.

In summary, it is possible to devise zone tests which — within the
constraints of our model:

(1) indicate changes in process averages when none has occurred with
the same average frequency as the standard control chart test T,

(2) detect small changes in process average — up to 1.3¢’, say, for
n = 5— sooner on the average than 7, and

(3) detect larger changes inappreciably later on the average than T4 .
Such tests require an appropriate setting of zone limits — generally at
non-integral multiples of ¢’/4/n. If run tests are used to supplement 7'
without a compensating setting of zone limits, an increased frequency
of false indications of process changes results.

The standard control chart test 7 (or 71(Ly)) is slightly more effec-
tive than alternative zone tests in detecting relatively large changes;
in addition, it has the important virtue of simplicity — a virtue that
extends the range of economic application of T into areas where alterna-
tive tests have better statistical properties. It is difficult to recommend
a'single alternative test to T for general application, though it is clear
that alternative tests may be profitably used in many applications
where early detection of relatively small changes is important.
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