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This paper deseribes and analyzes a proposed semiconductor diode de-
signed to operate as an oscillalor when mounted in a suitable microwave
cavity. The frequency would be in the range extending from 1 to 50 kme. The
negative Q may be as low as 10 and the efficiency as high as 30 per cent.

The diode is biased in reverse so as to establish a depletion, or space-
charge, layer of fived width in a relatively high resistance region, bounded by
very low resistance end regions. The eleclric field has @ mavimum at one
edge of the space-charge region, where hole-electron pairs are generaled by
internal secondary emission, or avalanche. The holes (or electrons) travel
across the spaee-charge layer with constant velocity, thus producing a cur-
rent through the diode. Because of the build-up time of the avalanche, and
the transit ttme of the holes across the depletion layer, the alternating current
is delayed by approximately one-half eycle relative to the ac voltage. Thus,
power is delivered lo the ac signal. When the diode is mounted in an induc-
tive microwave eavity tuned to the capacity of the diode, an oscillation will
build up. [t appears possible to obtain over 20 walts of ac power in con-
tinuous operation at 5 kme.

I. DESCRIPTION

This paper discusses a proposed oscillator consisting of a semicon-
ductor diode biased in reverse and mounted in a microwave cavity. The
impedance of the cavity is mainly inductive and is matched to the
mainly capacitative impedance of the diode so as to form a resonant
system. We shall show that the diode can have a negative ac resistance
so that it delivers power from the de bias to the oscillation. The negative
) may be as low as 10 and the efficiency as high as 30 per cent.

The principle of operation is as follows: a reverse bias is applied to
establish a space-charge, or depletion, layer of fixed width in a relatively
weakly doped region bounded by highly doped end regions. A possible
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structure is the n-p-i-p™ structure, where the + denotes high doping
and i means intrinsic. This structure is shown in Fig. 1(a). The field
distribution under reverse bias is shown in Fig. 1(b). The voltage is al-
ways well above the punch-through voltage, so that the space-charge
region always extends from the n*-p junction through the p and i (in-
trinsic) regions to the i-p™ junction. The fixed charges in the various re-
gions are shown in Fig. 1(b). A positive charge gives a rising field in
going from left to right. A positive field makes holes move to the right.
The maximum field, which oceurs at the n™-p junction, is of the order of
several hundred kilovolts per ¢m, so that hole-electron pairs are gener-
ated by internal secondary emission (also called multiplication or ava-
lanche). The electrons go immediately into the n* region. The holes
move to the right across the space-charge region. The field throughout
the space-charge region is in the range (above about 5 kilovolts per em)
where carriers move with constant velocity independent of the field. For
practical purposes we can forget about the electrons in the space-charge
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Tig. 1 — The structure (a) and field distribution (b) under reverse bias.
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region and consider that current is generated at the n*-p junction, so
that only the holes move in the space-charge region. Thus, the physical
picture is as follows: a current of holes [o(t) is generated at the n-p
junction. The holes move to the right and traverse the space-charge
region, moving with constant velocity, ». In silicon » is about 107 em sec ™.
The transit time of a hole across the space-charge region is 7 = W/,
where W is the width of the space-charge region. Throughout the dis-
cussion we shall illustrate various quantities by giving numerical values
for the case W = 10~ em. Thus » would be 107 sec.

The holes moving across the space-charge region produce a current
1,(t) in the external circuit. It can be shown that I, is equal to the aver-
age current in the space-charge region. Since velocity is constant, I, is
simply »/W = 1/ times the total charge of the moving holes. (We shall
assume throughout that all quantities refer to unit area of junction.)
Suppose, for example, that a pulse of holes of charge 6@ is suddenly gen-
erated at the n*-p junction. Immediately, a constant current I, = 6Q/r
begins to flow in the external circuit, and continues to flow during the
time, 7, that the holes are moving across the space-charge region from
the n™-p junction to the p* region. Thus, on the average, the external
current /,(t) due to the moving holes is delayed by 7/2 relative to the
current Iy(f) generated at the n™-p junction. We shall show (in the dis-
cussion of multiplication) that the current fy(¢) is delayed by one-quarter
of a cycle relative to the ac voltage. Thus, to get a total delay of one-half
cyele, we want the delay /2 due to transit time to be one-quarter of a
cyele. The cavity should therefore he tuned to give a resonant frequency
@

The conductive current I.(¢), which arises from carriers moving
through the space-charge layer, should be distinguished from the dis-
placement, or capacitative, current f., which charges and discharges
the diode regarded as a capacitor. This current, [., supplies the vari-
ation in charge at the edges of the space-charge region, where the field
changes abruptly and, for practical purposes, can be considered disecon-
tinwous. Since /. is 90° out of phase with the voltage it contributes
nothing to the power.

1.1 Multiplication

Carriers moving in the high field near the n*-p junction acquire
enough energy to knock valence electrons into the conduction band,
thus producing hole-electron pairs. The rate of pair production, or mul-
tiplication, is a sensitive nonlinear function of the field. By proper doping,
the field ean be given a relatively sharp peak so that multiplieation is
confined to a very narrow region at the n"-p junction. The multiplication
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rate can be regarded as a function of the peak field, E, . Ata critical field,
E, , breakdown will oceur; that is, any current will be self-sustaining;
every pair produced will on the average produce one other pair. We shall
neglect the thermally generated reverse saturation current, which will
be small compared to the generated current Io(t). Then, when the field
is above E. , the current /4(¢) will be more than self-sustaining and will
build up. When the field is below the critical breakdown field E., the
current is less than self-sustaining and will die down.

In operation, the diode is biased so that the peak field is above K.
during the positive half of the voltage cycle and below E. during the
negative half. Hence the current 7(¢) builds up during the positive half
and dies down during the negative half. Therefore Iy(f) reaches its maxi-
mum in the middle of the voltage cycle, or one-quarter of a cycle later
than the voltage.

We have assumed so far that the field varies in phase with the voltage.
This will be a good approximation if the carrier space-charge can be
neglected. This can be seen from Fig. 1(b). If the voltage is above the
punch-through voltage, an increase in voltage simply raises the whole
field distribution throughout the depletion layer. That is, additional
charges simply appear at the edges of the space-charge layer. Hence the
field at each point varies in phase with the voltage. The space charge of
the carriers will, however, affect the shape of field distribution in the
space-charge region. When the current becomes too large, the carrier
space-charge cannot be neglected. As we shall see, the effect of carrier
space-charge is to reduce the delay between the voltage and the current
generated, Ty . In practice this limits the de bias current.

When the de bias is small enough so that carrier space charge can be
neglected, the operation can be summarized as follows: the peak field
varies in phase with the voltage and generates (at one edge of the de-
pletion layer) a current delayed by 90°. This current gives rise to a cur-
rent through the diode delayed by 90° relative to the current generated
and, therefore, by 180° relative to the voltage.

1.2 Diode and Cavity

The capacity of the diode and the inductance of the cavity determine
the frequency, f, of oscillation. We have seen that the optimum fre-
quency, f, is such that the transit time, 7, is one-half cycle. Hence the
angular frequency, w, should be

—opf =T =T 1
@ f T w )
For W = 107° em, the frequency, f, would be 5,000 me.
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We have seen that the current into the diode is 7, + 7., where I, is a
conductive current due to holes moving in the space-charge region and
I. is a displacement current required to charge the diode regarded as a
capacitor. Thus, the diode acts like a capacity and negative resistance in
parallel.

The capacity is related to the width, W, of the depletion layer by

K

AW

—12
- mﬁ_’;ﬁ for Si,
where ' is in farads per em’ and W in em. The negative conductance of
the diode will be small compared to wC', so the admittance is mainly that
of the capacity. Thus for W = 107" em the admittance will be about
30 mhos per em®.

To make a resonant system we mount the diode in a microwave cavity
having a mainly inductive impedance. The induectance, L, of the cavity
is chosen so that the cavity and diode together have a resonant frequency

= 3.

T'ig. 2 shows a possible cavity with the diode mounted in it. The diode
should have narrow end regions so that the depletion layer is as close as
possible to the metal base and center post of the cavity. Then the heat
generated will flow away rapidly. The eavity is tuned by adjusting the
vertical position of the plunger forming the top of the cavity. There
must be some brealk in the cavity so that a de bias can be applied. This
is accomplished in Fig. 2 by insulating the center lead. The break could
also be made by insulating the walls from the base. On the right is an
outlet through which the ac power is tapped.
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Fig. 2 — Diode mounted in microwave cavity.
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The impedance, wL, of the cavity must be equal to the impedance of
the diode. If the diode is cireular with radius R, then the junction area
is wR* and the impedance, (rR*wC)~". Thus the area of the diode is
limited by how small the impedance of the cavity can be made. Setting
wl = (rR%C)™" and using (1) and (2) we have

(V) = ez
W/ = rael’

9.5 X 10° )
=222 " for S
oL or i,

where wL is in ohms. It would be difficult to make wL less than about
10 ohms. Hence R could not be more than about 30W.

)

1.3 Stable Operation

We have shown that the diode will deliver power, so an oscillation will
build up. In Section ITI we shall caleulate exactly the @ for the small sig-
nal case where everything is linear. For reasonable values of the direct cur-
rent bias, I, , the @ can be made negative and as low in magnitude as
desired. As the oscillation builds up, the behavior becomes highly non-
linear. In the practical range of operation the field will vary by a frae-
tion — probably less than 20 per cent — of its average value but the
current will vary by orders of magnitude. The current I, approaches a
square wave, being negligibly small during the positive half of the ac
voltage cycle and almost constant during the negative half cyele. Since
the direct current [ is the average conductive current, it follows that
the amplitude of variation of I, is approximately equal to Is. If ¥, is
the ac voltage amplitude, the ac power delivered P, is found to be

P =21V, @)
™

per unit area of junction. Thus, if the dec bias is applied by a constant
direct current generator, the power delivered is proportional to V,.
The energy stored in the capacity is proportional to V... Hence, —Q is
proportional to V.. In other words, if the amplitude increases, the
stored energy, or energy of oscillation, increases faster than the energy
delivered per cycle. This is the condition required for a stable oscillation
to be possible. At the stable operating point, —@Q of the diode is equal
to the effective  of the cavity. If the amplitude increases, the energy
delivered by the diode increases less than the energy lost to the cavity.
Thus, the amplitude decreases. In the same way a decrease in amplitude
is also self-correcting,.

The total power output is P, times the area =R* and is therefore pro-
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portional to R’/,V,. The maximum £ is given by (3). The maximum
allowable 7, is limited by the fact that carrier space-charge cannot be
too large, as we now show.

1.4 Space Charge of the Carriers

The holes moving across the space-charge region will affect the field
distribution. As shown in Fig. 1(b) a positive charge gives a rise in field
(in going from left to right) and a negative charge, a decrease in field.
Thus, the effect of the holes will be to oppose the fixed negative charge
in the depletion layer, and hence to flatten the field distribution shown
in Iig. 1(b). Therefore, for a given voltage, the effect of the holes is to
reduce the peak field at the n™-p junction. The multiplication rate in-
creases with the peak field. Thus, the current generated has a space
charge that tends to reduce the rate of current generation. That is, the
current tends to shut itself off. Instead of building up throughout the
positive half of the voltage cycle, Iy(£) builds up until the carrier space-
charge has reduced the peak field below the sustaining field . . Then the
current decreases. Thus, I, reaches its peak before the middle of the
cycle. This reduces the delay and hence the power. Increasing the cur-
rent, therefore, increases the ac power only up to a certain point where
carrier space-charge begins to spoil the phase relations.

We have seen that in the practical range of operation the current /.
varies by approximately its de value I,. A current /g corresponds to a
total carrier charge 774 in the space-charge layer (since /. is the average
current in the space-charge layer and all carriers travel with velocity
v = W/r). If the carrier space-charge is to be neglected it must be small
compared to the charge C'V, that produces the voltage variation. Thus
we want 772 < OV, . Actually, as we shall show in Section III, it is suffi-
cient to take I,r = CV,./2. Since the period of oscillation is 27, this be-

comes

I; = % cv,. (5)

If /4 is no greater than this the current and voltage will be roughly
180° out of phase and we can use (4) for the power per unit area. For
larger 7, the increase in power would be more than offset by the effect
of carrier space-charge on the phase relations.

1.5 Power Output

Combining (3) with (5) we have, for the total ac power output

2

oBP, = 0 (©)

2wl
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As we have seen, the impedance wL of the cavity could be as low as 10
ohms. Now consider the maximum V, . This is limited by the de voltage
Va. It is seen from Fig. 1(b) that if V, is too large the field in the in-
trinsic region will be reduced to zero during the negative voltage cycle.
By careful doping, the voltage at punch-through can be made small
compared to the de bias at breakdown. Even allowing for the reduction
in field due to the carrier space-charge, we will be safe with V, = V,/2.
This gives an efficiency of about 30 per cent. From (6) the power be-
comes

Power Output = #R’P, = (E)le— (7

2w} wlL

The de voltage is limited by the following considerations: (a) In the
negative half cycle the field must not fall below about 5 kilovolts per
cm. Otherwise carrier velocity will depend on field; so the carriers will
slow down during the negative half of the ac voltage cycle and thus re-
duce the power. This can be avoided if V4 is atleast 10'W volts, where W
is in em. (b) To localize the multiplication the field must remain well
below E, except near the n™-p junction. This will be so if Va4 = 2V, is
less than about (2/5)E.W. Then the maximum field in the intrinsic
region will always be less than 0.6 E.. Thus we have 10'W < Vg <
04 EW.

For W as large as 107 em the critical field will be about 350 kilovolts
per em. For W as low ag 107 em the multiplication would have to be
confined to a region no more than 10~ em in width. This would require
a somewhat steeper field gradient and a higher critical field — say about
650 kilovolts per em. Thus for W = 10~ em, or 50 kme, V', would have
to be less than 26 volts. For wl, = 10 ohms, the maximum power output
would then be less than 2 watts. At W = 10™° em, or 5 kme, the maxi-
mum Vg would be 140 volts, which gives a power of 50 watts. At W =
107%, or 500 me, the maximum voltage would be 1400 volts, and the
minimum 100 volts. The power would then be between 25 watts and
5 kw.

1.6 Zener Current

Chynoweth and McKay' have shown that in sufficiently narrow junc-
tions, where breakdown oceurs at around 10 volts or less, the current is
generated not by multiplication but by internal field emission. That is,
electrons tunnel from the valence to conduction bands. This is known as
Zener current. We shall show in Section IV and Appendix E that the
device will operate on Zener current, but much less effectively. This,
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even more than the limited power, may limit the minimum W and hence
the maximum frequency that would be practical.

Experiments

An experimental program has been undertaken to construct and test
a deviee operating by avalanche.

II. CURRENT AND SPACE CHARGE

In this section we consider the physies of multiplication, space-charge
and carrier flow in more detail and obtain the equations that govern the
behavior of the diode.

2.1 Multiplication

Electrons moving with velocity » generate hole-electron pairs at a
rate of avn, where n is the electron concentration and « is the ionization
rate. By definition « is the number of pairs produced on the average by
an clectron in moving unit distance. Thus a ' is the average distance
between ionizations. We ghall be dealing with the case where each pair
produces roughly one other pair; thus a ' is of the order of the width
of the narrow region near the n™-p junction where the multiplication is
localized. For fields below about 600 kilovolts per em « can be con-
sidered a function of field, @ = «(¥). For larger fields the electrons do
not have time to get into equilibrium with the field in the average dis-
tance o' between collisions. We shall be dealing with fields where o =
a(l).

McKay® has measured « as a function of £ for electrons in silicon.
Fig. 3 is a plot of the best fit curve to McKay’s data, together with the
theoretical curve caleulated by P. Wolff’. A straight line of slope 6 is also
shown and is seen to be a good fit to the data below about 500 kilovolts
per em. In the formulas we shall use the general relation & =~ E" and
take m = 6 for numerieal ealeulations.

Assumptions

We shall make the simplifying assumption that o = a(F) is the same
for both holes and electrons. Actually this is not so. However, « is so
sensitive to field that the difference in field for the same « is small. Any
difference in the «’s will alter both the carrier and field distributions so as
to favor the carrier with the lower «. Consequently, it is believed that
this assumption will not give misleading results.
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We also assume that holes and electrons travel with the same velocity
in the high fields involved. This will not lead to serious error since the
motion of one type of earrier always plays a minor role.

2.2 DC Case

We take the x axis normal to the junctions with & = 0 at the n*-p
junction and @ = W at the i-p” junction, as shown in Fig. 4. It can be
shown that the direct current [ is related to the thermally generated re-
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verse saturation current I, by

By - [ e ao ()
where the integral is taken over the space-charge region. See, for exam-
ple, McKay®. We will be dealing with space-charge regions where most
of the multiplication oceurs in a narrow region, which we shall call the
mulliplication region, near x = 0. Thus we need take the integral in (8)
only from x = 0 to x = z,, where x; < W is the width of the narrow
multiplication region.

Breakdown oceurs, that is, the direct current becomes infinite, when

f a dx = 1. Physically this means that each hole-electron pair generated
in the multiplication regions will, on the average, generate one other
pair. We now consider how f a dr depends on the peak field E, for vari-

ous field distributions including the one shown in Fig. 4.

(1) The simplest case is that where the field is a constant £y in the
narrow multiplication region. This would correspond to a short region
of high constant field followed by an abrupt drop to a much lower field.
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Fig. 4 — Field distribution at breakdown.
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Then

fa de = fo a(Eu) de = .'Ula(Eu).

m

So if « is proportional to I

fad:v=(%) s

where E, the critical field for breakdown is given by a(E,) = 1/, .

(b) Next consider the linear field distribution shown in Fig. 4. Curve
A is the field distribution at breakdown. We can take £ = FEy, — kx in
the multiplication region. The slope % is proportional to the charge in
the p-region. We shall neglect the effect of the carriers on the space
charge. Then & will be proportional to the fixed charge in the p-region
and will be constant independent of current. In practice & would be well
above E./W. In order for the carriers to produce a field gradient com-
parable to this, the current would have to be of the order of (xv/4m)
(E./W), or several thousand amperes/em®. Actual currents will be much
smaller than this.

In Iig. 4 the flat section of field will contribute negligibly to the mul-
tiplication, so we can replace the actual field distribution A4 by the

tangent curve B. Then
nl m+1
[ e = (%) , ©)

where £, is given by «(E.) = (m + 1)/l and | = E./k is the zero inter-
cept of the tangent curve B at breakdown. Thus the peak field FE. at
breakdown is equal to the breakdown field for a constant field region of
width I/(m + 1), as shown by curve € in Fig. 4.

(¢) For a linear gradient junction the field varies parabolically with

x and
o E[; m+1/2
f 43 d.'L = (E) .

In what follows we shall use (9), which applies to a linear field, or
abrupt junction. This will be perfectly general if m is left arbitrary. The
results obtained for m = 6 will be a good approximation for a linear
gradient junction, since the difference between 7 and 6.5 is within the
experimental uncertainty in m.

As an example, consider a step junction with m = 6 and W = 107°
and let I = 0.7W. Then the critical field F, is given by a(F,) = 7/l =
10~* em. From Fig. 3, E, = 350 kilovolts/cm.
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2.3 Time Dependence

In the de case fa dz cannot be greater than unity. That is, we can-

not get above breakdown. This is not necessarily so for rapidly varying
fields. We now derive a differential equation for the current as a function
of time. This will reduce to (8) in the dc case.

Let p and n be the hole and electron densities respectively. The cor-
responding currents are I, = qup and I, = —gon, where ¢ is the elee-
tronic charge. Hole-electron pairs are being generated at a rate av(n + p).
This is so large compared to the rate of thermal generation that the
latter can be neglected. The equations of continuity then become

ap _lal

a q dx av(n + p), (10)
an 14l .
W g + av(n + p), (11)

where @ = «(F). The three variables, p, n and E are determined by
(10) (11) and by Poisson’s equation and the boundary conditions at the
junctions. An exact solution is impractical. Instead, we make an ap-
proximation based on the fact that most of the generation is confined to
the narrow multiplication region near = 0. This is shown in Fig. 5.
The multiplication region extends from & = 0 to @ = #; . The width x,
is a small fraction of the width W of the space-charge region.

2.4 Assumplions

We shall assume that (a) all of the multiplication occurs in the rela-
tively narrow multiplication region and (b) the total current I(x, t) =
I,(z, t) + I,(z, {) in the multiplication region is a function /(z, {) = lo(t)
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Fig. 5 — Boundary conditions on the multiplication region.
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of time only. This, of course, will not be true of 7, and 7, individually in
either the ac or de cases. Assumption (a) will be valid if the net acceptor
concentration in the p-region is sufficient to give a sharp drop in field
and hence to localize the multiplication. The second assumption will be
a good approximation provided the current does not vary by a large per-
centage in the time 7, = x1/» required for carriers to cross the multipli-
cation region. This will not be so at large amplitudes. However, the
errors for rising and falling currents tend to cancel, so the equation is
right on the average. As we shall see, at large amplitudes only the
average is involved.

2.5 Differential Equation for Iy(2)

Adding (10) and (11), using the assumption I, 4+ I, = l(®) and in-
tegrating from z = 0 to 2 = =, gives

nfeo -1 ok [ adr, (12)
dt 0

where 71 = /v is the transit time across the multiplication region. The
boundary conditions are shown in Fig. 5. The hole current at 2 = 0
consists entirely of the reverse saturation current /., of holes thermally
generated in the n™-region; these have moved to the n"p-junction by
diffusion. Thus at 2 = 0, I, — I, = 2I, — I, = 21, — I, . Atz = x,
the electron current consists of the reverse saturation current 7,, of elec-
trons thermally generated both in the space-charge region and in the
p*-region, so I, — I, = —2I,, + I,. With these boundary conditions,

(12) becomes
T1 dIu _ o _
E-H?—Iu(jl; a dr 1)+I, (13)

In the de case I, is the direct current 7, so this reduces to (8).
z1
The condition for breakdown is f adr = 1. If a field that satisfies
0

this is suddenly applied, 7, will increase linearly at a rate of 27,/7; and
become infinite. If a larger field is applied, I, will approach infinity ex-
ponentially. For a smaller field I, will approach a finite value.

The integral f a dx over the multiplication region depends very little

on carrier space-charge. Hence it will be negligibly affected by the small
differences in carrier distribution between the ac and dec cases. We can
therefore combine (9) and (13) to obtain a differential equation

1'1d

1
_ m+1 _ J
5 z; 0 1o = (Bo/E.) I+7 (14)
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relating the current Iy = Io(f) in the multiplication region to the peak
field By = Eo(t).

In most practical cases the current I, will be so large compared to I,
that the effect of I, can be neglected. The correction due to /,; and the de-
tailed formulas for evaluating the effect are given in Appendix D.

2.6 Fzample

At low enough amplitudes of oscillation we can expand %o/ E. in powers
of #,/F, — 1 and retain only the linear term. Then, neglecting 7, , equa-

tion (14) becomes
d _2(m+1)(En_ )
il Inly = n E, L). (15)

If I, is to be periodic, then E; must be periodic and the de bias must
be such that the average E, is F. . Suppose we apply a periodic voltage
with the proper bias so that E, = E. 4+ E, sin wf, where « is the opti-
mum frequency =/r. Then

L) _2m+1) 7 E_( _ wt) .
In 1o0) ~ - L 1 cos — ). (16)

Fig. 6 shows the field and Inl, as functions of time. Suppose 7/1 =
W/xy = 20 and m = 6. Then even if the amplitude I, of variation of
Ey is as small as 1.3 per cent of E., I, will vary by a factor of 10 over a
eyele. Thus we can have small signals in field and voltage but large sig-
nals in current. We shall eall this the intermediate range of amplitudes.

From (16) the maximum value of 7, is seen to occur in the middle of the
cyele, where ¢ = 7. Thus, if /y varies by a large factor, the current is
generated mainly in a pulse in the middle of the ac voltage cycle, as
shown in Fig. 6.

Actually the space charge of the current will affect the Eo(¢) curve,
which will not be exactly sinusoidal for a sinusoidal voltage. However,
this does not affect the conclusion that a small field and voltage signal
can give a large current signal and that the current /, approaches a pulse
as the ac amplitude increases.

2.7 Carrier Space-Charge

We have now dealt with the multiplication region, and obtained an
equation relating /, and £, . Tt remains to consider the rest of the space-
charge region, where current generation is negligible. We shall also
neglect the reverse saturation current 7, of electrons, which will be
negligible compared to the total current I(z, ¢). From Poisson’s equation
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we shall derive another relation between I, and F,;. This will involve
also the voltage V(¢) and together with (14) will uniquely determine
Iy(t) and Ey(t) for any V(£).

2.8 Physical Picture

The physical picture is shown in Fig. 7(a). The width of the narrow
multiplication region is small compared to the total width W of the
space-charge region. Therefore, in treating the current, space-charge
and field distributions throughout the whole space-charge region, we
shall assume that the multiplication region has zero width so that all
current is generated at x = 0. Then Iy(¢) is a current of holes flowing
out of * = 0, and the only carriers in the space-charge region are the
holes.

The current [(z, {) at any point x and time ¢ is

Iz, ) = 10, t — a/v) = Lt — z/v). (17)

Thus the entire hole and current distributions are given in terms of
Iy(1).

Eq—

~_ _—

inlg—=

—

Ie—>

l
D

L —

t—

AE—>

Fig. 6 — Case of a sharp current pulse.
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Next consider the effect of the holes on the space charge and the field.
The field distribution E,(r) at punch-through is shown by the dashed
curve in Fig. 7(b). If no current flowed the field distribution for any
voltage above the punch-through voltage would be simply £,(x) plus a
constant determined by the voltage. The fixed negative charge in the
p-material gives a drop in field across the space-charge, or depletion,
layer. The positive space charge of the holes opposes that of the ac-
ceptors and hence reduces the drop in field. So, for a given voltage, Iy
will decrease as the current flowing in the space-charge region increases
and flattens the field distribution.

2.9 Fzternal Current

The holes traversing the space-charge region give rise to a current
I, = 1.(t) in the external circuit. /. is equal to the average current flow-

@ SPACE CHARGE
g Io(t) I(x,t)
0 xv
@ = &
o+ v §
®
® 3
® S
Eol(t)
Epo
?
0 (b) W

Fig. 7 — Current (a) and field (b) in the space-charge region.
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ing in the space-charge region. (A rigorous and simple proof of this for
the present case of plane parallel geometry is given in Appendix A.) Thus

1 w
LO = fo I, 1) do
1 w
=2 fo Lt — 2/v) dz (18)

t
L f 1.(0) dr.
T t—r

In other words, the current I, in the external circuit is the total charge in
the space-charge region divided by the transit time r. Fig. 6 shows I, for
the case discussed at the end of Section 111, where I, was a sharp pulse
in the middle of the cycle. From (18) it follows that the average value of
I.(1) is equal to the average of 7o({).

In addition to I, , which arises from carriers moving through the space-
charge region, there is a capacitative current

LAV
I. = (’ﬁ

flowing in the external circuit. When the voltage V() across the diode is
above the punch-through voltage, 7, , the capacity is a constant given
by (2). As discussed earlier, /. is the current required to charge and dis-
charge the diode regarded as a capacitor. It furnishes the variation in
charge at the edges of the space-charge region.

(19)

2.10 Effect of Current on Field

We now show how the space charge of the holes reduces the peak field
for a given voltage. The stability of the device comes from the fact that
current multiplication increases as E; increases but the current carriers
give a space charge that reduces E, .

If there were no current flowing, any increase in V' above ¥V, would
simply raise the entire field distribution by an amount (V' — V,)/W.
Fig. 8(a) is a plot of the difference E'(x, {) = E(z, t) — E,(x) at a given
time. The slope of the £'(x, ) curve is determined entirely by the space
charge of the holes; the effect of the fixed charge is already included in
E,(x). The holes give a charge density I(x, ¢)/v. Thus, Poisson’s equa-
tion is

F o0 =210 = 2 1 — 2/, (20)
ox KU KU
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The excess of V over V, is equal to the area under the curve in Fig. 8(a).
This is equal to WE'(0, {) = W[Ey(t) — Eu] plus the sum of the areas of
a number of horizontal strips like the one shown. The area of such a strip
is (W — z) dE'. So

V@) — V, = WIEQ — Epl + f W - 2) 7511

Substituting (20) into this and setting (" = t — x/v gives

E) = By + % + AEQ),
@1)

AE() = — i_’: f IO =+ 1l

Here AE(t) is the effect of current on the field. The quantity AK is al-
ways negative.

E' (%,b}=E (X,t) -Ep ()

E!

t

0 W —=X
(a)
EF
1‘ +
+
v
+
+
Eq(t)-E +
J olt)-Epo ¥
o] W =X
(b)

Fig. 8 — Effect of carrier space-charge on field.
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211 Effect of a Current Pulse

To illustrate the physical meaning of (21) we return to the example
illustrated in Fig. 6. A sharp pulse of current was generated near the
middle of the cycle. The reduction —AFE in E, due to this pulse is also
shown in Fig. 6. If the pulse iz instantaneous, — AE jumps at once to its
maximum value and then declines to zero linearly in the time r required
for the pulse to cross the space-charge region. The physical reason for
this is easily seen by reference to Fig. 8(b), which shows the same thing
as Iig. 8(a) except that the carrier space-charge is concentrated at one
point, that is, in a pulse. I'or a given voltage (area under the curve), the
reduction in Ey will decrease from its maximum value to zero as the pulse
moves to the right across the space-charge region. I'rom the effect of a
single instantaneous pulse of current on /)y, the effect of any arbitrary
current pulse can be found by resolving it into a series of instantaneous
pulses and superposing the effects. An instantaneous pulse of current, of
charge 3¢} gives an instantaneous drop in field of 478/ .

III. ANALYSIS

We now have two equations, (14) and (21), relating the current /[y(f),
the field Ky(¢) and the voltage V(). Thus in principle the current can be
found for any applied voltage. Actually the exact solution is impractical
except in limiting cases. In this section we present (a) an exact solution
for the linear small-signal case, (b) an approximate analysis for large
amplitudes and (c) a rapidly converging iteration method that yields
solutions of any desired accuracy.

3.1 Vollage

We shall assume that the voltage varies sinusoidally, V() = V, +
Vo sin wf. This will certainly be a good assumption in the small-signal
range, where the diode is linear. The cavity is linear at all amplitudes.
At large amplitudes of oscillation a sinusoidal voltage gives a sinusoidal
apacitative current 7, plus a conductive current /, which approaches a
square wave as the amplitude increases. Thus we are assuming that the
voltage across the cavity is sinusoidal while the current contains a dis-
tribution of higher frequencies. For a cavity like that shown in Fig. 2,
this assumption may be a relatively good approximation. If the cavity
is tuned to the fundamental it may be almost a short circuit for the
higher frequencies.

3.2 Dimensionless Variables

It will simplify the discussion to express everything in terms of dimen-
sionless variables, taking as units parameters that characterize the de-
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vice. For example, W would be unit length, 7, unit time, and FE., unit
field. Then the carriers would travel with unit velocity v = W/r = 1.
Ascanbeseenin Fig. 1, the voltage will be of the order of, but less than,
the unit voltage WE, . It is convenient to choose the unit charge so that
4x/k = 1. Then unit charge produces a unit gradient of field. Since
» = 1, a unit charge moving in the space-charge region givesunit current.
Hence unit hole current in the space-charge region produces unit field
gradient, and the average current I, in the space-charge region is equal
to the total drop in field due to the carrier space-charge. The actual cur-
rent will be small compared to unit current since the curent produces
a drop in field that is smaller than the ac field variation, which in turn is
small compared to E. .

From the choice of units it follows that the diode has unit capacity
and that optimum frequency is @ = . The following table summarizes
the units and gives typical values for a silicon diode with W = 107 em.
MecKay’s data,” plotted in Fig. 3, gives E. = 350 kilovolts per em; the
effective width of the multiplication region at breakdown is taken to be
107" em.

Quantity Unit Example
length W 107% em
time T 10710 see
field K. 3.5 X 10% volts/em
voltage WE. 350 volts
current density :f: = vCE, 3.7 X 10 amps/em?
power density }E Ez? 1.3 X 109 watts/em?

The unit of power is seen to be relatively independent of T, since unit
voltage goes as W and unit current as 1/T. (A given current causes a
greater drop in field across a wider space-charge region.)

3.3 Governing Equations

Since the peak field Eo(f) varies around E. it is convenient to define a
dimensionless field
Ey() — E.
L. ’

Then, for a sinusoidal voltage variation, equation (21) becomes in dimen-
sionless terms

E@) =

E{) = Ey + Vesinet + AFE,

¢ (23
Al = — f L[ — ¢+ ]dtl. )
t—1



422 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1958

Here A is the effect of currenton ¥ and E, the effect of the de voltage
Va . Let I, be the peak field at punch-through. Then, at punch-through,
Eis(lEyy — E.)/E. . If no current flowed, any increase in de voltage above
the punch-through voltage V, would simply raise the whole field dis-
tribution by (Va4 — V,)/W (see Fig. 7). Thus the dimensionless parame-
ter Ky is given in terms of dimensional cquantities by

Bow—FE |, Vi—7V,
T WE

L, = (24)

The value of E, will be very small compared to unity.
In equation (14) we neglect I, and expand the right-hand side in terms
of powers of £ = E(t). It will be sufficient to stop the expansion at E°.

Then

d ~2m+ 1) m ra .
(ﬂlﬂIG_H(E+§ ) (25)
The current through the diode is the capacitative current

I, = CdV/di = oV, cos wi (26)

plus the conductive current I, , where, from (18),
¢

LG = ft L) de. @7)

Average, or de, Values

We shall let ( ) denote time averages and define I, as the direct cur-
rent I = (I, + I.) = (I.) = (ly) where the last step follows from (27).
Averaging (23) gives

= m -4 (28)

or {(AE) = —1I,/2. Since () is periodic, we have, from (25)
(E) + 5 (E*) = 0. (20)

Thus, in the small-signal limit the average field (¥) vanishes, and I; =
2F, , where E, is given by (24).
34 Linear, Small-Signal Case

When all quantities vary by small fractions of their average values,
then the equations separate into a de part and a linear ac part which is
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easily solved. We now derive the impedance as a function of the direct
current 7, for the optimum frequency @ = . The ac voltage is V, sin «t
or, in complex form, Vee'™™. We write Iy = I, + Ioe'™ where Iy, is com-
plex. Similar expressions can be written for [, and . Equations (23),
(25) and (27) give the ac relations

2
inloe = M]dga ,
T1
Toa =5 Ly (30)

’i?r(Vu — En) = I(]u. - Ifu-

From equations (30), V., = Z[., where

1 _ T 3 .
Z = ﬁ[l 2(m + 1)[4] + T’ BD

The current through the diode has two parts, I, and 7, , where I, is
a pure capacitative current. Thus the equivalent circuit consists of a
unit capacity in parallel with an element of impedance Z, where I, goes
through Z. The impedance Z consists of a fixed reactance and a resistance
that varies with the de bias. A simpler equivalent circuit emerges from
considering the admittance Y of the diode. Since the capacity and the
impedance Z are in parallel, ¥ = ir + 1/Z. Here the @ of the diode is
the ratio of the imaginary part Y, of Y to the real part ¥, . From (31)

_ m _ 11'21'1
Q_é[l %n+Dh]

. wQ T
Ve 1+ Q¥ ¥ 1+ @

Thus  varies linearly with 7,/7s and is negative for I; less than
[7*r1/2(m + 1)]. When I4is equal to this eritical value the diode becomes
an open circuit for this frequency. This means that none of the alter-
nating current generated in the multiplication region flows out of the
diode. Rather it flows into the edges of the space-charge region and pro-
vides the current that charges and discharges the diode regarded as a
capacitor. In other words, the unit acts as a capacitor generating its own
charge internally. Hence voltage can vary with no external alternating
current.

(32)

3.5 Fquivalent Circuit

Lquations (32) deseribe a simple equivalent circuit consisting of a
fixed unit capacity in series with a conduetance =@, where () depends on
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the dec bias. The equivalent circuit suggests the following practical con-
clusion: If the cavity is designed to act like an inductance in series with
a variable load resistance, then the load resistance can be made equal to
the negative resistance of the diode, so that the two resistances cancel,
and the equivalent circuit consists of the fixed capacity of the diode and
the inductance of the cavity. Hence at small amplitudes the resonant
frequency will be independent of the de bias.

3.6 Sharp Pulse Approximation

As the oscillation builds up, the behavior rapidly ceases to be linear,
and it is impractical to solve the equations exactly. However, as we have
seen, when the amplitude increases the current Iy(¢) approaches a sharp
pulse and 7.(t) approaches a square wave as shown in Fig. 6 for the opti-
mum frequency @ = 7. The average current [, is half the maximum. In
the limit of a sharp pulse the problem again becomes simple. We now
derive some approximate relations for this case, and show how the
oscillation can be stabilized.

The power delivered P, is

2
P=— ——f I.(t) sin «t dt.
o

We can substitute (27) for /.(¢) into this and reduce the double integral

to a single integral by integrating by parts. The result is

2V
™

P, = {Iy(t) cos wt) (33)

where again the brackets denote the average over a cycle.

Thus, if the current /7, is generated in a pulse near the middle of the
cyele, where cos «f is negative, P, will be negative and power will be de-
livered to the ac signal.

We define the @ of the diode as 2 times the ratio of the energy stored
in the capacity to the energy lost in a eycle. The stored energy for unit
capacity is V.'/2. The energy lost is the negative of the power delivered,
P, , times the period 27/0 = 2. So

1 4 (L(l) cos wt)
Q = V.
Let the pulse of current occur at a time 4 . Then in the limit of an in-

stantaneous pulse (34) becomes

1_ —4-, T cos 7t . (35)

Q m Va

(34)
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The phase relations will be ideal for # = 1; that is, when the pulse
occurs in the middle of the cycle. In this case —@) increases with V, for
constant direct current, so the oseillation is stable.*

We now consider how # depends on V', and the de bias. The current
pulse becomes sharper as V, increases and . decreases, as can be seen
from (16). In the limit of vanishing 7, the pulse becomes instantaneous
and the problem can be solved exactly. This is done in Appendix B.
Here we give a simple physical argument that will be a good approxi-
mation so long as the duration of the pulse is small compared to a period,
as will be the case in the range of practical operation.

Fig. 9 shows E() = FEy + V. sin ot + AFE for the case where the
current pulse occurs at an arbitrary time # . As illustrated in Fig. 6, a

E(t)
A

Eb"] - -

5

Tig. 9 — Variation of peak field with time for sharp current pulse.

current pulse causes AE to drop abruptly and then rise linearly to zero
in a transit time. Let %5 be the abrupt drop in E. We have already seen
that the average AE is —I4/2. Since AE is a triangular wave, lasting
half a cycle, it follows that the maximum is four times the average; so
Iy = 21, .

Let us consider in some detail the relatively short interval during
which current is being generated. The holes can move only a short dis-
tance during this time. Hence, as seen from Tig. 8, the field will drop
by an amount roughly proportional to the amount of charge generated.
It will, therefore, have dropped by £;3/2 when half the charge has been
generated. The pulse will be roughly symmetrical and will have reached
its peak when half the charge has been generated. The current is a maxi-
mum at E() = 0 since it builds up for positive £ and decreases for
negative K. Thus, during the first half of the pulse /£ drops to zero, the

* T am indebted to J. L. Moll for pointing out the advantage of applying the
bias with a constant direct current generator.
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drop being #5;/2. During the second half of the pulse the field continues
to drop to —F;/2. This is shown in I'ig. 9. Before the pulse occurs the
field is () = £, 4+ sin «t. Hence in the limit of an instantaneous pulse
E, 4+ V,sin oty = K3/2. Since Ky = 21,

Ii=FEy+ V,sin oty . (36)
Eliminating (&) from equations (28) and (29) gives another relation
between [; and F :

Io = 2B, + (@) (%,

Since Ky, Ve and —AFE = 21, are all small compared to unity, the only
contribution to (E*) that cannot be neglected in comparison with I,
and By, is (V. sin® wt) = V,2/2. 8o we have

I, = 28, + (ﬁ)) V.. (37)
Eliminating £, between (36) and (37) gives

. I, )

sin 7t = 5V, + T Va. (3%

When the right-hand side is larger than unity the current cannot be
an instantaneous pulse. What happens then is that the current varies
almost sinusoidally and produces a space charge which keeps % small
at all times. In this case the phase relation between the voltage and cur-
rent makes ¢ positive.

In practice, we begin with a small enough bias current so that I4/2V,
has become small before the oscillation has built up to the range where
the sharp-pulse approximation is valid. The effective @ of the cavity will
be chosen so that the oscillation will be stabilized before (m/4) V, be-
comes conmparable to unity. For example, suppose we take Iy = V,/2
as discussed in Section I. Then —cos «t; will have dropped only to 0.85,
even for as large an amplitude as V, = 0.2. For ¥, = 0.1, cos =f; would
be —0.92.

3.7 Constant dc Vollage Bias

If a constant de voltage bias V4 is applied then Fj is constant. As the
oscillation builds up /s increases in accord with (37).
In terms of Ity and V., , equations (35) and (38) become

8(E,  m
= P(ﬁ"i'zv'n) coSs '1Tt1, (39)

1
Q
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and
. Eb m
sinwl = — + = V,. (40)
Vo 2

The solid curves in Fig. 10 are plots of —1/@ vs V, for two values of
By . In the range shown, cos =t is approximately —1. The curves, there-
fore, have minima at V, = 24/8,/m. As V, increases, —1/Q will even-
tually reach a maximum and begin to decrease because the term (m/2)V,
in (40) will become important, and the pulse will occur too soon in the
cycle. This range lies beyond that shown in Fig. 10.

At the amplitudes shown in Fig. 10, and especially in the stable range,
the main error in the above approximations comes from the fact that
the pulse is not sharp. We now turn to a method of obtaining more ac-
curate results at low amplitudes.

3.8 Iteration Method

Equation (25) gives Iy(f) when E(f) is known and (23) gives F(¢)
if 1y(t) is known. Thus we can guess at K(f), find the corresponding
1y(t) from (25) and use it to determine a new KE(f) from (23), and so on.
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Fig. 10 — Variation of @ with amplitude for several de voltage biases.
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Fig. 11 — Converging solutions for Io(t).

Tor the initial E(f) we take the instantaneous pulse solution. The pro-
cedure converges rapidly and results in solutions of any desired ac-
curacy. In finding Ioy(f) from E(f) in (25) a constant of integration,
1,(0), is involved. What is found directly from E(f) is Io(t)/10(0); 10(0)
is so chosen that the next E(f) will satisfy the condition (29) that the
following Io(f) be periodic. The procedure is discussed in more detail in
Appendix C.

Iig. 11 shows plots of 7y(¢) for 7 = 0.05, F, = 0.004 and V, = 0.03.
The various iterations are numbered. The values of —1/¢) in successive
iterntions were (to four places): 0.1416, 0.1330, 0.1321 and 0.1321. Tig.
12 shows —AE vs ¢t for 1, = 0.05, E, = 0.004 and various values of
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Va. The corresponding 73(t) curves are shown in Fig. 13, and I,(2)
curves are shown in Fig. 14.

Iig. 10 is a plot of —1/Q vs V, for various values of %} and 7, . The
points were obtained from the iteration procedure and the solid curves
from the sharp-pulse approximation. As expected, this approximation
improves as V,, E, and 1/7, increase. With £y = 0.004 there is a mini-
mum for 7 = 0.05 but none for r; = 0.1. In the former case stable os-
cillations would be possible at amplitudes below about 0.035.

3.9 Inlermediale Amplitudes

We now have solutions for the linear small-signal range and for the
large amplitude range, where the sharp-pulse approximation is good.
However, there remains an intermediate range where the current varia-
tion is too large for the small-signal analysis to apply but not large enough
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Fig. 12 — Variation of —AE with time for several amplitudes.
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“for the sharp-pulse approximation to be valid or even practical as a start
for the iteration procedure. This range can be dealt with by an approxi-
mation that becomes more accurate as —@ increases and can be within
10 per cent even for —Q as low as 7. The results show how I,(¢) changes
from a cosine wave to an increasingly sharp pulse as V, increases.

If @ is small compared to unity then, in the small-signal case, —Q =
7Va/Tes, where I,, is the amplitude of variation of f,. The same is
true at large amplitudes if 7,(¢) is analyzed into a Fourier series and
I taken as the amplitude of the fundamental. In the linear small-
signal range, 1., is proportional to V, so —Q is constant. If I, is kept
constant as the amplitude builds up, then 7., increases less rapidly than
V.. This can be seen from the fact that V, can increase without limit
while 7.(f) approaches a square wave of amplitude 74, for which 7,, =
(4/7) 1. . Thus Q approaches — (x°/4)(V./I.) as given by (35), for t; = 1.
The phase shift, «f, , between voltage and I, is cot™ . We have seen
that I, is always 180° out of phase with the peak field. Therefore, if —Q
is large enough so that [, and voltage are approximately 180° out of
phase, the peak field is in phase with the voltage and we can use equa-
tion (16) with K, = V,. The current [,(f) is then

In(t) = [O(O)e*z(l—cosn),
_ 20m + DV, (41)

mT1

€T

This is seen to approach a pulse of increasing sharpness as V, increases,
and to reduce to the small-signal results as V', approaches zero.

The @ ean be found from (35) and (41). From (35) 1/Q = (4/7°)
(14/Va)f(z), where

_ (Iu(t) cos 1rt> _ d [T

n —_ —zxcosf ¢
f(l) = W dz b e de. (42)

The function f(z) is the ratio of the first to the zero order Bessels fune-
tions of pure imaginary argument. As x decreases, f(zx) approaches x/2,
which means that @ is constant. As x increases, f(x) bends over and
approaches unity asymptotically. Values are f(1) = 0.45, f(2) = 0.70,
f@) = 087, f(8) = 094 and f(16) = 0.97. When [, is constant,
/@ = 2f(x)/x, where () is the small-signal @). Thus the curve of —1/Q
vs V, starts out flat and then decreases and approaches the form 1/V,
as V, inereases. This is illustrated by curves | and 2 in Fig. 15.

If the —1/Q vs V, curves for constant [, are calculated from the sharp-
pulse approximation [equations (35) and (38)], they have the form of
the solid curves 3 and 4 in Fig. 15. As V, decreases, the caleulated —1/Q
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goes through a maximum. For I below about 4/m, the maximum would
oceur at about V., = I./+/2. However, as V, decreases, the sharp-pulse
approximation will break down. If 7, is small enough so that the small
signal Q is negative, then the sharp-pulse approximation must break
down before the maximum is reached, since, as we have seen, —1/Q
inereases monotonically as V, decreases. So the curves have the form of
curves 1 and 2 in Fig. 15. However, if the small-signal @ is negative,
then the curves have the form of curves 3 and 4 and the sharp-pulse
approximation breaks down in the range of positive @ (shown dotted in
Fig. 15). In this range the current varies roughly sinusoidally and pro-
duces a space charge that keeps the field variation small.

IV. OPERATION

In this section we consider in more detail some of the practical ques-
tions about the design and operation of the diode. In particular, we dis-
cuss the stability for both constant current and constant voltage bias,
the limitations on both de bias and ac amplitude, the effects of heating
and finally the frequency dependence of the effective admittance.

41 Stability at Constant Direct Current

Fig. 15 shows the form of the variation of —1/€ with voltage ampli-
tude V, when the bias is applied with a constant direct current generator.
The oscillation will be stable at any point where —1/Q is decreasing
with V, and the (s of cavity and diode are equal in magnitude. The
horizontal dashed line in Fig. 15 represents the effective 1/Q of the
cavity. Thus the oscillation can be stabilized at the points A, B and C.
The curves are numbered in order of increasing direct current Ig. If
the direct current is turned on slowly compared to the response time
Qr of the diode, the oscillation will begin when 7, is slightly above the
value for curve 1. Thereafter the oscillation will build up and V. will
increase as I, increases. By slowly varying /4 we can establish a stable
oscillation at any desired amplitude.

By raising I, rapidly enough we could get onto curves 3 or 4 while
the amplitude was so low as to be in the unstable range. The oscillation
would then start but quickly die out.

Because of the nonlinearity of the diode, the de voltage will vary as
V. increases at constant I, . Eliminating E, between (24) and (37) gives

To=2Va—V, 4+ En— 1) + 7-; V., (43)
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Va—>
Fig. 15 — Variation of @ with amplitude (schematie) for constant direct current.

where 17, is the peak field at punch through (taking [, as unit field)
and like V, is a constant of the diode.

4.2 Stability at Constant de¢ Voltage

When the bias is applied by a constant voltage, K, will be constant
as seen from equation (24). Curves for several values of F, and
71 were shown in Fig. 10. The small-signal @ is given by (32) with
1, = 2F,. As F, is raised, the small-signal ¢ will become negative
and —1/Q will rise. If Q). , the effective @ of the cavity, is small enough
the oscillation will initially be stable. For example, in Fig. 10, if
i = 0.05 and 1/Q. = 0.16, the oscillation will begin when F, is raised
to about 0.004. As F, is further increased, the amplitude V, will
also increase. However, as seen from the figure, the oscillation will
not remain stable as k), increases uumless 1/). also increases. For
example, at £, = 0.008 the minimum —1/€ is almost 0.18. We have
seen that at large enough amplitudes —1/Q reaches a maximum and
decreases to zero. Thus, if £, is increased with constant ., the ampli-
tude will suddenly jump from the range shown in Fig. 10 to a much
larger value. In the range where the sharp-pulse approximation is good,
—1/Q is given by (37) and (40). For example, when V. is large com-
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pared to (4/m)E, , we have, approximately,

1 4 .
@' = —;l:Vasm%rn,

(44)

. m
sin 7, = 5 Va.

So there is a maximum in —1/Q at V., = 4/2/m. The maximum will
be at lower amplitudes for larger Ej .

Tt is seen from (39) and (40) that the oscillation will always be stable
when V.2 is between two and four times E,/m, provided E, is large
enough that the sharp-pulse approximation is good in that range. Thus,
with constant de voltage, the oscillation can be stabilized at any ampli-
tude, but to reach the operting point it may be necessary to vary the @
of the cavity as the bias voltage is increased.

In the remainder of this section we shall consider several effects, such
as heating, which may cause the power and —1/Q to decrease with in-
creasing amplitude. These may limit the maximum power output (es-
pecially at low frequencies) and may also be used to stabilize the oscil-
lation in the case of constant de voltage.

4.3 Efficiency
We define the efficiency, ¢, as the ratio of theac power, P, , to the power
P, delivered by the de voltage or current source; therefore,
Py = Vi, (45)

The power P that goes into heat is the difference Py = Pa — P,.
Therefore,

P, Py

P;=—= .

4 € 1 —c¢

Later in this section we consider the temperature rise caused by P .
At the optimum frequency, w = ,

P, 2 Va (Io(t) cos «t) (47)

(46)

At small and intermediate amplitudes this can be evaluated by (41)
and (42), which hold when —@ is well above unity. In the sharp-pulse
approximation

2Va
€= — A%—COS wh . (48)

T Va

Il

Thus, for V. = Va/2 and & = 1, the efficiency would be over 30 per cent.
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4.4 Limitations on Bias and Amplitude

IFor a desired operating amplitude we want V4 to be as small as pos-
sible to maximize the efficiency. However, as discussed in Section I,
the minimum V; is limited by the requirement that the field in the in-
trinsic region must not become negative during the negative half of the
voltage eycle, and the maximum V, is limited by the necessity of keeping
the multiplication localized. We now consider these requirements in
more detail.

In the analysis, we have assumed that the field in the intrinsic region
is always high enough so that the carrier veloeity remains constant,
independent of field. However this will not be so at large enough ampli-
tudes. The field may, in fact, momentarily become negative. This would
reduce the negative resistance and eventually destroy it. The effect of
field on velocity gives both an upper limit on the allowable amplitude
for a given bias and a method of stabilizing the oscillation at any desired
amplitude.

The minimum field will occur in the intrinsic region and at the trail-
ing edge of the pulse of holes advancing to the right, as illustrated in
Tig. 8. The minimum field will fall below the constant-velocity range
only at high enough amplitudes so that we can use the instantaneous
pulse approximation. The holes will then be closely bunched as in Fig.
8(b). The pulse causes a drop in field equal to the current /., which is
21, during the half cycle that the pulse is moving. The field E; immedi-
ately behind the pulse is, therefore,

Et) = Va— Vp+ Vasin mt — 2La(1 — ¢ + ). (49)

This has a minimum at a time & where

cos wly = —

E RS

1
Va’ (50)
T < wh < 3n/2.

Equation (38) gives £, and (43) gives I, in terms of V4 — V,and V,.
Thus for a given diode the minimum E; = E;(fs) is determined by the
voltage bias and amplitude.

In general, the average field will be well above the range where ve-
locity depends on field. Hence we can take E.(t:) = 0 as the critical
condition where the drop in velocity in the negative half of the cycle
begins to reduce the power appreciably. As V, increases, the minimum
E; decreases. If the direct current is held constant, so that the oscilla-
tion is stable, then we will want V; — V, to be large enough to build up
V. to the desired amplitude without reducing E; below zero and thereby
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losing power. However, V4 should be made as low as possible to maxi-
mize the efficiency. Thus E.({-) = 0 is an optimum condition for opera-
tion at constant direct eurrent. On the other hand, if we wish to operate
with constant de voltage and in the range which would be unstable for
constant velocity, then V4 should be low enough so that the velocity
variation will come in at the desired amplitude and stabilize the oscilla-
tion; so the condition E;(fz) = 0 would not only be optimum but neces-
sary.

We have seen that ¥;(t:) depends on Vg — V,, V, and the peak field
E, at punch-through. Thus for a given diode E;(fs) = 0 gives a relation
between V4 — V, and V,. The quantity V, and the corresponding
Vi — V, could then be chosen to maximize the power. However, an
upper limit on the voltages is set by the necessity of localizing the multi-
plication. The field throughout the intrinsic region must be well below
the breakdown field, especially when the current is flowing. From Fig.
8(b) the field at the leading edge of the current pulse is Vy — V, 4 V.
sin wt + 2[4({; — t). This determines how many hole-electron pairs the
pulse of holes will produce in moving across the space-charge region.
The holes produced join the pulse and add to the power. However, the
electrons moving in the opposite direction will disturb the phase rela-
tions.

In the arguments above V, occurs only in the combination Vy — V.
It is therefore desirable to make V', as small as possible so that Vg is
small and e large.

Both the voltage V, and the peak field ¥, at punch-through are de-
termined by the impurity distribution in the p-region. The amplitude
at which the diode is designed to oscillate will fix the choice of F, .
The larger the desired amplitude, the smaller £,, . However, if E is too
small the multiplication will not be localized.

4.5 FExample

We may illustrate the above discussion by applying it to an actual
design. In the discussion at the end of Section I we took Va4 = 2V, = 41,
as a reasonable operating condition. This would give an efficiency of
about 30 per cent. To operate at an amplitude of V, = 0.2 would then
require that V4 — V, be no less than 0.275. For W = 107 and a unit
voltage of 350 volts this would mean V, = 70 volts, V; = 140 voltsand,
for optimum operation, V, = 44 volts. These parameters are reasonable.
In fact, both V4 and V, could probably be slightly lower so that the ef-
ficiency would be higher.
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4.6 Heating

The power P, that goes into heat will cause the temperature of the
diode to rise above that of the surroundings. We shall assume that the
surface of the cavity is kept at constant temperature. If the radius £
of the diode is small compared to the radius of the center post of the
cavity, as in Fig. 2, then heat can flow away from the diode in almost
all directions. The diode can be made thin enough and mounted suffi-
ciently close to the metal so that the temperature drop in the silicon is
small compared to that in the metal. Let AT be the difference between
the diode temperature and the temperature of the surface of the cavity.
Then AT is related to P, and R by the formula for spreading resistance

_ PR

= = ~
AT i (51)

where K is the thermal conductivity of the metal. For copper, 4K = 16.7
watts per em per °C.

The temperature will rise to its equilibrium value in a time of about
R*/D, where D is the coefficient of thermal diffusion, which isaboutunity
for copper.

We may now apply these results to the examples discussed at the end
of Section I assuming an efficieney of § so that Py = 2P, . The 50 watts
of power output at 5,000 megacycles and R = 0.03 em would produce a
temperature rise of about 60°C. At 500 megacycles and B = 0.3, how-
ever, the 5 kw maximum power would raise the temperature by about
600°C. Thus at low frequencies the maximum power output in continu-
ous operation would be limited by heating rather than by how small
the impedance L of the cavity can be made. However, the time con-
stant of the temperature rise for B = 0.3 em would be almost a tenth
of a second, so the temperature rise in pulse operation would not be
serious.

4.7 Effect of Temperature on Critical Field

MeKay® has found that the critical field increases with temperature.
For eritical fields between 250 and 500 kilovolts per em in silicon, a
change in temperature changes the critical field by 0.05 per cent per °C.
Increasing the critical field effectively decreases the de voltage and cur-
rent. Thus when the diode begins to get hot it effectively reduces its
bias. The heating will therefore stabilize the oscillation.
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4.8 Effect of Reverse Saturation Current

In silicon the reverse saturation current will become important only
at large amplitudes. In the small-signal range it is easily shown that
I, can be neglected if it is small compared to w[rri/2(m + 1)]* which
will be of the order of 107, or a few amperes per cm® for W = 10~° em.

Even at large amplitudes /, will be small compared to the average cur-
rent and will have a negligible effect on the space charge. However, as
V., increases, the ratio of the maximum and minimum values of I, (which
varies exponentially with V,) will increase much faster than the maxi-
mum 7, . Thus the minimum 7, becomes very small at high amplitudes.
It cannot, however, fall below I, .

If the effect of I, is included, the equation (25) for current generation

becomes

%1%11110=(m+1)(ﬂ+§1a2)+%. (52)
As V, increases and the minimum I, decreases, the term I,/f, becomes
important near the current minimum, and prevents the current from
becoming too low. Thus 7, will be important in the equation only near
the current minimum. However, by increasing the minimum 7,, I,
also increases subsequent values of I; and hence increases the associated
carrier space-charge. The carrier space-charge will therefore shut the
current off (by reducing the field) earlier in the cycle. This will reduce
the delay between voltage and current and so reduce the power.

The amplitude at which I, becomes important can be roughly esti-
mated as follows: From (41) the ratio of maximum and minimum values
of I is related to V, by

TT1 1 Imnx

Ve = fm 1) ™ I

" Imin
A formula for 7. is derived from the instantaneous-pulse approxi-
mation in Appendix B [equation (63)] 11. In practical cases, where I,
will be of the order of 107, [ ,.x is seen to be of the order of unity. At
room temperature the reverse saturation current in silicon can be made
less than a microampere per em’, which is a dimensionless current of
around 107" in the kme range. Thus the minimum I, will be greater
than I, if V, is no larger than about 2.6 . To operate at an amp-
litude V, = 0.2 we therefore want r; to be no smaller than 0.07.

The effect of I, is treated in detail in Appendix D and more general
relations are found to replace (37) and the equations derived from it.
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4.9 Frequency

So far we have considered only the optimum frequency w = #/7 = .
The small-signal analysis is easily carried out for arbitrary frequency.
The admittance ¥ of the diode is found to be

day[(1 — cosw) + #(2y — sin )]
2y — 2y sinw + 2(1 — cos w) ’

_w |: 1 — w21'12 ]
¥y=3 20m + DIa ]’

This reduces to (32) for w = 7. When —y is well above unity, it can
be held constant by varying I, in proportion to «”. Then —1/Q will vary
only with the phase factor 1 — cos w. Thus by varying I; the device
can be tuned mechanically over a frequency range extending from 2
to 4 of the optimum frequency.

At large amplitudes the current no longer varies sinusoidally. However,
as mentioned in Section III, the cavity may be almost a short circuit
for frequencies higher than the fundamental. Hence, to evaluate the diode
as an element in the oscillator, we can analyze the current I, + I, into a
Fourier series and retain only the fundamental. The relation of this to
the ac voltage then defines the conductance, G, and capacity, C, of
the diode. The results are

2

G = ~ [{Zo(t) sin wt) sin @ + (£4(2) cos wt)(1 — cosw)],

Yiw) =

(53)

(54)

¢ =1+ ;2_21/— [(£o(2) sin wt)(cos w — 1) + {I(t) cos wt) sin w]

lI

where again the brackets denote time averages. When current and volt-
age are approximately 180° out of phase, we can use (42) to evaluate
the time averages in (54).

In the sharp-pulse approximation the averages become I, sin wf; and
I 4 cos wi; respectively. Equation (37), which is independent of frequency,
remains valid. Since the drop E; in field is (47/w) times the average
(—AE) = I4/2, the general form of (36) becomes

™

- Id' = .Eb + I’ra Sil’l wtl . (55)
w

Above the small-signal range the admittance ¥ = G + iwC of the
diode depends on voltage amplitude as well as on frequency and direct
current. Ior stable oscillation the admittance ¥V = Y(w, 14, V,) of the
diode is equal to —Y ., where Y, is the admittance of the cavity. For a
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given setting of the plunger (I'ig. 2), ¥. = Y.(w) depends only on the fre-
quency. Thus the frequency and amplitude of oscillation are determined
in terms of the direct current by Y(w, f4, Va) + Ye(w) = 0. When I,
1s varied both V, and « will vary. However, it is not certain whether the
variation of frequency with 7, could be made large enough for a practical
frequency modulation device. Near the optimum frequency and bias
the frequency will remain relatively constant as I; and V, vary. Thus
the frequency is primarily determined mechanically by adjusting the
height of the cavity (Iig. 2) and the amplitude of oscillation is deter-
mined electrically by the bias.

410 Zener Current

In sufficiently narrow junctions, where breakdown occurs, the rate
of generation is an extremely sensitive function of field. So, as in second-
ary emission, the generation can be highly localized. The diode could be
made to operate by Zener current rather than multiplication if the p
region is sufficiently narrow. However, the conditions for negative re-
sistance would be less favorable. The current [, generated by field emis-
sion is a function of the peak field E,. Hence [, and E; are in phase, so
all of the delay has to come from the transit time. For ideal phase rela-
tions at large amplitudes the bias should be such that the current is
generated mainly in a short burst near the voltage peak. Then, if the
transit time is 2 of a cycle, the current, I, , will flow during the last three
quarters of the cycle and power will be delivered to the ac signal. How-
ever, the @ and efficiency are considerably lower than for secondary emis-
sion. The small-signal @ can he varied by varying the bias. A small
change in bias will change dI,/dE, drastically (since we are on the knee
of the current-voltage curve). For the frequency 0.75/r, the minimum
—Q is 25 at small signals and over 100 at large signals. The latter might
be improved somewhat by increasing the frequency in relation to 1/r.
The efficiency could probably not be raised above about 5 per cent
without ruining the Q.

An analysis of the diode operation on Zener current is discussed in
Appendix E.
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APPENDIX A

Derivation of I,

We first give a simple analytical derivation and then a physical argu-
ment. A more general proof is given by Shockley (1938).
Subtract (4) from (3) and use Poisson’s equation

aFE  4mq
w2

for p — n. The result is*
d | « oF
I
l:‘hr at T :l

In other words the quantity in brackets is a function of time only and is
the same, at a given time, throughout the length of the diode — not
only in the space-charge region, but also in the ends. The current in the
ends, or leads, is . + I, . Let the ends be of sufficiently low resistance
so that the field can be assumed to vanish there. Then

k OF
4 ot

—n+ N)

+I=1I+1.

Averaging over the length W of the space-charge region and using
C = «/AxTV gives
; w
¢ + Tde =1 +1,.
di o

The physical argument can be illustrated by Iig. 8(b). Let a small
pulse of charge 8Q be generated at x = 0. It causes a drop in
field 85 = (4x/x)5Q. If the field at the edges remains constant as the
pulse moves, the voltage will drop at a rate v8F = (4r/x)véQ. There-
fore, if the voltage is to remain constant, a current 87, must flow in the

* (3. Weinreich (private communication) has pointed out that this is a specigl
case of the general three-dimensional result

divl:—f—ﬁ-]--f:' 0
47

< d 4
— 1
at + c

which follows from

4l

curl Ti=

o=

and div eurl =
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external circuit and increase the voltage by adding charges to the edges
of the space-charge region. The rate of voltage increase will be 81,/C.
Setting this equal to v8E gives 61, = 6Q/7 = v6Q/W.

APPENDIX B
Instantaneous Pulse

The equations can be solved exactly for any amplitude and bias in
the limiting case of 7 = 0. As we have seen, the current I, approaches
an instantaneous pulse. This solution will give reasonable approxima-
tions to the @, efficiency and power for actual cases if the effective dura-
tion of the current pulse is a small fraction of a cycle. We let the fre-
quency « be arbitrary but less than 27 /w, so that only one current pulse
is flowing at a time. The solution is completely specified by the time #
at which the pulse and the discontinuity in field oceur and the magni-
tude E; of the discontinuity. From (AE) = —I4/2 and the form of AE(Z),

E; = ir (— AE) = .. (56)
w w
The condition that I be periodie is
(B) + 5 (E") = 0 57)

where F = E, + Vi, sin wt — E3(t — &) in the internal from ¢ to ¢, 4 1
and E = FE, + V, sin wf at all other times. Thus (57) is a quadratic
equation for Fj; as a function of Ey, V, and ¢ . Only the smaller of the
two roots is meaningful. When E, and V, are small compared to unity
(57) reduces to (37) and is independent of ¢ .

To obtain another relation between # and E; we solve (23) and (25)
and find the relation between I, and E during the pulse. In the limit of
an instantaneous pulse, ¢ in equation (23) does not vary during the pulse,
so dE = —Iydil. We can use this to eliminate d¢ in (25). Then integrat-
ipng we have the relation

Iumx - Iﬂ = M E2 [1 + ? E:| (58)

1

for Io(t) as a function of E(f) during the pulse. The values of E at the
beginning and end of the pulse are found by setting I, = 0 in (58).
Let E, be the field at the beginning of the pulse. Then

El = E;, + Vn sin wh N (59)
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and the maximum [ is

Lo = T DEC (1 + %‘E) (60)

T1

Neglecting terms in /£, in comparison with unity, (58) gives

By = 28, (1 + ’“;’) (61)
Combining this with (57) and (60) we have
Ey 4 Vasinwl = T I, (1 —mr Id). (62)
w (%)

In practical cases, the term (mr/6w)la = Ia can be neglected in compari-
son with unity. Then (63) becomes (55). This, together with the quad-
ratic (57), determines /5 and ¢ for any Ey and V,.
From (60) and (61),
_m+ DB _wm A 1)
d

Imax - -
47, wiry

(63)

Thus the effective duration of the pulse Af = Ta/Tmax 18
ClJuTl
Al = —————.
w2 (m + 1) M4

So the pulse becomes sharper as 7, decreases and I, increases. We can
estimate the aceuracy of the instantaneous pulse approximation by com-
paring Af with the period 27 /c.

(64)

APPENDIX C
Iteration Method

The procedure in detail is the following: Each iteration goes from an
E(t) through an Io(f) to a new E(f). In the first iteration we have to guess
at E(t). The procedure has been to begin with the £(f) corresponding
to the instantaneous current pulse and illustrated in Figs. 6 and 9. The
magnitude F; of the discontinuity is chosen to satisfy

(E + (m/2)E*) = 0.
The time {; when the discontinuity occurs is found from (40). Putting
this E(¢) into (25) and integrating gives a periodie Io(f) /1o(0) from which,
using (23), we find a function F(f) = — AE(t)/I,(0). Putting E = E, + V,
sin 7t — L(0)F(t) into (E + (m /2)E*) = 0 gives a quadratic equation
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for 1,(0). Only the smaller of the two roots is meaningful. From the
known F(t) and 7,(0) we have a new [K(f). Since it satisfies
(E + (m/2)E*) = 0, the I,(t)/1o(0) calculated from it in the following
iteration will be periodic.

To plot I(t) in Fig. 11 we have determined both I4(f)/1o(0) and
1,(0) from the same E(f). The quantity ,(£)/74(0) is found from (25) and
1,(0) is chosen to satisfy (I,) = —2(AE). This relation is automatically
satisfied if AF(f) has been determined from /,(¢) using (23). However,
only in the exact solution is it satisfied if To(f) was determined from
AE(#). To determine I(0) from AL(f) we have

— 2AEQ)

/Iu(t) \
\7o(0)/

where 1,(t)/14(0) is found from AE(f) using (25) with £ = E, + V.,
sin wf + AL. The value of I,(0) found in this way, in each iteration,
was compared with the value that makes the following 7,(f) periodic.
When the two values agreed within a specified amount, usually taken
to be about one per cent, the iteration procedure was terminated. The
procedure was programmed on an I.B.M. 650 Magnetic Drum Caleu-
lator. The machine would give a solution of the required accuracy in
about four iterations, or forty minutes, on the average.

In one case, where the current peak occurred at# = 0.92, the itera-
tion procedure was repeated starting with &4 = 0.85. The peak in suc-
cessive iterations moved from 0.85 to 0.92. In other words, the final
result was independent of the initial # . However, more iterations were
required for a poor initial choice.

Io(o) =

APPENDIX D
Effect of 1,

Tt is convenient to consider the solution for a single cycle extending
between two current minima. The effect of I, will be important only
near the ends of the cycle where 7, is small and the term 7./, cannot
be neglected in (52). Let the solution be f(1)14(t) where ,(t) is a solution
for I, = 0 and is the correct solution during most of the cycle. Then
f(t) will be unity during most of the cycle and will rise sharply at the
beginning and end of the cycle. Since the current is always positive,
each rise in f({) must be less than unity. The condition that the current
be periodic is A In f + A In I, = 0, where A denotes the change during
a eyele. The change in In 7, is found by the same procedure that led to
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(37). If Af is the total change in f in a eycle we have, instead of (37),
9 R
In (u + Af) ~dx(m 4+ 1) |:Eb _ %@ gm Vﬂ_]. (65)

2 —Af N wT1 n
Replacing Iy(f) by the correct solution f{(£)1o(t) in (52) gives
df 21,
& nd (66)

To determine Af we need to solve this only in the short interval near
the current minima where f is changing. In practical cases the current
will have stopped flowing slightly before the end of the negative half of
the cyele. Hence when f is changing, £ + (m/2)E* will vary as Vet and

In [][](t):l = —_(m + DVl (67)

Imin 71

where i, is the minimum of 7y(¢) and ¢ = 0 is taken at the minimum.
Substituting (67) into (66) and integrating over the short interval where

[ is changing gives
215 m™ .
Af =% - (8
J Lin /‘/(m + 1) Vawr (68)

The ratio of Luiw t0 Tuay is found by integrating (25) from the current
minima at £ = 0 to the maximum at ¢ = £ . At the amplitudes where
the effect of [, is important we can use the sharp-pulse approximation,
so K = K, + V, sin of during this interval. The quantity 7,..« is given
by (63). Thus Af is found in terms of %, , V; and ¢, . Equation (65) now
replaces (37) and together with (55) determines & and 4 for a given
voltage bias and amplitude.

APPENDIX E
Zener Current

The small-signal case is easily solved. The ac variations in /; and ¥,
are proportional. At large signals it is probably a good approximation
to say that (a) no current iz generated until Ky has risen to a critieal
value, which we shall define as F., and (b) thereafter fy will be such as
to keep [y from rising above L. . Thus (25) is replaced by I, = 0 for
E < 0and E = 0for [, > 0. Equations (23) and (26) remain unchanged.
The current 7.(¢) will flow during the following three intervals:

(A) Beginning at the time ¢4 when £, = [, current begins to be
generated and continues to be generated until a time 4, when no more
carrier space-charge is required to keep £, from rising above F., that
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is, to keep E from becoming positive. The last holes to be generated
will have been generated before the first have crossed the space-charge
region. During this interval, I, increases from 7.(t) = 0 to its maximum
1.(t,), while I, jumps at once to its maximum at { and thereafter de-
clines, reaching zero at ¢, . The governing equation is

L dle
dt

This can be obtained by physical reasoning from Tig. 8 or by differenti-
ating (23) and (26). Equation (69) is easily solved, subject to I.(t) = 0.
The time ¢4 and the maximum current 7.(4) are found from dI,/dt = 0
att = 1t;.

(B) From the time, £ , when I, reaches its maximum and 7/, drops to
zero, until the time f, + r, when the first holes to be generated reach
the i-p™ junction, 7, remains constant and equal to /.(4). A constant
number of holes are moving with constant velocity across the space-
charge region.

(C) Between #, + 7 and & + 7 the holes generated in the first interval
are flowing out at the i-p* junction. Since the first holes to be generated
are the first to flow out, [,(t) = I.(t)) — I.(t — 7) during this interval.

Thus, by solving (69) for I.(f) in the interval 4 = ¢ = 4 we know
I(t) throughout the cycle. Except in the first interval, E = 0 and [, = 0.

The equations have been solved for the frequency 0.75/7 or w = 37/27.
The Q is a function of wfy , which is determined by the voltage bias and
amplitude. The @ is negative for 13° < oty < 90°. The maximum —1/Q
is about 0.0095 and occurs at about wfy = 40°. The quantity [e/(1 + ¢€)]
(Va/ V) rises almost linearly with w# from zero at 13° to 0.21 at 90°.
The limitations on Vg and V, would be about the same as for a diode
operating by multiplication.

dV .
-1, = C—E = CV,w cos wl. (69)
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