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The measurement of power spectra is a problem of sleadily increasing im-
porlance which appears to some (o be primarily a problem in statistical esti-
mation. Others may see it as a problem of instrumentation, recording and
analysis which vitally involves the ideas of transmission theory. Actually,
ideas and techniques from both fields are needed. When they are combined,
they provide a basis for developing the insight necessary (1) to plan both the
acquisition of adequate data and sound procedures for its reduction to mean-
ingful estimates and (it) to interpret these estimates correctly and usefully.
This account attempts to provide and relale the necessary ideas and tech-
niques in reasonable detail. Part I of this article appeared in the January,
1958 issue of THE BELL SYSTEM TECHNICAL JOURNAL,
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DETAILS AND DERIVATIONS

In this part we will reconsider some of the earlier analysis, cither in
greater detail, or from alternative points of view. We shall assume
familiarity with the material on fundamental Fourier techniques pre-
sented in Appendix A of Part L.

The sections of this part will be numbered in exact correspondence
with the sections of the general account. Thus, for example, Section
B.7, below, presents the details and sidelights related to Section 7,
of Part I. (Certain sections will be omitted.)

B.1 Gaussian Processes and Moments

There are two common modes of description of a random process,
intuitively quite different. One uses the idea of an ensemble, the other a
function of infinite extent. The first is undoubtedly more flexible, as it
can describe processes, even non-stationary (e.g. evolving) ones, which
cannot be deseribed by any single function, even one of infinite extent.
The first is also, at least in the eyes of the statistician, more funda-
mental, since uncertainty, which he regards as a central concept, enters
directly and explicitly. It is possible to regard the single-function ap-
proach as an attempt to minimize recognition of the statistical aspects
of the situation. Once, such minimization may have been of some value,
but today the essentially statistical nature of communication, be it of
symbols, voice, picture or feedback information, is well established. The
communication engineer is aware that he must have designed not only
for the message which was sent, but also for the one which might have
been sent — moreover that his design demanded consideration of the
relative probabilities of various messages that might have been sent
(and were not).

Such a statistical view of message or noise confronts us with the need,
not only of picking out what functions might arise, but also of attaching
probabilities to functions (at least to sets of functions). To do this di-
rectly and completely requires much careful mathematics. As far as
questions associated with observations and data are concerned, there is,
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fortunately, no need for such care and complexity. We know that any
empirical time function can be adequately represented by some finite
number, large or small, of ordinates. Thus, for practical purposes, it
suffices to be able to assign probabilities to sets of n ordinates — for n
finite but possibly quite large. It is for this reason that we went directly
to probability distributions of such n-dimensional sections in the general
account.

This replacement of a continuous record by discrete ordinates is re-
lated to the sampling theorem of information theory. The relationship
is, regrettably, not quite simple. Given a band-limited “signal’”’ defined for
all time from — o to + e, and moderately well-behaved otherwise,
the sampling theorem (Nyquist™), which is also known as the Cardinal
Theorem of Interpolation Theory (Whittaker™), states that equi-spaced
ordinates, if close enough together, extending from — o to 4+« will
precisely determine the funetion. Given a band-limited function over a
finite interval, the corresponding result is almost practically true. It is
not true in a precise impractical sense, since every band-limited function
can be obtained from an entire function of exponential type (of a com-
plex variable) by considering only the values taken on along the real
axis. Consequently, if we know a band-limited function precisely in an
interval, its values are determined everywhere. Theoretically determined,
but not practically so, since the kernels expressing this determination
behave like hyperdirective antennas. Since the values at equi-spaced
points in the interval do not determine the values at equi-spaced points
outside the interval (which would he determined by precise knowledge
throughout the interval) the latter cannot be obtained from the equi-
spaced values in the interval. In practice, however, functions are not
quite band-limited, and measurements always involve measurement
noise. When these two facts are considered, a sufficiently closely spaced
set of equi-spaced ordinates extracts all the practically useful informa-
tion in the continuous record.

The fact that averages, variances and covariances completely charac-
terize any n-dimensional Gaussian distribution is common statistical
knowledge, and follows by inspection of the conventional general form
of Gaussian probability density function, in which these moments ap-
pear as the only parameters.

B.2 Aulocovariance Funclions and Power Spectra for Perfect Information

If X(#) is a function generated by a stationary Gaussian process, and if

1 T/2

lim — Xt dt =0 (B-2.1)
e 1 J_p/2
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then the autocovariance function of the process is

T2
C(r) = lim — f X()-X( + 1) dt. (B-2.2)
T—sw
In particular, the variance of the process is
Tl2
O =lim % [ XOF (B-2.3)
T T —7/2

If the function X(t) is passed through a fixed linear network whose
impulse response (response to a unit impulse applied at { = 0) is W),
then the output of the network will be

Xoull) = f_i W) -X(t — \)-dn,
and the autocovariance of the output will be
Conlr) = lim f " f_ ) f WO - WO - X(E — \)
Xt 4 7 — N)-dhi-dha-dt

= Z [ : W) - W) - Clr 4 At — M) -dhs-dha.

If we now let
C(r) = f_ : P(f)e™ df (w = 2xf), (B-24)
then
Cou(7) = f_ Z f_ : f_ Z WA - W) -P(f) e dhg-de-df .
But
f_ i WO - -dhy = Y(F)

is the transfer function (ratio of steady-state response to excitation,
when the excitation is ¢*“*) of the network, and

[ wow-etan = (=)
is the complex-conjugate of Y (f). Hence,

Cor) = [ 1Y) [ P(P)-6"-a (B-25)
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In particular, the variance of the output is
Cou®) = [ 1Y) [-P(D)-a1 (B-2.)

Since | Y(f) | is the power transfer function of the network, it is natural
to call P(f) the power spectrum of the process. The power spectrum has
the dimensions of variance per cycle per second. By equation (B-2.4)
we have

P = [ coradr, (w=2ef), B2

and, by equation (B-2.5),
Poui(f) = | YN [-P().

Autocovariance functions and power spectra are usually regarded as
one-sided functions of lag and frequency, respectively, related by the
formulae (Rice’ p. 285),

P(f) =4 f C(r)-cos wr-dr, (not used here),
1]

(1) = fuw P(f)-cos wr-df, (not used here).

However, we will find it very convenient for analytical purposes, to
continue to regard them as two-sided even functions related by equations
(B-2.4) and (B-2.7). This will be evident in Section B.4 where spectral
windows will be convolved with power spectra, and in Section B.6
where we would otherwise have to make use of rather complicated trigo-
nometric identities.

In a few places where we contemplate computations, we may write

P(f) =2 j;w C(7)-cos wr-dr, (w = 27f),

instead of equation (B-2.7), but it is important to observe that the power
spectrum P(f) thus obtained must still be regarded as a two-sided even
function which contains only a half of the total power or variance in the
positive frequency range. If we prefer to think ultimately of a one-sided
power spectrum (over only positive frequencies), in accordance with
engineering practice, then we should take 2P(f) as the power density
(per eycle per second) for positive frequencies.
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The power spectrum P(f) may also be expressed directly in terms of

X(?). The formal derivation of this expression on the basis of the formula

(B-2.2) for the autocovariance function is complicated by the fact that
the integral

T/2
[ X0 -x@+ 0
T2
actually depends upon two more-or-less distinet pieces of X(f), one in
the range —T/2 < t < T/2, the other in the range

T T
_§_7<t<§'_7.

We may avoid this complication by using the equivalent formula
) |

C(r) = }‘iﬁ 7 f G(t) Gt + 7)-dt, (B-2.8)
where
G = X0, |t1<,,
=0, 1>
Let
st = [ ew-ca,
so that
G = f_: S(f)-e* df .
Then

Il

() hm— f Q- f S(f)- e gy dy

T

1.13;? f 8(f)- 1 G(t) - dt-df

lim — 1 f S(f)-S(—f)-e™“ df.

T T‘
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Comparing with (B-2.4) we get, at least formally,

PP = tim 1 [ S

] 2
= lim = ‘ f G@) e ™ dt (B-2.9)
T—>o0 T
/2
= hm; f X(t) et dt
g1 1

(See Rice,” p. 320, and Bennett,” p. 621.)

B.3 The Practical Situaiion

In the study of second moments of random processes, the balance
between the approach through autocovariances and the approach
through power spectra is, in at least one sense, a little closer than Sec-
tion 3 would seem to imply. As a means for understanding, and as a
guide for intelligent design, the power spectrum is without a peer. The
autocovariance function is of little use except as a basis for estimating
the power spectrum. This is fundamentally because, in most physical
systems, power spectra have reasonable shapes, are relatively easily
understandable, and often are quite directly influenced by the basic
variables of the situation, whatever these may be. The process of
using an empirically observed and analyzed power spectrum usually
goes through some such chain of steps as this:

(i) Planning and design.

(ii) Observation and recording.

(i) Analysis and preparation of estimates.

(iv) Comparison of estimates with existing and synthesizable theoreti-
cal structures and quantitative information.

(v) Selection of the best working version of a theoretically-guided
approximation to the estimates.

(vi) Use of this working version.

Our theoretical understanding of the situation, and of the forees in it,
play important roles, which we should never allow ourselves to forget,
in steps (i) and (v). (We use this understanding to the utmost, in its
proper place, but we do not, and should not, allow it to narrow down
steps (ii) and (iii) to the point where we have little or no chance of dis-
covering that it was incomplete or in error. Thus, we estimate a consider-
able number of smoothed spectral densities, and not merely a few con-
stants of a suggested theoretical curve. After we have compared curve
and points, we may then wish to estimate the constants.)
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The simplest and most straightforward use we can make of the power
spectrum is to predict the output spectrum, or perhaps only the output
power, when the process studied provides the input to a linear device with
a known power transfer function.

Except for purely descriptive uses, checking on performance for agree-
ment with anticipation, and for predicting the behavior of already de-
signed linear systems, the most elementary use of a power spectrum lies
in optimizing the performance of some linear predictor or filter as meas-
ured 4 la least squares. The nature of this situation is not quite that one
which most persons imagine.

If we really have no theoretical insight into the situation af all, we
might as well (nay, perhaps, might better) stay in the time domain.
We have autocovariances (say) for some limited range of lags. If the
duration of the transient response of our filter or predictor is not going
to exceed one-half this time limit, then we can write out the estimated
variance of any predictor or filter directly in terms of our estimates of
autocovariances and of the time desecription of the filter or predictor,
and could then minimize this directly. With no theoretical insight this
should work at least as well as any other way. With no theoretical in-
sight, analysis in the time domain would be relatively good, perhaps
even optimal—and probably absolutely poor.

But we do not, and almost always should not, optimize filters or pre-
dictors in this way. The reason is simple. Actual power spectra are often
simple and understandable. Actual autocovariance functions are hardly,
if ever, simple and understandable. The intervention of theoretical in-
sight and human judgment at step (v) is crucial and valuable. This in-
tervention is effective in the frequency domain, but not in the time
domain. (Step (v) is likely to stand for some time, as a challenge to the
ability of statisticians to wisely and effectively automatize inferential
procedures.)

An additional advantage of power spectrum analysis over autoco-
variance analysis was pointed out in Section 3, namely the ease of com-
pensation for (linear) modification before measurement. When the
random funetion X(¢) is passed through a time-invariant linear trans-
mission system whose impulse response is W(¢), the output random
function, which may be the only function accessible for measure-
ment, is

Xonill) = f_ W(r)-X(t — ) drv.

The relation between the autocovariance Coui(7) of the modified process,
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and the autocovariance C(r) of the original process may be derived as
follows:

Cout(T) = ave {Xout(t)'Xom(t + T)}

= ave {JZ W’I(Tl)'X(t — Tj)‘X(t +,T - 1‘2)'“7(7'2) dn de}

o0

f W(r)-Clr 4 11 — 72)-Wi(rs) dri dro.

—e0

Putting 7. = 71 -+ A, we get
Courlr) = f Clr — ) [[ W(r)-W(r -+ N) drl] dr

= (1) *» W(r) = W(—1).

Measurement of Xou:(f) can give estimates of Coui(7) which must subse-
quently be converted into estimates of C(7). The only practical way to
make this conversion seems to be through Fourier transformation of the
estimates of Cou(7) into the frequency domain, compensation there,
and Fourier retransformation. Such a procedure, in effect, invokes the
relation between the power spectrum Poyui(f) of the modified process
and the power spectrum P(f) of the original process. This relation is

Poi(f) = PN | Y (N |7,

where Y(f) is the transfer function corresponding to the impulse response
W().

DrTAILS For CONTINUOUS ANALYSIS

B.4 Power Spectrum Estimation from a Continuous Record of F'inile Length

In the ideal case considered in Section B.2, which assumes that we
have an infinite length of X(f), we can calculate the power spectrum P(f)
in two ways — either directly from X({), or indirectly as the Fourier
transform of the autocovariance function C'(r) which is caleulable di-
rectly from X (£). The basic choice is, leaving limiting problems aside, be-
tween squaring a Fourier transform, or Fourier transforming an aver-
age of products. Tn either case multiplication and Fourier transforma-
tion must enter.

Trom the point of view of the ensemble, as opposed to the single time
function, we seek to estimate a particular basis for the second moments
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of all linear combinations. We may estimate any convenient basis as a
start, and then transform.

Clearly, from either point of view, any result obtained in one way can
also be obtained in the other. Differences between a time approach and a
frequency approach must be differences in (i) ease of understanding,
(i) ease of manipulation of formulas, (iii) ease of calculation with num-
bers, rather than in anything more essential.

Understanding and a simple deseription of the procedure which yields
reasonably stable estimates, and which we have discussed in general, is
more easily obtained by the indirect route, so we shall proceed accord-
ingly, beginning with a general outline of a hypothetical procedure for
power spectrum estimation from a continuous record of finite length.

A general outline of a hypothetical procedure for power spectrum
estimation from a continuous record of finite length, specifically X (f) for
- T./2 £t £ 7T,/2, is as follows:

(1) Calculale the apparent autocovariance function

(Ty—|7])12
Coolr) = T Iflfm—:fme X (t Q’) (z + )dt (B-4.1)
for || £ Tw < T., where T, is the length of the record, and 7' is
the maximum lag to be used. We shall see in Section B.9 that the
stability of our power spectrum estimates depends upon how small we
take the ratio T,/T. .

(IFor the purpose of the theoretical analysis in this section we assume
that the data contain no errors of measurement; in particular, no bias
due to a displaced (perhaps drifting) zero. The effects of such errors
are considered elsewhere.)

(2) Calculate the modified apparent autocovariance function

Ci(r) = Di(r)-Coolr), (B-4.2)
where D(r) is a preseribed lag window, an even function such that
Di{0) =1

and
D{r) =0 for |7|>Tn

Note that Ci(r) = 0 for | 7| > T, although Cw(7) is not available for
|7 > Tw.
(3) Caleulate the estimated power spectrum

P(f) =2 fo i Ci(7)-cos wr-dr. (B-4.3)
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Our object is now to determine the relation between ave {P.(f)} and

P(f), where “ave” denotes the ensemble average, that is, the average

over all possible continuous pieces of X (¢) of length 7', . (The variability

(specifically, the variance) of Py(f) will be examined in Section B.9.)
Since Cp(7) is not calculated for | 7| > T, , it is clear that

ave {Cw(r)} = C(r), only for | 7| < T .
However, because Dy(r) = 0 for [ 7| > T,
ave {Ci(7)} = Di7)-C(), for any .

Hence,
ave{Pi(f)} = j: Dy(r)-C(7) e dr.

Then, if Q:(f) is the Fourier transform of D;(r), the relation we seek is,
symbolically,

ave [P} = Q{f) = P(f),
or explicitly,

wve (P = [ Qh=DP@ s (B4

This relation is in a form, (B-2.6), which is familiar to communications
engineers except for the fact that Q;(fi — f) is not an even function of f,
when fi # 0, and may be negative in some ranges of f. However, taking
advantage of the fact that P(f) is an even function of f, we may write

ave(PUf)} = [ “HA 1) PO df (B-4.5)

where
H{f; 1) = Qf + f) + Qf — f). (B-4.6)

The funetion H(f; f1) is an even function of f as well as of f; . Hence it
satisfies one of the necessary conditions for a physically realizable power
iransfer function. However, inasmuch as it may be negative in some
ranges of f (actually an advantage as we will see), it may still not be
physically realizable. Nevertheless, it is convenient to regard H(Jf; f1)
as the power transfer function of a network, and to regard ave {Pi(f1)}
as the long-time-average power output of the network when continuously
driven by the random process.

Since P(f1), whether calculated from a single piece of X(f) as outlined
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above, or calculated as an average over a finite number of pieces of X (?),
is an estimate of ave {P;(fi)} in the usual statistical sense, it is evident
that the caleulated power density P(fi) is an estimate of an average-
over-frequency of the true power spectrum P(f), and not an estimate of
the local power density P(fi). The calculated power density P(f,) may
be regarded as an estimate of the local power density P(fi) only to the
degree to which Q.(f) approximates (f). However, under the restriction
that Di(r) = 0 for | 7| > T, the degree to which Q:(f) approximates
§(f) depends chiefly on how large we take T, . On the other hand, as
we will find in Section B.9, the larger we take 7,./7, the less stable
will the estimates be. Hence, in general, it will be wasteful to demand
more frequency resolution than we actually need. In many cases we
may even have to take less frequency resolution than we would like to
have, in order to secure a reasonable stability of the estimates. Clearly,
for any specific value of T, , (and number of pieces of record), we can
increase frequency resolution (or stability) only by sacrificing stability
(or frequency resolution).

We have just examined a hypothetical method of power spectrum es-
timation, in which we compute an apparent autocovariance function,
modify it, and take the cosine transform. We will now examine a method,
also hypothetical, in which we modify the data, take the sine and cosine
transforms, compute the sum of the squares at each frequency, and
divide by the length of the record. If the data is X(¢) for 0 < ¢ < T,
and the weighting function (data window) is B;(f), the estimated power
spectrum is computed essentially according to the formula
2

fﬂ " B X)) dt (B-4.7)

Pulf) = -

To determine the average it is convenient to assume that X(¢#) is of un-
limited extent, to specify B({) to be identically zero for ¢ < 0 and
t > T,.,and to allow the data window Bi(t) to be located anywhere in
time by substituting B;( — X\) for B(¢). Then

o 2
RMN=%-IBM—MXm€Wﬁ. (B-4.8)
This i1s the Fourier transform of
Cilrn) = Ti f Bt — N)-X(0) Bit — X + 7)-X(t + 1)-dt. (B-4.9)

[Compare with (B-2.8) and (B-2.9)]. Now, since the random process is
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stationary, the ensemble average is equivalent to the average over A;
that is,

/2
ave [C,i(r)} = lim —, [ C,i(m;2) -dA
T->o0 T
Substituting (B-4.9) and A = ¢t — £ into the right-hand member, we get
ave {Cu(r)] = lm—f.ﬂﬂXG+ﬂ

t+(7/2)
U B.(&)-Bi(t + 7) -df]-dt
—(112) |

Reversing the order of mmtegration we get

ave {C,i(r)} = Ti Bi()-Bi(t + 7)
1 H(1/2)
-[nm - f X®-X@ + 7) -dt} dt.
T 1 —(7/2)

The quantity in brackets is the true autocovariance function C(7).
Hence,

ave {Ci(r)} = Dul7)-C(r) (B-4.10)

where
Dur) = = f B8 -Bilt + 7)-di (B-4.11)

is the lag window equivalent of the data window B;(t). Therefore,

ave {Pu(f)} = Qul(f) * P(f) (B-4.12)

where Q..(f) is the speetral window corresponding to (i.e. the Fourier
transform of) the lag window D.;(7).

If J.(f) is the frequency window corresponding to (i.e. the Fourier
transform of) the data window B.(f), then

Q) = g 11 I (B-4.13)

(It will be noted that (B-4.10) can be obtained more directly from
(B-4.9), by taking the ensemble average of the right-hand member of
(B-4.9). In this ease, A is superfluous and need not have been intro-
duced at the start.)

These formulas for the “direct” method, where Fourier transforma-
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tion (here modified by the data window) precedes multiplication (here
squaring) ean be used in several ways. Let us consider three possibilities:

(a) we may choose B.(f) non-zero over as long a range as possible, so
that D, () will be broad and .(f) narrow,

(b) we may choose B;(t) non-zero over a much shorter range, making
D.:(7) not so broad and Q.;(f) not so narrow,

(¢) we may choose a number of such short windows, use each for
B.(t) and average the corresponding values of P.:(f) so obtained into a
general average.

It we follow choice (a), our result will behave similarly to those ob-
tained from the indirect method when we try to make Q.(f) like &(f).
We shall estimate an average over a very short frequency interval, and
our estimate will be excessively variable.

If we follow choice (b), we shall estimate an average over a wider fre-
quency interval, but our estimate will remain just as variable.

If we follow choice (¢) our estimate will refer to the same sort of
smoothing as in (b), but we shall gain increased stability for the estimate.
The behavior of the estimate will resemble that of a reasonable estimate
by the indirect route.

Finally, there is another way in which we can apply the formulas for
the direct route. We may use a long data window, calculate many values
of P.i(f), and then average these results over moderately wide frequency
intervals. Again our estimates will be estimates of considerably smoothed
spectral densities; again our estimates will be moderately stable.

Of all these, the simplest deseription of an estimate which is moder-
ately stable, and must, consequently, be an estimate of an at least mod-
erately smoothed spectral density, is the indireet route. We shall stick
to the indirect route for the present.

B.5 Particular Pairs of Windows

In this section we will consider five pairs of windows. They are il-
lustrated in Figs. 1, 14, and 15. We begin with the
Zeroth Pair

Dy(7) = 1, |r] < T,
= 0, l7] > Ta,
and
sin 2T,

Qf-l(f) = ng = ?JTm dif szm .

27f T,
Notice that Co(7) = Do(7)-C(7) coincides with Cy(r) wherever Co(r)
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is defined, and vanishes elsewhere. This is a “do-nothing” pair. How-
ever, (Jy(f) is neither simple nor well-hehaved, the first side lobe on each
side of the main lobe being about } the height of the main lobe (and
negative).

The specifications of the other four pairs are:

First Pair (Bartlett®)

|7
7l bl
Iﬂl

= 0, [7| > T,

Di(r) =1 — ‘Tl < T,

and

_ sin of T, \*
Ql(f) - Tm (TT";_) .

Second Pair (sometimes called “hanning”, after the Austrinn me-
teorologist Julius von Hann)

(1 S ;1-), |7| < T,

2
0 ITi>Tm;

@) = 300 + Ha(r+ o) + @ (7 - 5]

Third Pair (sometimes called “hamming”, after R. W. Hamming®®)

Dz("')

and

Dy(r) = 0.54 + 0.46 cos %1 7] < T,

m

:0, JT|>Tm,

and

Q1) = 03100 + 023 [ @ (1 + 1) + @ (7= 57) |

Fourth Pair (RBB’s not very serious proposal)

27T

Tm Tm
= 0, |7 > T

-D4(T I T ‘ < TJH 3
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and
o 1
Q) = 0420i(f) + 025 [Qn (f . ) + Q“(f _ m)]

+ 0.04 [Qo (f + ) + @ (f - Tl;)]

These specifications are all special cases of

Di(r) = an+ 2 E @ij cos]fm N E
= 0, |7 > Tw,
with
+ 2 g ai; =1,
whence,

Q) = aul)) + X as [Qo (f F )+ Q.,( - 5 ]

m

The coefficients in Dy(r) may be regarded as convenient approxima-
tions to

25 21
Iy = E N az = @ y
which would have produced a zero of Qs(f) at | f| = 1.25/T'w , with other

zeros occurring at all integral multiples of 0.5/7,, except at 0 and
+0.5/T . (The zero which could have been produced at | f | = 1.25/Tn
actually oceurs at approximately |f| = 1.3/Tw .) The coefficients in
Ds(7) were actually selected to minimize the height of the highest side
lobe.

The coefficients in Dy(7) are convenient approximations to

3064 4o 1155 e = 115
0304’ T 1652 7 18608’

g =

which would have produced zeros of Qu(f) at | f| = 1.75/T and /] =
2.95/T.. , with other zeros occurring at all integral multiples of 0.5/T
except at 0, £0.5/7,, , and +£1/T .

In view of the fact that

Di(r)-Dy(7) = Di(7),
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we have

Quf) * () = (),

relations which may be of interest, as may the fact that using
Di(7)-Dj(7) for the lag window corresponds in general, to a spectral
window Q:(f) * Q(f).

The writers have spent considerable time and effort inquiring into
other possible window pairs. One of the most promising approaches was
that of Ceby&év or Chebyshév polynomials (see Dolph*") to obtain side
lobes of equal height. Their present conviction is that: (i) special win-
dows cannot eliminate the need for prewhitening and rejection filtration
and (ii) good prewhitening and rejection filtration can eliminate the
need for special windows. Accordingly they do not recommend expend-
ing extensive effort on special windows.

Readers familiar with physical optics will recognize the close relation
between the considerations of this section and diffraction by slits of
uniform (¢ = 0) or varying (z = 1, 2, 3, 4) width. The literature on
apodization (Jaquinot,® Boughon, Dossier, Jaquinot™) is relevant.

B.6 Covariability of Power Density Estimates — Basic Result

To derive a formula for the covariance of two power density estimates
P(f1), P;(f:) obtained from the same record, we will first derive a formula
for the covariance of M4, 1), M (¢, r:) where

M(t, 1) = X(t—%)-X(t-i—%).

For this we will use a formula for
cov {wz, yz} = ave {wryz} — ave {wzx} ave {yz}

. .80 N e .
dating back to Isserlis,” and used by Hotelling™ in a similar connection.
If w, x, y, 2 are joint Gaussian variates with zero averages, then

cov {wx, yz} = ave {wy]-ave {xz} + ave {wz]-ave {xy}.

(This result is easily derived from the “characteristic function”.) If we

take
w=X(i1—§), $=X(t[+;;l),

= X(t2+_;_2),

<
I
e
S
ol
I
SN
w
|
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and make use of

ave {X (z - E)Y (t + %)} = C(r) = f_: P(f)-¢"" df

we get

cov (M, n), M(t2, 72)} =
ff [ei(ml—ug)(fl—rg)m + ei{wl—mg)(fl+r1),’2] (B-G.l)

D pf) PR -dfy-dfe.
It may be noted that

var [XOF] = cov (36,0, M6 0) = 2[ [ P0-af]

while
ave ([XQF) = [ P(-ar

Hence,

2-lave {[XOF})° _

var {[X (D)) ’

in accordance with the fact that [X(£)] is a constant multiple of a chi-
square variate with one degree of freedom.

Substituting fi = f* + £, f: = f* — £, and noting that df,-df. = 2df-df’,
we get

cov {M(ty, Tl), M(ts, TQ)} =

%‘[ [eim(n—'rs) -|— Biw(n+12)].q:|(f, t] — tz) df, (B—62)
where

a,n =4 [ PG D PU - (B63)

Since ®(f, A) is an even function of f we may replace P

cos w(r = 1), and since P(f* + )-P(f" — f) = P(f + )P — f)isan
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. — 12w’ A
even function of f* we may replace ¢ " by cos 2w’\. Hence, we have

cov {M(ty, r), M{t2, 72)} =
f_ Z cos wri-cos wra-®(f, & — 1) -df, (B-6.4)
where
a(f,n) =4 [ : PU + )P — f)-cos 2N-df'.  (B-G.5)

The next step is to determine the covariance between Cy(7;) and Cy(7s).
By definition, and for hypothetical computation,

1 (Ta=I71)/2
Colr) = g | M, 7)-d, (B-6.6)
T — |7 [ J=crmirire
but this is inconvenient for present purposes on account of the depend-
ence of both the limits of integration and the divisor upon 7. A more
convenient form would be
Thl2
Ci(r) =77 M(t, r)-dt, (B-6.7)
Th J_rii
where T, < T, — T.. This form could actually be used for computa-
tion, but it would not make the maximum possible use of the data. The
range of integration in C4(7) is less than it is in Cy(7) for any 7 except
possibly | 7| = 7. . A good approximation to the use of Cy(7) for com-
putation is to regard this as (approximately) equivalent to the use of a
hypothetical, modified Co(r) with 7, — T < Th < T.. We will take

Th=T,— a;Tu, (B-6.8)

where o; depends upon the lag window to be used. Since, for each value
of 7, the range of integration in formula (B-6.6) suffers a loss of 7 out of
T, , and since the seriousness of this loss depends on the value of D;(7),
it seems to be a reasonable approximation to take

Tm
f 7-Di(7)-dr
1o

e (B-6.9)
Tn fo Di(7)-dr

oy =

which yields, for the first four lag windows described in Section B.5,
as = 0.50, ay = 0.33, a» = 0.30, o3 = 0.33.
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Using the approximation deseribed in the preceding paragraph, we
find (omitting the prime in )

cov {Colrp), Colra)} = ff cos wry-cos wre-I'(f) df (B-6.10)

where
T2
() = — fﬂm—@%%
(T y (B-6.11)

4£:Hf+fyﬂf—ﬁ-ﬁ%%?Ydﬁ

Ii

The final step is to determine the covariance of Pi(fi) with Pj(f2), re-
calling that, for example,

Pi(f) = f_“’ Ci(7) - cos wr-dr,
where Ci(r) = Di(1)-Co(r). We get
cov [P, AR = § [ HG ) -HARE)T()-af, (8612

where

[

H{(f} fl)

2 f D,‘(Tl)'COS w7y COS 1’.011’1‘(’1'1
(B-6.13)

Qi(f + ) + Q(f — 1)

with a similar formula for H,(f; f»). In particular, of course,
I .
var (PG} = 5 [ UG DTG (6

The power-variance spectrum is given by (B-6.11), and involves the
true power spectrum in an essential way, as we would expect. Together
with (B-6.12) and (B-6.14), this is the basic result. It is exact for esti-
mates based on Co(r), approximate for estimates based on Cy(7).

B.7 Covariability of Estimales — Various Approximations
y p

We now need to obtain a variety of approximate forms of the basic
result, suitable for use under different conditions. We shall, in turn; (i)
assume that the typical frequency scale of H;(f; /i) and H,(f; f2) is much
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larger than 1/T, (ii) assume that P(f) varies slowly enough for the
quadratic term in its Taylor series to be neglected at distances up to, say,
3/T , (iii) assume both (i) and an assumption similar to (ii) about
P;(f) and Pp(f), and, finally, (iv) assume only that P(f) is concentrated
in a sharp peak, narrow in comparison with 1/77, .

Combining formulas (B-6.11) and (B-6.12) just obtained, we find

cov {Pi(f1), Pi(f)} =

[[ 15 0915 192G+ PG - 1)
- (B-7.1)

. Ted \ 2
(sm,w ’T,.) df-df’.
w Ty

The last factor in the integrand becomes rapidly negligible for |f’|
greater than, say, 1/ . On the other hand, the typical frequency scale
of H(f; f) and H ;(f; f2) is 1/T which is usually much larger than 1/7", .
In most cases, then, we will find that the approximation

Hi(f; fo)-H(f; f) = H«(f + 5 00 -Hi(f — f'5 f)

is a good approximation for the values of f’ making contributions of any
importance to the integral. Under this approximation, and a change of
variables of integration to

=547, fi=1-7,
we have, approximately,

cov {Pc‘(fl); Pj(f2)} ~

%j-‘” H (S5 f)-P(FD-Hi(f2 f2)-P(f2)

sin 'n’(f; — f;)T:. 2 ’ ’
. -dfi-dfs.
[ (i — TOT. ] Ji-df
If we let
Pu(f) = H{f; fr)-P(f), (B-7.2)

and

Pyp(f) = Hi(f; f2)-P(f), (B-7.3)
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then, approximately,

cov {P:(f), Pi(f2)}

~ y ] "o p. 7y . sin w(f; —_ f;)T:,:IZ ’ ‘.: (B-74)
~2QRMJRMﬁ[ﬂﬂ_mﬂ dfi-dfs,

which is our approximation on assumption (i).
In terms of the same quantities we have, from (B-4.5),

ave [P:(f)} = _/: Pa(f1)-df1, (B-7.5)

and
ave (P,(f)) = [ Pa(fd-dfi. (B-7.6)

The following heuustlc interpretation of the last three formulas is
useful. I'requency f 1 is involved in P;(f;) with a net weight of P,(f 1)
while frequency fa is involved in P;(f;) with a net weight of P Ia).
These are net weights, and might represent partial cancellation. The
covariance between P;(f1) and P;(f,) might involve additional sources of
variability. To the extent that the approximation to H.(f; f1)-H ;(f; J2)
is valid, there are no additional sources of variability — the covariance
involves the same net weights. The fact that we have only a record of
equivalent length 7', is represented by a tendency of the frequency f 1 to
become entwined with the frequency fs, measured by the factor

{Sin w(f1 — fQ)TL:r
a(fi — T 1
The fact that there are no additional sources of variability as we pass
from first to second moments (to the accuracy of the approximation) is
good evidence that we are using the data in a relatively efficient way.
If we begin anew from (B-7.1) by expanding P(f = ') in Taylor series
around f = 0, we find

P+ 1) -P(f = 1) = [POF + P -P"(f) — [P'(OF} + -+

symmetry forcing the odd-order terms, mcludmg the first, to vanish.
Since the trigonometric factoris very small for | f' | > 2 or 3 times 1/ T,
we may often replace P(f + f)-P(f — f') by [P(NT to a very good ap-
proximation. This yields, after integrating out f,

2 )
r(f) =~ A (PCOF,

n
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whence,

cov (PR, PARY ~ o [ HAG 1) B PO df
T, %

1 o0
~ o f Pa(f)Pa(f) df,

our useful approximation on assumption (ii).

In carrying out this approximation we only needed smoothness of
P(f) for f’s which make a non-negligible contribution to the final result.
1f H:(f; )P and H;(f; f2)P(f) are both smooth, as under assumption
(iii), then P(f) must be smooth except where both H.(f; fi) and H;(f; fs)
are small, and the contribution from such regions can be neglected. Thus
our useful approximation for the covariance under assumptions (iii) is
the same as that under assumption (ii). (The approximation for I'(f)
need not be so accurate.)

Finally, if P(f) consists only of a very sharp peak (width < 1/7',) at
f = fo (and, of course, at f = —f,), with area A, then

P(f) = A + fo) + 8( = f)],

whence,
r(f) ~ 2A2-[6(f S -+ 2 (‘“’i“ al ) -a(f)].
wod »n
Hence,

cov {Pi(f1), Pi(f)} =~ 4° {H,-(fu s f)-Hi(fo; f2)

+ H0; £-H,0; £ -(Sin “‘“T;')z},

7
WﬂTﬁ

which is our useful approximation under assumption (iv). In case
fo>>1/T,, the trigonometric factor may be neglected, and we may write

cov {P:(f), Pi(f)} ~ ( fu i Pa(f) df)-( fo Pi(f) df)—

@0

B.8 FEquivalent Widths

Under assumption (ii) of Section B.7, i.e. P(f) slowly varying, we
have, for the dimensionless variability of P;(fi),
var {P(f)} 1

lave (P TaW.’ (B-8.1)
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where
l[mumﬂ

is the equivalent width of

Pu(f) = H{F; 1) -P().

We will now determine the equivalent width of P;(f) under the assump-
tion that, for each value of f;, Pa(f) is essentially a constant times
H{(f; f1). The value of the constant may depend upon the value of f,,
but it will not have any effect on the value of W,. It is convenient to
express (B-8.2) in terms of the normalized frequency

o = 2xfT,, (o1 = 2xfiT),

1Lﬁﬁ@wﬂ2

- 4 T’Ji - 3 2
[P

so that

w, ) (B-8.3)

where

P;l(’ﬁ) = Q'i(qo + 501) + Qi(ﬁﬂ - ‘Pl):

Qo) = (1 = a)Qule) + F [Qule + m) + Qe — m),

_ (B-8.4)
Gole) = 222,
@
a, = 0, a: = 0.50, a; = 0.46. J
Since
f SN ¢ . .
o @
we gel,

f Pile) -dp = 2,

and, since

f”sin(ana}Hin(‘erB)d _ sin (@ — B)
s ot oa et+p 7 a—f ’
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we get

[ 1PaT do = 208,

where

B = (1 — 2a; + §a,-‘*) (1 - 2"1)
2 2¢,

+ a1l — a) I:Sin (201 — ) n sin (2¢, + w):’

20, — T 200 + 7
n aj [F-i]l 2p — ) , sin2(e; + w):l
4 2(e0 — ) 2(901 + ) ’
Hence, for these windows,
1
W. = 27,B

It will be noted that

B=2(1—2a:+g'ai2): for fi =

1
-1 —a; + 5 4 for fiTn

7
=1 - 2a; + Ea:‘: for  fiT'w

3
=1 — 2a‘. -} i a;, for fle
(r

To a close approximation,

B=1—2a;+ %a‘-z, for f1Tm

whence, for

v

(B-8.5)
(B-8.6)
1
4 ?
1
2 ?
r
4 ?
3,4,5, )
i,

i = 0, the main lobe is 1/7,, wide, and the equivalent width of Pu(f) is

1/(2T ),

i = 2, the main lobe is 2/7,, wide, and the equivalent width of Px(f) is

4/(371 ),

i = 3, the main lobe is 2/7',, wide, and the equivalent width of Pu(f) is

1.258/Tm .
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Fig. 16 — Approximation to standard spectral windows.

For f; < 1/T.. these equivalent widths are to be reduced. I'or fi = 0,
they are to be halved.
Assume, next, that

p 03 1
Q) = Al = (Tuf)T, [l =5, (B8
= 0, otherwise,
which approximates Q,(f) quite well for 7 = 1, 2, and 3, as is shown in
Fig. 16. Let us further assume that f; = 1/T,, and that, at least for
[f=h|l =2 1/Tw,
P(f) = P(f)ll + BTw(f — /). (B-8.8)
Then we can evaluate the equivalent width of
Pa(f) = H{f; fOP(f)
by simple integrations, finding
429

3507’,"(1 + 5—)

W, = ;
15

Since #° cannot exceed 1, we have

T,

123

TT:uu ’ (B-Slg)

< W. <
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showing how little effect a linear slope of P(f) across the main lobe of -
H(f; /1) has on W, , even when 8 is large enough for P(f) to vanish at
one edge.

If P(f) has exactly the same form as the H(f; fi) corresponding to
(B-8.7), then

W, = —+ (B-8.10)

a rather smaller value.
If, on the other hand, we take

Q) = Al = @DT 171z 4

(B-8.11)
= 0, otherwise,
then for ¢ = 2, and P(f) given by (B-8.8),
Wg —_— ——77 3y
5 ol
5T, (1 + 11)
s0 that
1.28 1.40
ket < -
Tl”m < FVe = Tm ’ (B 8]2)
while for ¢ = 1,
W, = 5 s
3Tm(1 + ?)
so that
1.46 1.67
T < W. < T (B 8.13)
In general, we can use
1
W, ~ T (B-8.14)

as a conservative approximation which provides a factor of safety often
near 1.15 or 1.20.
All this was for fi = 1/T.,. . As f; is reduced below 1/T,, there is over-

lapping between Q.(f — f1) and Q,(f 4 fu) in H,(f; fi). Asa consequence,
the equivalent width decreases in a way which is not worth examining in
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great detail. (At f; = 1/(27,) the equivalent width has decreased about
15 per cent, and at f; = 0 it has fallen to just half its usual value.)

B.9 Fquivalent Degrees of Freedom

Let us assume that P(f) is flat — uniformly equal to po. Then the
power variance spectrum T(f) will also be flat, but with a value of
2py°/ T . Let us consider H,(f; f1) to be the ideal bandpass power transfer
function

w w
I-]l'(f;fl)=‘4l f_—<|f|<f| 9

=0, otherwise,

where f; > W/2, although such a transfer function is not even approxi-
mately realizable under the requirement that Di(r) = 0 for | 7| > Tn
Then

ave {P{f1)} = AWpy,

and
2 2
var {P(f)} = ‘il%fﬂ )

If we equate these moments with the corresponding moments of a mul-
tiple of a chi-square variate with & degrees of freedom, we get

k= var (P(f)} AW

We get the same result if I7,(f; f;) is assumed to be the ideal lowpass
power transfer function

H{f; ) = A4, |7 < W,
= 0, otherwise.

In either cage we get only one degree of freedom when I/ = 1/(21%) .
This suggests that the frequency range f > 0 be divided into elemen-
iary bands of width

1

with one degree of freedom in cach. (In the presence of very sharp peaks
in the original spectrum it would be somewhat more 'u-cum’to to divide
the frequency range — o« < f < = into bands of width 1/T, with one
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degree of freedom in each, and with one band centered at f = 0.) It
follows from the results of the preceding section that, if P(f) is reasonably
smooth, we may regard the stability of the power density estimate
Pi(fi), for i = 1, 2, or 3, as approximately equal to that of a chi-square
variate with & degrees of freedom, where

p=2T (1 — 1) (B-9.2)

Tw Tw 3

for one piece (or record).

B.10 Filtering and Analog Computation

Power spectrum analysis from continuous data is frequently done by
filtering techniques. In this section we will examine some of these tech-
niques. In particular, we will try to express their results in such a form
that we are led to express their reliability in equivalent numbers of de-
grees of freedom.

A common technique is to apply the signal to a narrow-band filter,
allow some time for initial transients to become negligible, and then
measure the average output power over the remaining time of the record.
This corresponds to Mode I as deseribed in Section 10 of Part I. In this
technique it is clear that the estimate P y(f;) of the power density P(f;) in
the power spectrum P(f) of the original random process at the filter in-
put, is, substantially,

o) = [ Poulfs 10-df

where
Poulf; 1) = | Y500 [F-P(f)

is the power spectrum of the modified random process at the filter out-
put, and Y(f; f1) is the transfer function of the filter with a narrow pass-
band around the frequency fi. The record length is shorter for the
modified process than for the original process, by the time allowed for
the initial transients to become negligible (at least the reciprocal of the
bandwidth in eycles). The effective record length for the modified process
determines the width of the elementary bands, and the equivalent num-
ber of degrees of freedom is the number of elementary bands in the
equivalent width of Poui(f; f1), or the equivalent width of | Y(f; f) |* if
P(f) is reasonably constant in the filter passband.

In the technique described as Mode II in Section 10 we integrate all
of the power output of the filter, and divide by the length 7' of the origi-
nal record to obtain the estimate P(fi). The result may clearly be ex-
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pressed in the form

Po(f) = 5 [ 1w )+ 1BO-XO)

T Le

where W(t; 1) is the impulse response of the filter, and B(t) = 0 for
{ < 0andt > T, but is otherwise arbitrary. To reduce this to a familiar
form we first write it out in detail as

Py(f) = 17 ff Wr; f2) - Wiras 1) -BU — 7)) Bt — 72)-X(t — 1)

Xt — 1'2) -dry dre df,
so that

ave (Py(f)}] = li,fff Wires ) -Wire; f)-B(t — ) B — 7)

'C(n - 1'2) 'dT] d‘l’z dt.

Now,
0(71 — Tz) — f P(f)_e—fw(n—r:) df,
while, if J(f) is the I'ourier transform of B({),

f_w Bt — ) -B@ — 7o) -dt

- f}f TOF) T () - amm b qer ger gy

= ff J(f’)'-l(f”}"s(fl +‘f”).c—l‘(u1'1'1+mﬂ1‘g) dr: df”

= [l e e g

Hence,

ave {Pv(fl)} = ;—, fj?f LJ(f’) !2‘.”7(71;f1)']V(Tg;fl)‘])(f)

.ef(w—w')[fl~fg) df] df—; dfl df
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Further, since Y (f; f1) is the Fourier transform of W(¢; f1),

ave(Pe(f)) = 3 [[ 19U B-1Y( = 1500 F-P()-ar" ds
Finally, therefore, )
we (PR} = [ HERPG AL, B0
where
HAL1) = 21T F Y F (B-10.2

Since (B-10.1) is in the same form as (B-4.5), we may now apply the re-
sults of Sections B.8 and B.9. In particular, if P(f) is reasonably
smooth, we may regard the stability of the estimate Py(f;) as approxi-
mately equal to that of a chi-square variate with & degrees of freedom,
where

[ | ") -df:r
kb =2T=5 .
f., [Hy (f; OV -df

(B-10.3)

From the fact that H(f; fi) is the convolution of the power transfer
function of the filter with (2/T)| J(f) | it is clear that the passband of
Hy(f;fi) is at least as wide as that of the wider of the filter and
(2/T) | J(f) |'. Hence, the resolving power of the filter method of power
spectrum analysis is limited by the length 7' of available data, just as is
that of any other method. If the filter passband is made narrower than
1/T, say, not only do we gain very little in resolving power, but the
stability of our power density estimates is then, at best, approximately
that of a chi-square variate with only one or two degrees of freedom. To
obtain a reasonable degree of stability the filter passband should be
several to many times 1/7 wide. The resolving power then depends
largely on this width. Under these circumstances it should not make
much difference which of the four modes deseribed in Section 10 is used.

In Mode III, the output power may clearly be expressed in the form

Py(f) = %fw (B - {W(t; 1) * [B@O)- X O] dt,

where B(t) = 0fort < 0and ¢ > T, but is arbitrary otherwise. The re-
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duction of this to a familiar form follows closely that of the i)receding
case. The final result is that

we (Pr(f)) = [ Hy(5; £)-P()-df, (B-10.4)
where

mn =5 [ [ aunva” =50

(B-10.5)

2

j(fl _ f”)'df” '(lf’.

The analysis of Mode IV differs from that of Mode III only in the
specifications of J(f). Indeed, the results for Modes I and II are also
special cases of the result for Mode III. Mode II corresponds to J(f) =
3(f), while Mode I corresponds to J(f) = &(f) as well as J(f) = &(f).

It wasnoted in Section 10 that the zero of the input noise may not be
quite at ground potential in Fig. 5. The discrepancy may be considered
to produce a spurious line or della component at zero frequency in the
spectrum of the input noise. It will have no effect on the average output
power in Mode I if f; # 0, because the spectral window, which is simply
| Y(f; f1) [* is opaque at zero frequency. In Mode 11, however, the spec-
tral window specified by (B-10.2) may not be sufficiently opaque at
zero frequency. The effect on the average output power depends upon
the value of H(0; f;). If the spectral window Hy(f; fi) were ideal in
the sense that it has no side lobes, there would be no effect on the
average output power for values of f; at least half of the width of the
spectral window. This indicates the desirability of using a graded data
window B(f) in order to reduce the side lobes in the spectral window
Hy(f; 1), that is, essentially the side lobes in (2/T) |J(f) I*. Since the
latter window is necessarily positive for all values of f, reduction of side
lobes here is not quite as easy as it is in the indirect computation tech-
nique described in Section B.4, where selection can be exercised di-
rectly on the lag window, and the spectral window can be negative at
some frequencies.

Another filter technique frequently used in power spectrum analysis is
to apply the available record to the filter as a periodic function with a
period equal to the length of the record. If a data window is used, so
that the periodic function applied to the filter is of the form B(?) -X(0)
in the interval 0 < ¢ < T, then the power spectrum of the input function
is a line spectrum with power concentrated at integral multiples of 1/T
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eps. The total power in this spectrum, expressed in a form which displays
the distribution in frequency, is

input power = 1 % P; (2
p T — m T H

where, essentially,

2

])in(f) = %

g=00

f B()-X(t)-¢ ™" -dt j
Hence, the output power of the filter, is
1
P Y(fl) = Z

2
q. p (1
S (1) ()

Aside from the fact that we are now dealing with sums instead of in-
tegrals, this analysis parallels very closely our analysis of Mode II. It
should be noted, however, that while our summands are even functions
of ¢ we may not run our sums from ¢ = 0 to ¢ = «, and then double
the result, unless we take only half of the first (¢ = 0) term. Hence, with
this technique the equivalent number of degrees of freedom should be

taken as
272

Y (%;fl) r

provided that this turns out to give & > 3 or 4, say. It is easily seen that
this formula discourages the use of this technique with a filter whose pass-
band is only a few times 1/T wide.

q=o0
[z
. — Lo=—=
k=" —

2

g=—

B.11 Prewhitening

The techniques required here are standard in communication engi-
neering and do not require specific treatment. As these techniques are
ordinarily used, the original stationary random process is in effect con-
tinuously acting on the input end of the prewhitening filter, so that the
output of the filter may be regarded as another stationary random
process for purposes of spectral analysis. If these techniques are used
where it is practical to obtain only a finite length of the original process
to apply to the input of the filter, we must discard an initial portion of
the output, corresponding to the time required for the filter transients
to die out, as well as all of the output after the input has ceased. These
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considerations are taken up in greater detail in Sections B.15 and 16 in
connection with the analysis of equi-spaced discrete data.

DETAILs FOR EQUI-SPACED ANALYSIS
B.12 Aliasing

Let us consider a stationary random process whose autocovariance
function €'(r), and power spectrum P(f) are known exactly. If we now
take only the values of C(r) at uniformly spaced values of 7, viz.

r =0, A7, £2A7, -+
we can, in principle, calculate a corresponding (aliased) power spectrum

P.(f), by using the formula

Pu(f) = f: [V(r; A7) -C(D)]-¢ " dr,

where V(r; A7) is an infinite Dirac comb as defined in Section A.2.
Making use of the results of Sections A.2 and A.3 we have

P(f) = 4 (f; Al—T) x P(J),
or, explicitly,

P = EP(r- L)

g=—20

Thus, if it happens that P(f) is zero for || > 1/(2 A7), as illustrated in
Fig. 17(a), there will be no overlapping of the individual terms in P.(f),
and the result of the summation will be as illustrated in Fig. 17(b). In
this case, we can restore the original spectrum by multiplying P.(f) by
a rectangular function according to the formula

() = P.(f) = 8()-Puf),

where
_ 1
1
=0! |fl>E_)

for, in the absence of such overlapping, P.(f) = P(f) for | f| < 1/(24r).
Hence, we will recover the original autocovariance function C(r) from



522 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1958

that for the discrete series by a convolution according to the formula

C(r) = G(r) *[V(r; Ar)-C()]

= Ar- D, G(r — qAr)-C(gar),
Q=0
where
. ™T
s|in —

~ _ A‘r_i_ o T
Gl = mr  Ar dlfﬂrl

Now let us consider a second stationary random process whose auto-
covariance function C'(r) happens to be related to C'(7) by

C(r) = G(r)-C(n),
where G(7) is unity at 7 = 0, A7, £2A7, ete. Since
V(r; A7)-C(7) = V(r; Ar)-C(7),
it is clear that P.(f) will be quantitatively, and in the utmost detail

(@) P(f) anD Bi(f) anD B, (f)

- fN 0 f‘N

(b) Pa(f) anp Pa(f)

SN NV N

T sy o r T
AT N N AT
T
(c) P(f)
"'fN o] fN

Fig. 17 — Tiffect of sampling on power spectra.
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identical with P,(f). Hence, the principal part P.(f) of the aliased spee-
trum P.(f), that is, the part in the range |f| < 1/(2A7), will not in
general be the power spectrum of the second process. In fact, if S(f) is the
Iourier transform of G(r), the power spectrum of the second process is
related to the power spectrum of the first process by

P(f) = 8() = P().

In general, this spectrum covers an infinite range of frequencies, so that
the aliased spectrum

T pam— At
will involve overlapping of the individual terms. This overlapping will
account for the quantitative identity of P,(f) with P.(f), and the failure
of its principal part P.(f) to represent P(f) even in the range |f| <
1/(2 Ar). Tig. 17(¢) illustrates such a P(f).

It may well have already occurred to readers familiar with amplitude
modulation that using only uniformly spaced values of C(7), viz.,
C'(rA7) where r = 0, =£1, 2, -- -, has the same effect on the power
spectrum as the simultaneous amplitude modulation of carrier waves
with frequencies q/Ar where ¢ = 0, =1, £2, - - - . If the two-sided power
spectrum P(f) corresponding to C(7) is visualized as side-bands on a
zero-frequency carrier, then the aliased spectrum P.(f) corresponding to
C(rA7) will be naturally visualized as the same sidebands on carrier
frequencies q/Ar, where ¢ = 0, =1, &2, --- . If each sideband of P(f)
does not extend beyond the frequency 1/(2Ar7), then there will be no
overlapping of side-bands in P.(f), and the prineipal part P.(f) of Pa(f)
will be identical to P(f). Contrariwise, if each sideband of P(f) extends
beyond the frequency 1/(2A7),then there will be overlapping of side-
bands in P,(f), and the principal part P,(f) of P.(f) will not be identical
to P(f). In any case, however, it is important to note that

1/(24a7) 1/(247) © w0

= — = >

[oopwa=[ prana=[ rpa=[ ro i
If we examine the relation of P,(f") to P(f), where

néf’éq%, and fz0,

we find that
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Fig. 18 — Spectrum folding.

(the right-hand side representing P.(f') for all /). We say, therefore,
that the power density at f = (¢/A7) — ' and at [ = (¢g/A7) + [/ in
the true spectrum P(f), where ¢ = 1,2, - - - , «, are aliased at [’ in the
principal part P,(f') of the aliased spectrum. Clearly, the presence of
aliases in power density estimates from time series is a matter of some
concern.

Aliasing is sometimes called spectrum folding, because the pattern by
which various frequencies are aliased with one another corresponds to the
result of folding up the frequency axis, as illustrated in Fig. 18. The
frequency of the first fold is called the folding or Nyquist frequency. In
the discussion above this was fy = 1/(2A7), which usually coincides
with fy = 1/(24At).

B.13 Transformation and Windows

A general outline of a hypothetical procedure for power spectrum
estimation from a uniformly spaced discrete time series of finite length,
by the indirect route, is as follows:

(1) Let Xy, X;, -+, X, be the time series and let A¢ be the time
interval between adjacent values. Compute mean lagged products, with
lag interval A7 = hAl, according to the formula

1 g=n—hr

Z XQ'Xq+kr

n — hr =0

C, =

(r=0,1, «++-,m where mgg).
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(In a practical procedure, this formula will have to be modified to avoid
difficulties with spurious low-frequency components.)
(2) Compute raw spectral density estimates according to the formula

g=1

g=m—1
V, = AT'|:C[) +2 > C’q-cosi—w + C.-cos rvr:l.

Since V, is symmetric in r about every integral multiple of m, it is neces-
sary to compute it only for r = 0, 1, - - - , m. The frequency correspond-
ing to r is r/(2mAr), as shown below.

(3) Compute refined spectral density estimates according to the formula

U‘r = aiﬂlfr + Z afl'j[IFr«H' + Tfr—j] )
=1

where the a’s are the same as in Section B.5. In particular, for the
third pair of lag and spectral windows described in Section B.5, we
have azp = 0.54 and ay = 0.23, all others being zero, so that

U, =023V, 4+ 054V, +023 Vs

(These power density estimates should of course be doubled if they are
to be referred to positive frequencies only. This doubling may in fact be
introduced through the mean lagged products.)

Comparing this outline with the one for the continuous case (Section
B.4), it will be noted that the window is introduced by different methods.
In the continuous case the window is introduced as a lag window before
cosine transformation, in order to avoid convolution after transforma-
tion. In the discrete series case, since convolution is not difficult, indeed
is very simple, convolution after transformation is convenient, and the
lag window is shaped after the cosine transformation.

To relate the outlined procedure for the discrete series case to that
for the continuous case, we note that

ave {C,} = C(rAT),

where C(7) is the true autocovariance function. Hence,

g=m—1
ave [V,} = AT‘I:C(()) +2 3 C(qAr) cos %:Tr + C(mAr) cos r-rrj|.

q=1

This may be expressed in the form of a Fourier transform, viz.,

ave {V,} = j:: [Voulr; A7) -C(D] -7 dr,
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where V,.(r; Ar) is the finite Dirac comb defined in Section A.2, and

o
2mATr

f=

¥le

Therefore,

we (Vi) = [@u(san » P |

f=r/ (‘Zm-Ar),

where P(f) is the true power spectrum. Hence, ¥V, may be regarded as an
estimate of an average-over-frequency of P(f) in the aliased neighbor-
hood of f = r/(2mA7), with the spectral window Qoi(f) = Qu(f; A7)

illustrated in IMig. 9.
Three other views of the relation of V, to P(f) may be developed from

the fact that (from the end of Section A.2)
Valr; A7) = Do(7)-V(7; A7),

Qu(f; A1) = Qu(f) * A (f; _&J;),
whence,

ave {V,} = [Qo(f) * 4 (f5 Al-r) * P('r)]f-r/rzm-év)'

The view taken in the preceding paragraph corresponds to the substitu-
tion

Q(f) = A (f; Ai) = Qui([).
T
A second view corresponds to the substitution
1
4 (f; _) * P(f) = Pu({),
Ar
and a third to the identity

A (f; Ai) P(f) = A (f; Ai) « P,

The latter two correspond to the results

ave {V,] = [Qn(.f') * Pu(f)]

’
[=r/(2m-AT)

ave (V] = I:Qc..x(f) * PA(f)]

f=r/(2m-A7) )
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Hence, V, may also be regarded as an estimate of an average-over-fre-
quency of the entire aliased power spectrum P.(f) in the neighborhood of
f = r/(2mAr), with the spectral window @Q,(f) illustrated in Fig. 14,
or, and usually most usefully, as an estimate of an average-over-fre-
quency of the principal part P 4(f) of the aliased spectrum, in the neighbor-
hood of f = r/(2mA~7), with the aliased window @Qu.(f), which is illus-
trated in Fig. 9.

Finally, a fourth view (()uesponds to the substitution (from Section
B4)

Qo(f) * P(f) = ave {Po(f)}.

Hence, V, may also be regarded as an aliased version of the estimated
power spectrum Po(f) which would have been obtained from the con-
tinuous data in accordance with the hypothetical procedure outlined in
Section B.4.

Regarded from any one of the four points of view developed above,
we see that the raw spectral density estimates V., (assuming Ar suffi-
ciently small, so that aliasing is negligible) are in the same position as
the estimated power spectrum Py(f) in the continuous case; the spectral
window Qu4(f) is essentially Qu(f) with the same undesirable side lobes.
Hence, the raw power density estimates must be refined. As in the con-
tinuous case, the refinement can be done by using a graded lag window
before transformation. In the discrete series case, it may also be done by
convolving the raw estimates with the a;;'s of Section B.5 to obtain the
refined estimates, as deseribed under (3) in the outline.

In any event, we may write, as we did at the end of Section 4, of Part I,

ave | U, = ]:a H, (f, ImA ) P.(f)-df,
where

Hdf; ) = QI + 1) + QL — fo).

Alternatively, we may write

ave {U,} f”.{(,) A) P(f)-df,

or, more usually,

1/(2-Ar)
ave {U,} = j; Hiy (f SR ) P.(f)-df

=f0 ., (f,z )P (1) df,
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Fig. 19 — Aliased spectral window Qa4 for m = 12,

where
Hii(f; f1) = Quu(f + f1) + Qua(f — f1),

and

0 = +a(st)= X a(r-2)

g=—00

In particular, Q..(f) and Qs.(f) are illustrated in Figs. 8 and 19.

B.14 Variability and Covariability

The analysis of variability of power density estimates from discrete
time series is a repetition of Section B.6 up to and including (B-6.4)
for cov {M(t, 1), M(t;, 7)}. Beyond this point we now have to deal
with summations rather than integrations with respect to # and # .

If the range of summation in the formula for the mean lagged products,
viz., n-hr, is replaced by an average range n’, which may be regarded as
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the effective length of the series, and which may usually be taken as

n' = largest integer less than ( - ]1;2)
then
cov {C,, Cy} = [: cos wrA7-cos wsAr-T'a(f) - df,
where

) . I} L)

ALY

I =4_[P NP — . Snen gt

wl) =4 [ PGAPG - 1) (SRR

(reducing to (B-6.10) and (B-6.11) as At — 0 with »’At = 7). Finally,

if U, and U, are refined power density estimates based on applying the

spectral windows Q:(f) and @Q(f), respectively, to the aliased power
spectrum P,(r), then

T ] — 1 ” . . T . . - S - 1 .
cov {U,, U} = i L:. Hi, (f, ZmAT) His (f, Qm—Ar) T'ad(f) - df.

In particular, of course

var {7} = }: [ ]:HM (fi zﬁjr)]'l—'m(f)'df-

We see now that there is essentially no difference between power
density estimation from uniformly spaced time series and power density
estimation from continuous data, except for aliasing and its secondary
consequences. In particular, if P(f) is reasonably smooth, and if aliasing
is negligible, then we may judge the stability of the power density esti-
mates U, for the uniformly spaced case by analogy with a chi-square
variate with £ degrees of freedom, where

k=2(;ii—%), P=1,2 e, (m— 1),

= half as much for » = 0, m.

B.15 AND 16 Transversal Filtering™®

If the Z’s are moving linear combinations of the X’s, for example

Zq = CI]Xq + chqfl + st + C,';quk,

* See Kallmann? for the origin of this term.
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and we take At = 1 for convenience, then the spectra are related by
Po(f) = Px(f) [ + o™ + ™ + - Fac ™ F
= Px(Hle® + o' + &' + -+ + o)
+ 2(coer + 162 + -+ 4 i) cos w
+ 2(coca + a1e2 + -+ + erats) cos 2w + - -
+ 2(cock) cos kw,

where w = 2xf. The first equality arises by considering X, = ¢, and
the second involves the sequence of coefficients

b—k = CoC ,

b_k+1 = CoCr—1 + CiC ,

by = eer + eey + - + e,
2 P 2
bh=c +ec + - + o,
bl = €1y =+ eay + Tt + CrCr—1
by = oy + caer + -+ + CrCr—s ,

by = e + e,
b, = CiCo

which represent the convolution of the sequence ¢, ¢, -+, c with
itself.
As g filter, the moving linear combination is characterized by

| Y(NP = b0+ 2 by cos @ + 2 by cos 2w + -+ + 2 b cos ko,

which is never negative (as the square of an absolute value). Since we
can write cos jw as a polynomial in cos w of degree j, we know that:

(1) | Y(f) |” can be written as a polynomial of degree k in cos w,

(2) for —1 = cos w = 1, it is not negative.

Any such polynomial can be realized as a moving linear combination
(in several ways, see Wold™). The simplest way to see this is to factor

the given polynomial into linear and quadratic factors. By appropriate
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choice of signs these factors will satisfy (2), and, if each corresponds to a
real moving linear combination, the moving linear combination obtained
by applying them successively will correspond to the given polynomial.
Any such linear factor tukes the form
oy 12 2
LY = A1 + acos w)
with | a | = 1, which may be realized by & = 1 and

e, =3A(V1+a++1—=a).
Any such quadratic factor takes the form
[ Y0 P = A*(1 + a1 cos w + as cos’ w).
The condition for this to be non-negative for | cos w | £ 1 is
la; ] £ 1+ a,

and if a2 = 1, so that the first condition forces an internal extremum
9 .
on [—1, +1], we must also have a;” < 4a. . We may write

| Y, (D" = 4‘12(1 + C)E + a1 cosw + gicos Qw),

which is realized by a three-point moving linear combination with

A
60,62:2\/‘2(\/1+a2—}—\/7i\/l—az-f—\/i),

V= VA F ) - ad,

; Vitaeta—-Vita-—a,
the conditions stated above ensuring that all radicals are real.

These two cases — linear and quadratic factors — not only prove
that every polynomial non-negative on (—1, 4+1) can be obtained, but
provide at least one way to find a moving linear combination with an
assigned polynomial.

One special ease deserves record. If we require a simple moving linear
combination with Y(fy) = 0, we may use

c; =

o = 1
2 cos wy’
G = '—1,
. 1
g =
2 cos wp’

which has | V() |* = [1 — (cos w/cos )]’
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Now that methods are available for finding moving linear combina-
tions whose spectral windows are prescribed polynomials in cos w, some
attention should be given to approximating an arbitrary desired response
by polynomials. If a roughly “equal ripple” approximation (where the
local maxima deviations of approximation from desired are roughly
equal) is desired, then the techniques described in the next paragraph
will be quite effective. If, as seems likely, however, we desire the frac-
tional error

approximation — desired
desired

to have roughly equal ripples, then no specific method seems to be avail-
able. All we can suggest is the following procedure: (i) find a roughly
equal ripple approximation, (ii) find the zeros of its error, (iii) squeeze
these zeros together where smaller ripples are desired, and open them
out where larger ripples can be permitted, keeping as much of the same
general pattern of distances between zeros as possible, (iv) construct
a new polynomial with these points for the zeros of its error, (v) adjust
the result slightly, if necessary, to make it non-negative. (This proce-
dure sounds quite plausible, but the reader should be warned that we do
not know how to be more specific about ‘“keeping as much of the same
general pattern of distances as possible”. However, we expect the pro-
cedure to work in many hands.)

The construction of the roughly “equal ripple’’ approximation can
proceed in many ways. In almost every case, one should begin by calcu-
lating values of the desired response at values of cos w equally spaced
from cos @ = +1 to cos w = — 1. The semi-classical approach (DeLury,*
Tisher-Yates,*® or Milne®) would be to fit orthogonal polynomials to
these equi-spaced points. The results would be least-square fits, but
might be far from equal-ripple. The process of “economization’ (Lanc-
208, Lanczos,® streamlined by Minnick®) will allow us to take an
over-fitted least-square fit and back up to an “equal-ripple” polynomial
of lower order. However, the direct attack, based on central differences
of the desired response (at equi-spaced values of cos w) as proposed by
Miller® seems likely to be shorter, even allowing for the expansion of
the Ceby&év or Chebyshév polynomial series into single polynomials.

One further set of considerations remains which is sometimes impor-
tant. These relate to the starting up of a moving linear combination.
If Z, involves X, back to X, , then there will be & less Z’s than X’s,
and nothing can be done about this. Any transversal filtration causes the
loss of some data, and if the filter characteristic is complicated (as a
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polynomial in cos w) the loss will have to be correspondingly great. This
is usually unimportant, but, with very short pieces of record, might be-
come crucial.

In Section 15 we remarked that an autoregressive relation, e.g.,

X'f = Cﬂzq + Cqufl + e + Cqu_k,

between X’s and Z’s enabled us to obtain the reciprocal of any suitably
non-negative cosine polynomial as the ratio of the spectrum of Z to the
spectrum of X . There are different ways of looking at the situation which
make this statement true, not true, or partly true. If we have all the X’s
back to ¢ = — %, we can calculate the corresponding Z’s and it is true.
If we have only a finite number of X’s, as always in practice, then we
have to start the caleulation up in some other way, perhaps like this

XD = C(]Z(],
X1 = aZi + e,

Xio = eZpa + ko + -0+ o,
Xy = cZr + ey + -0 + exdy

As a consequence, we will have introduced an initial transient into the
form of the autoregressive transformation so that our Z’s are never
related to the X’s in the way we supposed. In this sense the statement
is untrue. In many cases, however, this initial transient dies out quite
quickly, and if we discard enough initial Z’s, perhaps 2k to 4k of them,
we can regard the reciprocal of the cosine polynomial as a satisfactory
approximation. In this sense the statement is partly true.

In theory, an autoregressive scheme corresponds to an infinitely long
moving linear combination. In practice it corresponds to a sequence of
changing moving linear combinations of finite but inereasing length
which approximate the infinitely long one. Sometimes the approximation
is quite good enough. (Perhaps the main advantage to the autoregressive
scheme is its likely reduction in arithmetic — a few autoregressive coeffi-
cients corresponding to a long moving linear combination.)

B.17 Smoothing and Decimation Procedures

We now study the effects of applying, successively and in any order,
simple smoothing and decimation. The basic operations are taking
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equally weighted means of { consecutive values, and discarding all but
every jth value. Simple sums are usually more convenient than means,
and, since the results differ only by a fixed constant factor, lead to the
same spectra except for a constant. We define, then, as our basic opera-
tions, S¢ and F';, where (for definiteness)

Yy =8X
means
Vi=X.+Xa+ - + Xigea, (¢ terms),
while
Z=rX
means

Zi= Xiyini-

It will also be econvenient in dealing with the algebra of these opera-
tions, to use an operator for simple summing at wider spacings. We
therefore define S, by taking

w=8%X
to mean
Wi=X;4+ X+ -+ + Xipmmn, (€ terms).
It is immediately clear that
S8k = Sa (B-17.1)

both sides corresponding to forming sums of {h consecutive X /'s.
Now, consider the equation

Z = S/JF;X,
which means that if
Y = F;X,
then
Z = S/Y.

These, in turn, mean that
Y= X1+(;'—1J:',
and
Zi=Yi+Yip+ 4+ Yieea.
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Hence,

Zi=X,+ Xopj + -+ Xovenis
where g = 1 + (i — 1)j. Now, since

W= 87X

means

W, =X, + Xops + -+ + Xorcenis
we have

Zi = Wi,

which corresponds to

Z = F;W.
Thus, we have shown that
SF; = Fi81. (B-17.2)
Similarly, we find that
SMF; = FiSd. (B-17.3)

The order in which F; and S, or S are applied is thus important.
On the other hand, it is easy to show that

SeSi = SiS¢ #= Sa, (B-17.4)
and
FiFy = FWF; = Fjy . (B-17.5)
Thus, sample reductions are
Sol'ySy = FSa" Sy = FuSs,
and
FySiF2Ss = FoFoSs¥8y = FiySs.

It may be noted also that FuS; corresponds to “summing in (barely)
non-overlapping blocks of £ terms”.

A reason for these differing relations is easily found. The changes in
the spectrum due to S, and F, are quite different in character. S, multi-
plies spectra by the power transfer function

Sh)_('wAt '
=i —i({—-T)w! 2 2
|1+ﬂw.\!+._.+ﬁz(l])_\!l__ |,
. wAl
s o

&
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while S, multiplies spectra by
LheAt\®

sin

- DhwAt
sin —5

On the other hand, I7; changes the folding frequency, fy , to a new value
1/ j)th as large as before, namely

f;f =fN/jJ

and aliases together the old principal aliases in sets of j. The j old prin-
cipal aliases which have f as their new principal alias are

52w — £, 205 + £, 4% — [, 4f% + f, -+ (j terms).

Our combined operations will, in general, change both amplitudes
and principal aliases. If

Poa(f) = T(NHPAS) + T@fv — NPARfx — [)
+ T@fv 4+ DPa@fv + 1) + -

where P 4(f) is the new aliased spectrum, P,(f) is the old aliased spec-
trum, fy is the new folding (Nyquist) frequency, and the summation
continues as long as the arguments lie below the old folding frequency,
then we call 7'(f), for any f up to the old folding frequency, the trans-
massion. (If there is no new aliasing, the transmission is merely the
power transfer function.) The ratio of transmission for a desired fre-
quency to the transmission for an undesired alias of that frequency,
such as T(f)/T(2fx — f) for example, will be called the prolection ratio.

I'ig. 20 illustrates some simple cases. Curve (b) is the transmission of
Ss, I9Sy, or, indeed any F;S; . All of these are given by

sin 3wAt)*
2

sin wAt
2
Scale (c) illustrates the reduced range of the principal aliases for Fy,
.Sy, or, indeed any S;F.S; . Curve (d) shows the power transfer func-
tion of Sy, regarded as following F, . In terms of the respective folding
frequencies, this curve duplicates curve (b). On an absolute frequency
scale it is different. Curve (e) presents the transmission corresponding to
S;Fy = F.S,® which aliases into curve (d).
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Fig. 20 — Transmission curves for a simple example of smoothing and deci-
mation,

The transmission (= power transfer function) of Ssis shown in Fig. 21.

The smoothing operation deseribed in Section 17 was, in our pres-
ent notation, F;S; where j = k/4, which equals SiF;S;. In the case
7 = 2, we have FoSs = SiF»S:, and the highlights of transmission and
folding pattern are as follows, where the frequency scale has been chosen
to make the original folding frequency = 8.

Original freq. 0 1 2 3 4 5 6 7
Aliased freq. 0 1 2 3 4 3 2 1 0
Transmission 64 26 zero 3.2 zero 1.4 zero 1.0

The protection provided for frequency 1 against aliasing from frequency
7 is only in the ratio of 26 to 1. If the spectrum falls toward higher fre-
quencies, this may be enough, but adequacy is far from certain.

Double use of Ss hefore selecting every second observation would
square this protection ratio, giving a ratio near 700. If we are to sum
by groups twice, however, we can do better than to use the same length
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Fig. 21 — Transmission curves for Sg.

of group twice. By using slightly different lengths, we can spread out the
zeros of the transmission curve, and tend to hold the right-hand end of
the transmission curve nearer the origin. Table V shows the transmission
and folding behavior of F38;8;, with the original folding frequency
taken as 18. Over the lower half of the folded spectrum, this choice
yields protection (against aliasing) by a ratio of about 3,000, which
should suffice under even moderately extreme circumstances.

If we do not wish to fold quite so far (or in multiples of 2) then F2.S5Ss
gives a protection ratio of 1,500 or better over the lower half of the
folded spectrum.
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TasLe V — TransMissioN AND Forping Braavior ofF F,S8;:Ss

or 38587 (OriciNan FoLping FrREQUENCY = 18)
Original Frequency Folded Frequency Relative Transmission

0 0 3136

1 1 2356

2 2 946

3 3 156

! 4 3.5
5 b 0.03
6 6 3.0
7 5 7.4
8 4 2.4
9 3 Zero
10 2 0.04
11 1 0.39
12 0 1.0
13 1 0.17
14 2 0.09
15 3 0.06
16 4 0.12
17 5 0.28
18 6 Zer

So long as we are satisfied with such, only moderately large, protection
ratios, and with a substantial fall-off of transmission over the useful part
of the spectrum, such repeated wunweighted summing-or-averagings by
groups are likely to be most desirable from the point of view of machine
computation. If requirements on the smoothing-and-decimation opera-
tion are more stringent, smoothing with a suitably chosen set of graded
weights is likely to be required.

B.18 Modified Pilot Estimation, ('ascade Estimation.

The addition-and-subtraction caleulation discussed in Section 18
(i) yields only one estimate per octave, (ii) is unduly sensitive to trends,
(iii) involves windows which are broad even for a one-per-octave spacing,
and (iv) is deliberately wasteful of data in the interest of computational
simplicity. There may well be a desire to correct any or all of these.

The & operator, in a notation extending that of the last section, takes
the form & = /.1, where F. is the operation of dropping every alternate
value and 1) is the operation of differencing adjoining values. We may
replace 8 by 1) in the computing routine, keeping ¢ the same, with the
following effects: (i) loss of symmetry in the procedure, (ii) introduction
of numerical factors like 8/15 (to he applied to the sums of squared
differences), (iii) near doubling of number of differences available for
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squaring and summing. If not enough data is available to give adequate
stability to the results of the standard pilot method, then this modifica-
tion may be worth while.

If we denote the operation of omitting the ofher half of the values by
F, and introduce o’ = F3S, as well as ¢ = F.S;, then, by using D, ¢ and
¢’ successively, we may obtain even more differences for squaring and
summing. Table VI shows a convenient pattern of computation, in
which sums and differences are not located in lines near the lines from
which they are derived. Table IX, below, (in Section B.28) provides
a numerical example,

TaBLE VI — CompacT CALCULATION ARRANGEMENT FOR COMPLETE
VegrsionN ofF Piror EsTIMATION PROCEDURE

o - [ a a o [ o o o
x| oo | fodx | oefsle [ odx|efe) folx [l o) x
X, SX, SSX, SSSX,
DX, DSX, DSSX,
X, SX;, SSX;
DXg -DSXJ
X; SX;
DX, DSX;
X, SX; SSX;
DX,
X5
DX;
X SX, SSX.
DX, DSX.
Xy SX,
DX; DSX,
X, SX, e
-DXa = X:H—l - qu SSXq = (8X,40) + (SX,,)
SX, = Xou + X, , DSSX, = (88X,11) — (8SX,)

DSX, = (SX,2) — (8X,) SSSX, = (85X, + (S8X,)

Two methods are available to cope with trend difficulties. The original
series may be differenced, and the differenced series subjected to pilot
estimation. (The main disadvantage being some loss in accuracy, etc.,
at very low frequencies.) Or each column of differences may be “corrected
for its mean”’ adjusting the corresponding divisor from k to & — 1. (This
is only recommended when the first modification is in use and the
column contains all D’s, not merely the corresponding §’s. Instead of

then, the corrected sum, correspondmg to (K + 1)/2 squares, becomes

b [E o - Loy,

20k — 1)
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In view of the fact that Y D, should equal the last value in the preced-
ing column minus the first value there, a convenient check on the D,
exists.

If, as may not be too unlikely, none of these modifications suffices,
as will surely be the case if more than one estimate per octave is required,
something better than the modified pilot estimation method, without
going all the way to the detailed method’s equi-spacing in frequency,
may be desired. Such an intermediate method should give roughly con-
stant spacing on a logarithmic scale, and provide reasonably clean win-
dows, with about a 100-to-1 ratio between major lobes and minor lobes.
It would be useful for high quality pilot estimation, and might sometimes
suffice for the complete analysis.

Lasy caleulation and a roughly logarithmic scale both favor a cascade
process, in each of whose cycles some computation is carried out on
given values, and then half as many values are computed ready for the
next cycle. We may expect, then, that it will be possible to think of each
cycle as having three phases:

(a) computation of estimates

(b) smoothing of given values

() deletion of alternate smoothed values.

Our main attention needs to be given to the last two phases, since the
first is a branch which can be changed rather freely.

We are concerned, therefore, with smoothing procedures to precede
halving of the folding frequency. We have, then, to choose two fre-
quencies averaging to the new folding frequency such that we plan to
make estimates based on the smoothed (and halved) values up to the
lower of these, while effectively eliminating frequencies above the higher.
If the folding frequency at the start of the present cycle is f; , these two
frequencies can be written as ofy and (1 — «)fy . In the next cycle, then,
we anticipate estimation up to afy . In the present cycle, we anticipate
estimation up to 2eafy and must consequently cover the octave from af,
to 2afy .

In the choice of @ we must balance two considerations of computing
effort. Tor a given number of lags (a given number of multiplications in
forming mean lagged produets per e¢ycle) our estimates are spaced a fixed
fraction of fo. The larger @ and 2af,, the more of these we may use.
Contrariwise, the smaller «, the easier it is, in terms of computational
effort, to provide smoothing which suppresses the whole interval from
2afy to fo by a factor of about 100 in comparison with what it does to
any frequency between 0 and af; .

Trial suggests that a value of « near } is reasonable. We wish, there-
fore, a smoothing which suppresses frequencies between (3)fo and fo .
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Two elementary smoothings with zeros in this range are running means-
or-sums of 2 (with a zero at fy) and running means-or-sums of 3 (with a
zero at (2)fy). If, for convenience, we use sums, these operations multiply
the spectrum by, respectively,

2 + 2 cos nf/fo,
and

3 + 4 cos «f /fo + 2 cos 2af/fu .
If both are applied, the factor takes on the following values:

f/fo =00 0.3 % 0.5 0.6 0.62 2 0.8 0.8 O
factor = 36 15 12 2 0.23 0.08 0 0.146 0.147 0.143 0

The result is a protective factor (against the effects of aliasing on halving)
of just over 100 for & = 0.3 and of about 80 for « = §. This should be
entirely satisfactory for most pilot purposes. (If further protection is
needed, Z, = 0.6X,; + X, + 0.6X,4, which has zero transmission at
f/fo = 0.815, could also be applied.)

If we wish to reduce the number of additions, we might smooth by
threes, and then combine smoothing by twos and halving, e.g.,

X=X+ Xo+ Xon,
Z, = XoJ* + X2*q+1;
which requires 2.5 additions per X-value. If we rearrange, however, to
KXo = Xog + Xogia,s
2Xs, = Koy + Xu,
Zy = Xoga + 2224 + Xogye,

we find only 2 additions per X-value. Thus this type of smoothing and
halving is computationally quite simple.

If we use this smoothing-and-halving process cycle after cycle we
must, after obtaining our spectral estimates for the series actually proc-
essed in a given cycle, adjust them for the effects of all the smoothings
in preceeding cycles. Near zero frequency this factor is (36)™ for d
previous smoothings. At a few selected frequencies the factors are as
follows:

fffa= 0 0.075 0.15 0.225 0.30

j=1 (36)7 1.05(36)" 1.23(36)7" 1.60(36)"" 2.4(36)""
j=2 (36)7 1.06(36)7% 1.20(36)° 1.81(36)" 2.95(36)
j=3 (367 1.07(36)"° 1.31(36)"" 1.86(36)"" 3.10(36)"°
j=4 (367 1.07(36)" 1.31(36)™" 1.87(36)" 3.16(36)*
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Tig. 22 — Windows for m = 12, and smoothing from previous cycles.

When an ordinary calculation with m = 12, for example, and hanning
is used at each cycle, the spectral windows of the more relevant esti-
mates and the effect of smoothing in previous cycles appear as in I'ig. 22.
Clearly the estimates for r = 3, 4, 5 and probably 6 will be quite usable.
The estimate for » = 7 may well be usable, but its window extends up
to a point where protection against aliasing is beginning to be much
reduced. Computation for all » from 0 to 12 is probably worthwhile,
lower values of r providing rough checks for later cycles and higher
values indicating the extent of the danger from aliasing (to estimates of
the next cycle) during the smooth-and-halve phase of the present cycle.

The resulting spectral windows are shown for parts of 4 cycles in Fig.
23. The windows 6, 5, 4, 3 ~ 6/, 5, 4/, 3 ~ 6", 5",4”,3" ~ 6", 5",
4" 3" and soforth, will give a fairly effective set of coarsely spaced spec-
tral estimates.

B.19 Rejection Near Zero Frequency

We come now to the details of compensation, on the average, for non-
zero but constant averages or for averages changing linearly with time.
(As a convenient shorthand we will refer to these as “constant’ and
“linear” trends.) The X, on a sample of which our caleulations are to
he hased, can each usefully be regarded as a sum of two terms: (i) a fixed
(but unknown) trend and (i) a sample from a stationary ensemble with
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average zero. These terms are added together and are statistically inde-
pendent (since one is fixed).

r'\\y,’
\
A
\
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\’ \
I\
\\
\\
FOLDING
yas'e | FREQUENCY
\YAAYJ
A1
]

FOLDING
FREQUENCY

T
.

FOLDING
FREQUENCY

Fig. 23— Spectral windows in suceessive cycles (smoothing corrected for).

Consider any quadratic expression in the X}, . If we introduce the two
terms for each X, , we may write the quadratic expression as a sum of
three parts: (i) a quadratic in the trend (fixed, of course), (ii) an ex-
pression linear both in the trend and in the stationary fluctuations (and
hence of average value zero), and (iii) a quadratic in the stationary
fluctuations. The first and last of these three parts are, of course, just
what would have arisen had the trend alone or, respectively, the fluetua-
tions alone been present. Hence, since the average value of the middle
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part vanishes, the average value of the whole quadratic is the sum of
the average value for the trend alone and the average value for the
fluctuations alone. To study the efficacy with which a quadratic ex-
pression rejects a trend in the presence of fluctuation, we have only to
study its behavior in the presence of trend alone. After this, we shall
want to study the behavior for fluctuations alone of those expressions
which satisfactorily reject trend.

(The variance of the quadratic expression will be determined from the
middle and last parts. If third moments of the fluctuations vanish, as
will be the case for Gaussian ensembles, the contributions will come from
these parts separately, the covariance between parts vanishing,)

A few formulas will be useful in discussing possible rejection tech-
niques. These are conveniently derived on the basis of n = 2k + 1
available equi-spaced values extending from —% through 0 to +%. (The
indexing of the values is only a convenience, and cannot affect any
essential result. The limitation to an odd number of points is essentially
a convenience also — we shall replace 2k 4 1 by an unrestricted n rather
freely.)

The first formulas relate to constants and linear trends, and are as
follows:

ave {C, | Xy = 1) = 7-}-1— Z () =

ave [Cy | X, = 1} = -—Eh(h+r)

2k +1

Ml

- % @k + 1) — 7@k + 1) — 1),

where
2
Ko=1-L_2" 2" ~1,
n? n n?
whence,
1 k—r
ave {C, | Xi = a + Bt} = 57— 2 (a + h)(a + Bh + 6r)
2k + 1 — r =

_ 2 8 s
= +EHK,,
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while
d—c¢
+d+1§(a+ﬁh) atB—5—,
b
L 3 (o + B + B9)

a+b+l—ac+d+1—c

=a2+aﬁ(d—-c;—b—a)+ﬁz(d‘ b —a)

Trom the first two formulas, as combined in the fourth, we learn what
dependence on a and g is required if we are to reject both constants and
linear trends for any fixed value of r. The fifth formula, as developed
into the last, shows that this cannot be done by subtracting the product
of any two simple, equally weighted means of the X’s.

Suppose now that & = 3j — 2, so that the means of the lower one-
third of all, of the upper one third of all, and of all X’s are, respectively

X— = J_IAS,XJ.,
F:
X— Z-Xh

3—37

and so that, when X, = « 4 8{, we have

f:=a—ﬁ('“+’)=a—(23‘—1)/3=a—§ﬁ,

)F=a+ﬁ(’°+3)—a+(2j—1)5:a+”§ﬁ,

X =a
Thus if we wish to reject a constant we may choose
E, = (X)? (independent of 7)
and have
ave |C,| X = o} = ave {Ey | X, = a}.

This choice, however, produces no rejection of X, = gt at all.
If we wish to reject either a constant or a linear trend or both in a
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simple way, we may choose
o2 3 Vi ~_\2
Elr = X + 1—6Kr (A+ - X—)

for which
ave {C. | X, = a + Bt} = ave [Ey | X: = a + pt}.

An alternate calculation, nearly equivalent to the use of K, is il-
lustrated by

1 k=r

- X, - DX, - X
= 2 X - D - D)
1 kr .
T% 41 —r _Ek XoXpyr — X
v g _ —k4r—1
rX — Z Xh rX — E Xh
- XF k—r+1 =
2]\+1—r+ 2'I"+]—?‘
1 k=r ~ ~
BT, ; XX — X — XQr,
where
1 = k —k4r—1
e 7‘ - *ru .
@ =5 +1— T[ rX ;.._ZH X, ; \’]

Thus subtracting the mean of all the observations from each observation
before forming the C,’s is equivalent to using
Egr = XE + XQ,—.

Similarly, fitting and subtracting the elementary-least-squares straight
line corresponds to

Z hXh

g =3 k(k + 1)(7A +1) n(n- -1 % Z“‘"’

and

! - a
ST p— Z:.(A,. X = X — X = B+ 1)

1 k—r

Y I Z o Xy =X = X0,
‘ H?

+ . Z h+7r)-(X), — X ) — == I:u — K,-:I.
— T Eortl 12 Lan — 1)
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Thus linear fitting corresponds to the use of

A

k
=X+ XQ - L > i+ )X — X))
n — Tk—rt1
B [2(n* — 1) :I
+ 12 [n(n—r) - K-

and if we wish to simplify computation by neglecting “end corrections”,
consider

Ew—f+XQ+nﬁK

Another version can be obtained by recalling the usual formulation of
a sample estimate of a covariance between two unlagged variates. If we
write

— _ 1 k—r
Xm—ﬂ;ﬁt:gxh
Xty = — =~
o = 5 1 — ZXMT

then we are led to use the expression

1 k—r o ) o
R p—_— Z_k: (X — X)) Xir — Xtn)
1 k—r - .
=T 2 O~ XX

which corresponds to the use of
By = X—0 X+

or, in the case of a linear trend, perhaps, to
242 2
= = ny 3r
Eﬁr = X_(r)X+{r) + n_.j— Kr + — |-
12 n?

(The E’s corresponding to fitting a separate straight line to X_x, ---,
Xirand to X _iyr, - -+, X do not seem worth writing down.)

Having now obtained a collection of quadratic expressions which, when
subtracted from the corresponding C,, remove the average effect of
trend, we have now fo learn what effect these subiractions will have on
the contribution of the fluctuations to the average values of the cor-
responding quantities. As noted at the beginning of this section, it
suffices to consider pure fluctuations, so that we need only study the
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spectral windows corresponding to the Ej,, and to their finite cosine
transforms.

If we consider white noise (of unit variance) for a moment, the X
become independent with average zero and unit variance and we can
calculate the average values of the various Iy, in an elementary way.
This is of interest, because these average values for white noise are
exactly proportional to the integrals of the corresponding spectral win-
dows. We find the following results:

Approxi-
Quadratic mation
expression Average value for unit white noise to this
1 1
Ey — —
n n
1 9K 2
o - (]- + r) ~ =
n 8 n
1 1
E2r - -
n n
1 n* .
B, {1+ — K, N?
n n? — 1 n
n — 2r 1
Ly, A ~ =
(n — r)? n
n— 2r n 3r 2
R et R (K 43 2
(n—rp n-=1 n? n

The quadratic expressions which eliminate the average effect of a con-
stant trend (one constant) have spectral windows integrating approxi-
mately proportional to 1/n, while those which compensate for general
linear trends (two constants) integrate approximately proportional to
2/n. This is simple, and seems straightforward.

Tt is possible, however, to eliminate the average effect of a centered
linear trend (one with @ = 0) by subtracting a windowless quadratic
expression, one whose average vanishes for all stationary ensembles. We
need only consider

.Y_g.‘:n - dX_]AYl “‘I“ an rﬂ

whose average value clearly vanishes under stationarity, but whose
value when X, = a + gt is 282 to see that this is so. (Cursory inquiry
into variability suggests that such use of windowless quadratics may
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increase the variability of the finally resulting spectral density esti-
mates.)

Leaving such possibilities aside, let us compare the E, for &k = 0, 1,
2,3, 4, 5. The corresponding spectral windows can be written down with
the aid of the formulas of Section A.6, but as they are rather compli-
cated, we shall avoid doing so. The three choices eliminating constant
trends, Ho, , s, and F,, , all have integrated spectral windows approxi-
mating 1/n. The dependence on 7 is in any case weak, and where present
increases with r. Ifor ,, there is no dependence on r.

We are, of course, more concerned with the spectral windows asso-
ciated with the modified V,’s rather than with those associated with the
modifying Ey. . If we use ., then the change in spectral window is the
same for each lag. Consequently, only the Ry(f) window is affected, the
Re.(f) windows corresponding to the other V., vanish. The situation is
more complicated for the other cases, and no clear advantage over the
use of Ky, appears.

The spectral window corresponding to X? is, of course, (dif nf/dif f)?
and is both always positive and well concentrated near zero. (If we re-
placed X by the average over a graded data window we could decrease
the corresponding spectral window for f beyond the first side lobe of
dif nf, but the concomitant broadening of the main lobe would make the
result much less useful.) Clearly the use of £, will be quite satisfactory.

Comparing ¥, , K3, and F;, is not so simple. B3, has the smaller
integrated spectral window for r/n small, but the simplicity of calcula-
tion of Fi, will often outweigh this fact. (If economizing on the spectral
window is important, we could use a windowless quadratic to eliminate
the average effect of B.) Accordingly, the use of £, is recommended,
unless it is simpler to subtract a fitted linear function from all X,.

(There is no Section B.20.)

B.21 Sample Computing Formulas

Only the formulas for correction for prewhitening and for correction
for the mean require discussion. The factor for 1 = r = m — 1 is exactly
the reciprocal of the prewhitening transfer function, calculated at the
nominal frequency of the estimate. The factor for » = m, and the main
portion of that for » = 0, differ only in the selection of the frequency at
which the prewhitening transfer function is evaluated. Since, in each
case, the nominal frequency is at one edge of the band of frequencies
covered, the frequency of evaluation was displaced from the nominal
frequency toward the center of the corresponding band. The choice of a
point one-third of the way across the band was somewhat arbitrary.
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Finally, there is the question of ecompensation for the correction for
the mean. The raw estimate for r = 0 would naturally be thought of as
corresponding to the interval from —1/(4m) to +1/(4m) cycles per
observation, while the hanned estimate would cover from —1/(2m) to
+1/(2m) eycles per observation. Since n degrees of freedom are asso-
ciated with the entire interval from —% to 43 cycle per observation,
the hanned estimate for » = 0 is associated with n/m degrees of freedom.
One of these has been eliminated by correction for the mean, as would
also have been the case had we used E., or Ey, , so that we need to com-
pensate for a reduction in the ratio

n

m n—m
n n
m

whose reciprocal is the first compensating factor for r = 0. (Had we used
B, , Ej , or Ey , we would have had to compensate for the loss of two
degrees of freedom by a factor n/(n — 2m).)

(There is no Section B.22.)

DeraiLs ror PraNnNiNGg
B.23 Duration Requirement Formulas

We are now in a position to assemble and modify formulas from a
number of sections as a basis for formulas expressing explicit require-
ments. In the process we shall have to give explicit definitions for certain
concepts. The first of these is resolution. If we hann or hamm, we obtain
estimates every 1/(27 ) cps. Adjacent estimates have very considerably
overlapping windows, and consequently the estimates have substantially
related sampling fluctuations and refer to overlapping frequency regions.
It would be a clear mistake to consider these estimates as completely
resolved. When we come to next-adjacent estimates, however, the situa-
tion is quite different. The overlap is small, the covariance being about
5 per cent of either variance for a moderately flat spectrum. We shall
consequently treat such pairs of estimates as completely resolved, and
place

1 1

resolution i §) =2 — = ——— |
(resolution in cps) 27T, T, in seconds

We can express the stability, so far most often expressed as the num-
ber of elementary frequency bands or equivalent degrees of freedom
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associated with each estimate, in terms of the spread in db of an interval
containing, with prescribed probability, the ratio of true smoothed power
to estimated smoothed power. Reference to Table II in Section 9
shows the inter-relations to be, approximately

250
B=1 (80 per cent range in db)?’
o 400
k 1+ (90 per cent range in db)?’
625
L=1
+ (96 per cent range in db)?’
k=1 840

+ (98 per cent range in db)?’

We shall write our combined formulas in terms of the 90 per cent range.
TFormulas for other per cent ranges are easily obtained by replacing 400
by the appropriate constant. It must be emphasized that when we use a
90 per cent range we only have 9 chances in 10 of finding each individual
estimate correspondingly close to its average value and that if we have,
say, 30 estimates, we are quite sure that at least one will be more dis-

crepant, than this.
We recall that we adopted (see end of Section 6 of Part I)

T = (total length of record) — %) T,
where p was the number of pieces, and, for design purposes.

2T,

k=~

Hence,

(duration in seeconds) = T, = (%‘ + g) T,

- (E P) 1
2 3/ (resolution in cps)

_ {1 200 (pieces))/ ‘ .. ‘
N (§ + (90 per cent range in db)? + 3 (resolution in cps).

Writing (length of each piece) - (number of pieces) for (duration) and
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solving for the number of pieces yields

1 + 200
2 (90 per cent range in db)?
(length of each piece)(resolution in cps) — §

(number of pieces) =

These relations are general, and apply equally to analog processed con-
tinuous records or digitally processed equi-spaced records, provided the
spectrum is, or can be prewhitened to be, reasonably flat.

B.24 Digital Requirement Formulas

If we are to use equi-spaced digital analysis, if we can provide fre-
quency cutoff easily, and if we need to cover frequencies up to some
fuux , then we can probably take our folding frequency at about 3 fuax -
The necessary number of lags m then follow from

1 1
At = i = 5
Yuux 2w
T
m = 2 = 3Tm' max »
m Al Jinas

The necessary number of data points follows from

T, / P
n = —= n 5 'm Sf max
n ; (1 + 3 T ) 3f o

= 311:|frnux + memex
o T
= (3 m + ;D) (Tmfmnx_),

and the rough number of multiplications is
TR 2
mn = ngTn(Jrn:\x) + C"p(Tmfmux) .
The quantity 7. mex can be written as

fmex _ maximum frequency

T = rosolution = (number of resolved bands),

so that the number of data points becomes

n = ('3 T + p) (number of resolved bands)

o5 —
=
Tm

= (1.56 + p) (number of resolved bands),



Tasue VII

Second differences of Brouwer’s data and the add-and-subtract pilot es-
timation process as applied to them. (Block 2 only.)

Date 10F* diff. 211:1 g‘}f a 4 b ao baa oo DXq
1853.5 56 0
1854.5 56 —4
—4 4| —4 4
1855.5 52 0
—1 7| -1 -2
48 —2
-6 7| 3 7
42 +5
—1 -2 —4 —9
41 —4
-5 11 3 11
36 +7
+2 -9 -3 —30
1860.5 38 —23
-21 40| —6 40
17 +17
—4 —19
13 -2
—6 -4 -8 —4
7 —6
—12 18 2 +7
-5 +1
-1 +8| 10 +8
1865.5 —16 +9
-2 —23| =19 | —20
—18 —11
—13 +13 | =9 +13
—31 +2
—11 -3 | —21 -1
—42 +1
—10 —14 | —12 —14
—52 —13
—-23 +15
1870.5 —75 +2
—21 +7| 11 47
—96 +9
—12 —-17 5 —20
—108 —11
—-23 +16 | —6 +16
—131 +35
—18 4 14| +4
—149 +9
-9 -9 9 -9
1875.5 | —158 0
-9 —9 9 +4
—167 +4
=5 -8 0 —8
—172 —4
-9 +8
—181 +4
-5 —10| -2 —10
—186 —6
—11 6 2 +15

554
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TasLe VII, CONTINUED

Date wors | i, | 2nd '1\'.?- 3 « ba - e | oo | DLXq
1880.5 —197 +9
-2 —14 4 —14
—199 -5
-7 1 5| —6
—206 —11
—18 +33 11 +33
—224 +22
+4 —-19 3 —30
—220 -8
—4 +8 —8 +8
1885.5 —224 0
—4
1886.5 —228

* (Brouwer’s notation) is the fluctuation in the earth’s rotation. Here 101
is the fluctuation expressed in tenths of seconds of time.

and the rough number of multiplications becomes
(4.5k + 3p)(number of resolved bands)

|:9 " 1800
2 (90 per cent range in db)?

nm

+ S(pieces)]

-(number of resolved bands)”.

These last formulas assume satisfactory shaping of frequency cutoff, and
constant resolution up to the maximum frequency of interest. Particular
situations may deviate from this in either direction.

(There are no Sections B.25, B.26, B.27.)

B.28. Analysis of Example C

Tt is most desirable that an account of this sort include enough details
of a numerical example to allow those readers who wish to do so, to fol-
low through and check. This is impractical when even a few tenths
(or even a few hundredths) of a million multiplications are involved.
Example C, however, offers us an opportunity to present such details for
one example, even if it is quite atypieal.

We remarked in Section 28 that the add-and-subtract pilot esti-
mation procedure of Section 18 might be applied to the second dif-
ferences of Brouwer’s values (themselves the differences ephemeris
time minus mean solar time). During the 131 years from 1820 to 1950
astronomical techniques have improved, and observational errors seem,
according to Brouwer’s own analysis, to have somewhat decreased. In
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(W]
(9]

TasLe VIII — SuMms oF SQUARED DIFFERENCES

& column do column | dee column *) (t)
Block 1 8615 2083 321 —502 —971
Block 2 4130 1230 550 -9 —70
Block 3 3447 2591 273 1557 —244
Block 4 1553 304 516 —162 283
Noise 5/2 3/4 3/8 0 0
Flat 1 1 1 0.7 0.85

(*) Sum for ¢ column less 0.3 times sum for & column.
(1) Sum for doc column less 0.15 times sum for & column,

order to reflect this fact, and to provide some external estimate of error
we shall study the second differences in 4 separate blocks, 4 separate time
intervals of 32 consecutive years each. In view of the fact that Brouwer
estimates the mean observational error to have decreased from 0.38 to
0.17 seconds of time over the period, it will clearly suffice to work in
units of 0.1 second of time. Table VII shows, for the second time block,
wlendar dates, Brouwer’s values, their first and second differences (the
latter being the series we consider as the X ;) and the results of the add-
and-subtract pilot estimation model. In this table, sums and differences
are shown on lines half-way between the lines containing the entries from
which they are formed. The last column shows the result of com-
pleting the §X, column to a DX, column. The resulting sums of squared
differences are shown in Table VIII for each of the four blocks, together
with comparative values.

These comparative values show the anticipated relative sizes of such
sums of squared differences in case the spectral density were

(1) proportional to (I — cos of/fx)* = (1 — w)*, the shape assumed
for the “noise” component,

(2) flat, the shape assumed for the other component according to the
second model,
where we have introduced u as an abbreviation for cos nf/fy . The sue-
cessive columns have average sums of squared differences which are
easily seen to be obtained by multiplication of the spectrum by (when
we start with 32 X’s):
16 (2 — 2 cos of/fy) = 32 (1 — w),
8 (2 + 2 cos #f/fn) (2 — 2 cos 2af/fx) = G4(1 + w — w’* — u)

=64 (1 +u) (1 —u,

42 + 2u) @) (16 @ — 16 wY = 512(u" + o* — o — ),

and integration.
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When we recall that

s
fNukdf
0

vanishes for odd %, and is equal to fv, fv/2, 3fx/8, 5fx/16 and 35fx/128
respectively, for & = 0, 2, 4, 6 and 8, we easily obtain the values given
for comparison in Table VIII (after removing 32fy as a common factor).

The last two columns of this table represent attempts to combine
sums of squared differences so as to estimate the first component free of
the “noise’” component whose spectrum is proportional to (1 — u)®.
The attempts appear quite useless.

One reason for the lack of success is easy to find. There are only 4
values of doo to square and sum for each 32-year block. This means no
more than 4 degrees of freedom, and, consequently very poor stability.
We can partially correct this difficulty by going over to the modified
add-and-subtract method in which all possible differences of a given sort
are calculated.

Table IX presents the compact caleulation for block 1, arranged as
in Table VI. Here (¢) stands for first ¢ and then ¢’. The mean squares
for each column of differences lead to the results summarized in Table
X for all four blocks. The difference estimates are now seen to be more
stable and to increase somewhat with decreasing frequency, although
not as much as would be expected even for a flat component.

The analysis is doing better, but is not yet satisfactory. One likely
reason for this appears when we inquire what sort of spectral windows
go with (*), () and (}). The windows corresponding to D(e) and to (*)
are shown in Fig. 24. The amount of negative area near f/fy = 1 re-
quired to compensate for the rather large pickup of the ‘“noise” com-
ponent by the D(s) column is quite substantial, suggesting probable
inereased variability.

We can reduce our difficulties from such causes by using only slightly
more complex processes. We can probably use the D column satisfac-
torily as an indication of the noise component.

We need to obtain two other composite measures of the spectrum,
both of which avoid large values of f/fy, one of which is concentrated
near f/fx = 0 and the other of which avoids f/fx = 0. If we can obtain
a smoothed and decimated sequence which avoids the upper part of the
spectrum, then sums and differences of such values will have mean
squares with the appropriate properties. The results of Section B.18
suggest trying [,S8.8; as the operation generating the modified sequence,
to which D (differencing) and S. are then to be applied.
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TasLe IX
Compact caleulation applied to second differences (in tenths of seconds
of time) for block 1 (values in Brouwer’s Table VIII(c) used where ap-
propriate). (Entries arranged as in Table VI.)

Xq D @ Do) )2 Dia) (@) D(a)s (@ |P(e)
-27 —6 —-10 —-10 -9
+48 2 10 11 13
+21 —4 0 +1 4
-27 4 —6 -5
-6 0 —6 —14
+8 0 13 12
+2 0 7 8 -3
-8 -1 —12
—6 -1 —5
+12 —4 6
+6 -5 1 —6 —4
+2 6 1 8
+8 1 2 2
—16 5 4 1
-8 6 6 3 5
+1 —10
-7 —4
+13 3
+6 -1 —4 -5 -7
0 3 3 3
+6 2 -1 -2
-17 -3 -3 24
—11 -1 —4 22 20
+16 23 6
+5 22 2
-9 —42 -1
—4 —20 1 -5 -2
+8 15 20 8
+4 -5 21 3
-2 16 —46 -7
+2 11 —25 —4 -1
+6
+8
—20
—12 15 11 10 26
+23 —-19 —12 6
+11 —4 -1 16
—23 18 7 —23
—12 14 6 -7 9
+31 —29 4
+19 —-15 10
—36 27 —4
-17 12 6 5 21
+27 —-18 —19 11
+10 -6 —-13 16
—21 6 24 —18
—11 0 11 -2 14
+16 10
+5 10
+12 ~11
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TasLE IX, CONTINUED

Xq D (o) Do) (0)? D(a)? (a)? D(e)? (e)  |D(a*)
+17 -1 10 7 10
—45 8 —13 —4
—28 7 -3 3
+36 —14 -3 —-20
+8 -7 —6 —-17 —14
+6 1 15
+14 —6 9
—33 —5 -9
—19 —11 0 -9 0
428 33 —17 18
+9 22 —17 9
-7 —32 29 —14
+2 —-10 12 -5 4

TasLe X — MEAN SQUARES FOR DIFFERENCE COLUMNS AND SUITABLE
Lingar CoMBINATIONS THEREOF FOR THE ANALYSIS
InLusTtRATED BY TaBLE IX

Block D D(a) D(eg) D(a)* *) 1 1)

1 485 283 234 176 —8 —a7 —115

2 252 207 206 317 56 55 166

3 207 258 145 148 134 21 24

4 76 41 80 106 —5 34 60

Ave.of 2,3 and 4., .. ... ... ... 51 38 78

Noise 5/2 3/2 3/2 3/2 0 0 0
Flat 1 2 4 8 1.4 3.4 7.4

(*) Mean square for D(s) less 0.6 times that for D.
(1) Mean square for D(a)? less 0.6 times that for D.
(1) Mean square for D(s)? less 0.6 times that for D.

The corresponding windows are, for the square of a single value of
Sa(F2) S28:X 4,
4232 + 2u) (1 4 4u + 4’) = 8(° + 5u° + 8u' + 4u”),
and, for the square of a single value of D(F5)S.8.X,,
(4 — 42 + 20) (1 + 4u + 4°) = 8(1 + du + T — v’ — 8u' — 4u”),

to which should be compared that for the square of a single value of
DX,

(2 — 2u) = 2(1 — w).
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Fig. 24 — Windows corresponding to D(g) and to (*).

If now we form all values of Su(F.)SaS:X,, D(F2)S28:X, and DX,
(Table XI illustrates the parallel calculation of Fy and F' s quantities),
and form the corresponding mean squares, we obtain the results shown
in Table XII.

If we compare the S-0.26 column with the last column, we find a
definite tendency for the last to be smaller. As indicated by the last
two lines of the table, neither of these columns reflects, on the average,
a “noise” component, while, on the average, both reflect a “flat” com-
ponent equally. The natural conclusion is that the observed spectrum
is more peaked toward f/fy = 0 than would be expected from a mix-
ture of “flat”’ and “noise’” components. It might seem natural to con-
clude that the first model is to be preferred.

However, more careful examination shows that not only do the &
mean squares appear to decrease with improvements in astronomical
technique, but (leaving aside block 1) the values in the 5-0.2§ column
are decreasing and those in the D-0.68 column may well be doing the



TarLe XI
Calculation of Sa(F2)S2S; and D(F2)S2S; for the second differences of
Brouwer’s fluctuations in the earth’s rotation. (Portion of block 2.)

Ll ”E '5? W v-ﬂu '.‘?
- v ) 3 3 42
Date - 4 2 2 2 % a
> o] ) Ry ) Nel i, )
- v r, Q A = S %)
1854.5 —4
1855.5 0 —6
-3
—2 +3
+10 +4 2
+5 | -1
+7 —14 —10
—4 +8
—26 —-12 —12
+7 —20
—~19 +5 | —19
1860.5 —23 +1
+20 —18 -7
+17 —8
+1 +9 -5
-2 +9
—4 —2 2
-6 -7
-3 +1 5
+1 +4
+2 —4 3
18G5.5 +9 -1
-1 —11 —5
—11 0
—17 —19 -8
+2 —8
—18 —12 —28
+1 —10
+6 —30 —20
—13 —10
—12 18 —22
1870.5 +2 -2
15 -9 -2
+9 0
3 8 4
—-11 +3
14 20 6
+5 +3
17 21 33
+9 +14
—4 30 27
1875.5 0 +13
13 —23 31
+4 0
—15 11 4
—4 | 44
-2 -3 5
+4 —6
1
—6 +7
1880.5 9

561
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TaBLE XIT — MEAN Squares or COLUMNS FOR SECOND
DIFFERENCES OF BrouwEer’s Data

For A n 8 5-0.26 D-0.65 2.5 (D-0.65)
Block 1 83 228 484 —14 —62 —155
Block 2 290 178 252 240 27 68
Block 3 153 168 207 112 44 110
Block 4 62 47 75 47 2 5
Average (2, 3, 4) 168 131 178 133 24 61
Noise 1 3 5 0 0 0

Flat 28 12 2 27.6 10.8 27.6

= mean square value of S:(F2)8:8:X, .
mean square value of D(F1)8.8:X, .
mean square value of DX .

S
D=
6 =
same. The suggestion is — which, after we have seen another block or
two or three (of 32 years each), we may be able to confirm or deny —
that the lower frequency component, as well as the noise component, is
decreasing as astronomical technique improves. If this be true, then
most of the low-frequency power in blocks 2 and 3 may represent ob-
servational and reductional sources of variation rather than changes in
the rotation of the earth.

While more refined analyses might show something more, 131 values
are not a great number, especially since technique has changed during
their measurement, and it is likely that we shall have to wait a while
for a more definite answer to this question.

This example was included, not because of the peculiar importance of
the irregularities in the rotation of the earth, but rather to illustrate
certain general points, particularly these:

(1) While careful spectral analysis requires a very considerable amount
of arithmetic, there are situations where simple analysis will yield useful
results. (All the values in this section were obtained with pen or pencil
and an occasional use of a slide rule. The use of simple differencing and
summing techniques to produce moderately sharp windows has been
studied by the Labroustes.®’: .4 Although they felt themselves in-
terested in line spectra, their methods, properly reinterpreted, are easily
and directly applicable to continuous spectra.)

(2) The windows corresponding to the add-and-subtract pilot analysis
are broad and the estimation far from exhaustive. (The procedure is
intended for use in planning prewhitening, not as a tool for answering
questions of even moderate difficulty.)

(3) Subdivision of the data before analysis is quite often helpful.
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(If blocks 2, 3, and 4 had been analyzed as one unit, it would have been
easy to jump to a conclusion which now seems dangerous.)

(4) Spectral analysis can lead to results unsuspected before the cal-
culations were made. (The decrease in amplitude of the low-frequency
component which Brouwer’s data now suggests was not at all suspected
until the values given in Table XITI were pulled together.)

INpDEX oF NOTATIONS

In case a notation is not widely used, the Sections in which it is used
are specified in parentheses:
a = an integer (A.6 and B.19),
ay, a , az = real constants (B-8.4),
a0, @;; = assorted constants (13 and B'5),
A = various constants (27, B.9, B.15),

A ( ; é) = infinite Dirac comb made up of unit s-functions spaced 1/ At

in frequency (see A.2 or Table IV for formula),

b = an integer (A.6 and B.19),

B = "Lll\lhdly quantity defined in B-8.5 (B.8),

B(t), Bi(t), B(t) = a data window (graded) (10 and B.10),

¢ = an integer (A.6 and B.19),

€, €, -+, = real constants (B.15),

C';; = autocovariance corresponding to t; and #; (1),

C(r) = autocovariance at lag r,

Cw(7) = autocovariance estimated from record of finite length,

Coo(r), Can(7), ete. = hypothetical or actual analogs of Cy(7),

Ci(7) = Di(7)Cu(r) = modified autocovariance estimate (defined in 4),

C, = sample autocovariance at lag rAr (usually = rAt in practice),

d = an integer (A.G6, B.18 and B.19),

D = the operation of differencing adjoining values,

D7) = a prescribed even function of time shift, often a lag window
(cp. 4, 5, B4, B.5),

D.i(r) = lag window equivalent of B;(r) (see B-4.11 for representation),

e = 2.71828182845 - - -,

By, = k™ alternative correction at lag r (19, B.19),

f = frequency (in cycles per second where not otherwise specified), in
equi-spaced discrete situations f = r/(2m-At) = (r/m)fy,

fo = a particular frequency (in Section B.18 the folding frequency of
the cycle in question),

/i = a frequency, often the nominal frequency of a smoothed estimate,

Iv = Nyquist or folding frequency = 1/(2-At),
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fv* = effective Nyquist or folding frequency = 1/(2- A7), (13),

F'; = the operation of retaining only every 7" value (j = 2,3, --)
(B.19, B.28),

Fy, = the operation of retaining the alternate values dropped by F:
(B.19, B.28),

g = an index running from —¢ to +d (A.6 and B.19),

G({) = a function of the time, Fourier transform of S(f) (correspondence
also required with subscripts 0, 1, 2),

G({) = the Fourier transform of a particular box-car function (B.12),

I = an integer, generally satisfying Ar = h-Af, in A.6 and B.19 an
index running through indicated ranges,

H{f; f) = Qf + f1) + Qu(f — fi) = power transfer function (from
power at absolute frequency f to estimate at nominal frequency f1),

Hi{(f — fi) = special form of H.(f; f1),

Hy(f; f) = power transfer function defined in B-10.2,

i=-1,

Subseript 7, values often 0, 1, 2, 3, 4, usually identifies quantities or
functions associated with i** window pair,

4 = an integer, often such that 3j — 2 = £k or £ (B.19),

Subscript j, values often 0, 1, 2, 3, 4, alternative to subscript 7,

k = usually number of equivalent degrees of freedom or number of
elementary frequency bands; in Section 17, length of group
averaged,

£ = an integer; in 18 an exponent of 2, in A.6 satisfying n = 2¢ + 1,

I, = inductance (in example of 27),

m = integer, number of longest lag (longest lag = m- Ar, usually = mAt),

M({t, ) = bilinear monomial in the X’s
= X(t + 7/2)-X(t — 7/2),

n = usually one less than the number of diserete data points, in A.6
and B.19 an integer = 2¢ + 1,

n' = effective length of record (n'-Af = T7,),

p = usually the number of pieces of record; also = 7w (A.1 only); a
real number (usually integral, A.6),

p = a constant power density (B.9),

Po, P, P2, -+ = ordinates in general example (9),

P(f) = density of power spectrum (normalized so that variance =
[% 2P(f) df), also with various subscripts,

P.(f) = aliased density of power spectrum (periodic in {requency, cp. 12),

P.(f) = principal part of aliased density of power spectrum (confined
to |f] £ 1/(2-A7), cp. 12), |

Py(f) = estimate of spectral density based on filtered signal (B.10),
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P.(f) = spectral density estimated with the data window B(1),

2w0(f) = symbolic Fourier transform of Co(7),

Puya(f) = alinsed estimate of smoothed P(f),

Pa(f) = H{(f; [)P(f), roughly a filtered version of P(f) (subscript ¢

interchangeable with j, also 1 with 2),

P.u(f)) = aliased estimate of smoothing of P(f) by H.(f; 1),

Pia(f) = H{f; f)-Pa(f) = aliased filtered spectral density,

Piu(f) = corrected aliased estimate of P(f) smoothed by Qi(f),

Poulf; 1) = | Y(f; 1) |*-P(f) = spectral density of output,

P(f) = a perfectly known power spectrum (B.12),

P.(f) = either the aliased spectrum corresponding to P{) (B.12) or
the aliased spectrum of the X, series (15, 17),

Pa(f) = an auxiliary quantity defined in B-8.4,

¢ = index running as indicated,

(), = an auxiliary quantity (B.19),

Qu(f) = Tourier transform of centered box-car function of length 27",
(See also Q(f) for 2),

Q.(f) = Fourier transform of R(7) (see B.5 for i = 0, 1, 2, 3, 4 and
B-8.7 for another choice),

Qu(f; Ar) = spectral window corresponding to (I'ourier transform of)

a discrete box-car funetion,
= Ar-cos 3(w- A7) sin (mw- A1),

Q..(f) = spectral window corresponding to (Fourier transform of) D..(7),

Qoa(f) = aliased form of Qu(f) = Qu(f;A7),

Q:4(f) = aliased form of Q(f),

Ou(f), Qu(f) = auxiliary quantities (B.8),

r = integer index almost always running from 0 or 1 to m or m — 1,

R = resistance (in example of Section 27),

Ru(f) = spectral window associated with Qi(f) and the sequence Ejo,
Eu, -, Ew,

S, = operation of summing by (overlapping) sets of j each (B.17, B.28),

S(f) = function of frequency, Fourier transform of G(t) (also with sub-
seripts 1, 2, +--),

S(f) = a particular box-car function (B.12),

{ = time in the sense of epoch (also with various subscripts),

T = a time, usually positive,

T,. = half-length of box-car funetion of time, or greatest lag used or
considered,

T, = length of record,

7! = effective length of record, approximately T, — é—J T,
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u = general real variable,

U, = corrected estimate of smoothed power density (at nominal fre-
quency r/(2m- At),

V: = raw estimate of smoothed power density at nominal frequency
r/(2m- Af),

w = a chance quantity (B.6),

W = a frequency band width (B.9),

W, = equivalent width, often of P;(f) defined in Section 8,

Winain = width of main lobe,

Waice = width of side (unsplit) lobe,

W(t) = impulse response of linear transmission system,

W(¢; f1) = in B.10 the impulse response of filter with transfer function
Y(f; fu),

x = usually a real variable, in B.6 a chance quantity (random variable),

X, = gth value of discrete, equi-spaced time series,

X(¢) = value of time function,

X = in Section 1 an average value (along an infinite function or across
an ensemble), in 19 ff. the mean of the observed X ’s,

X+, X- = means of end thirds of observed values,

X,, X* = gth values of linearly transformed time series,

y = in Section B.6 a chance quantity (random variable),

Y(f) = steady-state transfer function corresponding to linear transfor-
mation or linear transmission system,

z = in Section B.6 a chance quantity (random variable),

a = a real constant (15) or an indeterminate (B.8), or a certain frac-
tion (B.18) or an unknown constant (B.19),

a; = factor indicating extent of end effect losses (8, B.6) defined by
B-6.9,

B = real constant (15) or an indeterminate (B.8) or a constant defined
by B-8.8, or an unknown (slope) constant (13.19),

A = estimate of B(B.19),

v = real constant (15),

I'(f) = power-variance spectral density,

I'a«(f) = power-variance spectral density in the equi-spaced discrete

case,
6 = operation of forming alternate differences,
8’ = operation of forming alternate differences complementary to 8,

Af = a change in frequency, sometimes the width 1/(27'.) of an ele-
mentary frequency band,

At = time interval, usually that between data values,

Ar = time interval, usually that between lags used (=h- Al),
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e = a small real number (A.2),

= real, time-like variable of integration (A.3),

= real, time-like variable of integration (A.3) or a real constant (15),

= real constant (15),

= real constant (15),

= angular frequency (in radians per second unless otherwise specified)

always = 2#f [with any sub- or superscripts],

¢ = 2nfT,. , a normalized frequency (B.8),

&(f, \) = an auxiliary function (B.6) (defined in B-6.3),

¢ = a phase angle (A.6),

x© = a quantity distributed as chi-square on k degrees of freedom (9),

o, o = complementary operations of summing by adjacent parts and
then omitting every alternate sum,

7 = time difference or lag,

* = sign of convolution,

superseript * = sign of complex conjugate (A.3),

V({; Al) = infinite Dirac comb approximating the constant unity
[formula in A.2 or Table IV],

V..(t; Af) = finite Dirac comb approximating a unit-height, centered,
box-car function [formula in A.2 or Table IV].

£ = F >
|
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