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Values of the tensor permeability components of a magnetized ferrile at
microwave frequencies may be determined from the frequency shift that a
sample produces in a resonant cavity.

In this paper mathematical expressions are oblained relaling this fre-
quency shift to the diagonal and off-diagonal permeability tensor values and
lo the cavily geomelry and ferrite geometry for any TE, TM or TEM
mode natural to the empty cavity. The cavities considered are avial and
have generalized cross section. The expressions are valid for ferrite discs
whose volume is small compared with the cavilty volume; it is assumed that
the ferrite sample does not perturb the fields outside the ferrite from their
empty cavity values. The cross section of the ferrite disc is arbitrary in shape
and is perpendicular to the axis of the cavity.

Examples are given in which the frequency shifts in a circular coaxial cav-
ily, circular eylindrical cavity and rectangular cavity containing thin
ferrite discs are derived for general TE and TM modes. The TEM-type
cavity 1s also considered.

I. INTRODUCTION

A possible experimental determination of the elements of the perme-
ability tensor of a magnetized ferrite at any frequency and magnetic
field rests on the measurement of the frequency shift that the sample
produces in a resonant cavity." From this measurement and from the
theoretical relation among frequency shift, ferrite and cavity geometry
and ferrite properties, we may deduce the diagonal and off-diagonal
components, u and «, of the Polder tensor.

The theoretical relation referred to above is the result of the assump-
tion usually made that the ferrite has small volume compared to the
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cavity volume and produces a small perturbation of the fields in the
cavity:'*
7 (M) r (E)
2de W, + W, 1)

@ W

Here W, is the total energy stored in the empty cavity at resonance,
W, the additional magnetic energy stored in the sample, W, the
additional electric energy stored in the sample, dw the shift of resonance
frequency upon introduction of the sample and wy the resonant fre-
quency of the empty cavity. The quantities W."”, W,”” and W,"”
are given by

W™ = %D EoEddr;
cavity

W’(M) _ gi] 1 M'HD*dT; M = XH (2)
sample

-n—]'a(s) — Eof . P'EO*HT; P = x"'E
sample

where Eq and Hy are the electric and magnetic fields in the empty cavity,
E and H are the corresponding quantities in the perturbed cavity;
M and P are the magnetic and electric polarizations in the sample, and
x and x. are the magnetic and electric susceptibilities of the sample.

In any particular geometrical and modal situation, the right side
of (1) must be evaluated and the result is then a relation between (dw/w,)
on the one hand and g, « and cavity and sample geometry on the other.
The assumption in the perturbation theory is that electric and mag-
netic fields just outside the sample are their (known) empty cavity val-
ues. I'rom this and the requirement of continuity of tangential £ and H
and normal B and D at air-sample interfaces, we can obtain the fields
inside the sample and so caleulate the numerator of (1). This is the
approach used by the authors in Refs, 1 and 2 and we shall continue
to follow this.

Instead of specializing to a particular cavity operating in a particular
mode, as is done by the various authors in Ref. 1, we feel it would
be quite useful to assume the ferrite sample placed in an axial cavity
of generalized cross section operating in any TE, TM or TEM mode
and find the frequency shift produced by this sample. We shall assume:
the cavity has a z axis which coincides with the z axis of the sample;
the sample is a dise of arbitrary cross section; the sample volume is
small compared to the cavity volume; the sample is magnetized along
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the z axis; the cavity has perfectly condueting walls. The result of our
endeavor is to reduce the right side of (1) to an expression containing
a series of contour integrals only, in which x and « are explicit coefficients
of these integrals. The contour integrals are integrals of empty cavity
fields (or potentials generating these fields) taken around the contour
of the cavity and the contour of the sample in the transverse plane.
For any particular geometry and modal distribution, these contour in-
tegrals are easily evaluated, and we give examples of their evaluation
in the circular coaxial cavity, circular cylinder cavity and rectangular
waveguide cavity for the TE,v, TM.x , TM,»0 modes. In these ex-
amples, we consider thin ferrite dises. Thus the frequency shift, within
the confines of a perturbation theory, is obtained for a quite general-
ized cavity operating in any of its natural modes of oscillation; the
frequency shift for any given cavity operating in any given mode can
then be obtained from the general result.

An interesting fact that emerges from the general result is that the
expression for (dw/wy) is independent of x whenever the explicit time
independent part of the field, or potential, is real. This reality of the
potential corresponds to a linear polarization at any point in the trans-
verse plane and since a linear polarization is equivalent to two equal
and opposite cireular polarizations (corresponding to +x and — x values
of the off-diagonal element) the net effect is for « to cancel out of the
interaction of the linear wave with the ferrite at each point of the fer-
rite. This is the situation in the rectangular waveguide cavity with a
rectangular slab sample, as we shall see later (Section 2.2.6). It is also
the case in the TIEM-type cavity (Section 2.2.5) since here, too, the
fields are real and therefore linearly polarized at any given point in the
ferrite. These cases are thus not suited for determining the off-diagonal
component of the Polder tensor.

On the other hand, we shall see that when we deal with a circular
coaxial cavity or circular cylinder cavity (Seetions 2.2.1 to 2.2.4) and
choose a circularly polarized mode, the tlmc independent part of the
potential or field is complex and goes as ¢’ ’ where 6 is angle and p is
angular mode number. In this case the circular polarization eI .
teracts in an unbalanced way with the precessing spins and leads to a
coupling to x. The expression for dw/w, thus involves both x4 and « and
is ideally suited for use in experimental determinations of Polder tensor
elements.

The existence of complex potentials is associated with a degenerate
state of the system. Since degeneracy is usually related to a symmetric
structure (e.g. square or circular guide), we state that in almost all
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cases the only structures suitable for measuring « in thin ferrite samples
are symmetric ones. There are, however, asymmetric structures which
also have degenerate states.

II. ANALYSIS

2.1 Frequency Shift Produced by Thin Ferrite Disc Sample in Cavity of
Generalized Cross Section.

2.1.1 THyon and TM pon type modes. We consider a cavity of arbitrary
cross section with an axis in the 2 direction containing a thin disc of
ferrite of small cross section. The ferrite sample is magnetized in the z
direction (see Fig. 1). We assume the cavity walls are perfect, lossless
conductors. We shall consider standing waves in this cavity, which are
the result of superposing the traveling waves +f(u, v)e=™, where u, v
are transverse coordinates and g is the longitudinal propagation num-
ber.

The electric field in the empty cavity which satisfies the boundary
condition that transverse E, vanish at z = 0 and the condition div E;, =
0, is obtained as a superposition of e+ waves and is given by

E; = E,; sin 8z + K. cos Bz z (3)

where E; and E, are functions of transverse coordinates only. The condi-

M FERRITE
DISC

Z=0

Fig. 1 — Geometry of cavity and sample. C, C’, S and 8’ are contours and
cross sections of transverse section of cavity and ferrite sample, respectively; ¢ is
thickness of ferrite disc; z, is unit vector along axis of cavity; Hq,. is the steady
applied magnetic field; E. is the transverse component of electric field Eq ; no and
ny’ are outward unit normals to C and C’ and L is the length of the cavity.
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tion that transverse E, vanish at z = L leads to
BL = N, N=12 -, &)

where N is the longitudinal mode number.
We shall attempt to write the transverse electric field in terms of two
potentials ¢ and ¢ which are functions of the transverse coordinates:

E,= Vi + 20 X V¥ (5)

where V, is the transverse gradient operator. With V. = V, + 2,(d/8z2)
and V-Ey = 0, we find from (3) and (5)

Vie — BE. = 0. (6)

Since the z component of E,, E. cos Bz, satisfies the wave equation,
we find with (6) that ¢ satisfies

2

Vé+EkDe =0, E. = -%c @,
kcz — ]‘;2 _ ﬁ‘!’

2 @
k=" = o\ me,

0

27

IB - E y
where Ao and A\, are free space wavelength and cavity wavelength,

respectively.
In like manner, the transverse component of Eq , namely

(Ve + 2o X Vi) sin Bz,
satisfies the wave equation and this leads to
(Vi + kg = 0. (8)

The complete electric and magnetic fields in the empty cavity are
thus given by

2

Ey = (Vip + 2o X Vi) sin Bz — %-qa cos B2z, ,

H,

I

i (v, tz ‘-33-) X Eq ©)
¥4

WO

B [ i’ ke* | . ]
=2 | =V cosPBz+ -, 2o X Vi cos fz — — ¢ sin BzZo | .
wio g B
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The existence of a ¢ wave alone can be interpreted as a TM wave as
(9) shows. The boundary condition on ¢ is determined by £, = 0 on C,
and from (7) this is equivalent to ¢. = 0. If ¢. = 0, then inspection of
(9) shows that H,,rma also vanishes on C. Transverse E is zero on the
end plates of the cavity provided L = N.

The existence of a ¢ wave alone can be interpreted as a TE wave.
The boundary condition that H,,ma = 0 on all conducting surfaces is
satisfied if BL = N and if (8¢ /an) = 0 on C, where n is the unit normal
directed outward from C. If (d¢/dn) = 0 on €, we see from (9) that
tangential E is also zero on (', as required.

The problem now is to find contour integral expressions for the quan-
tities W, W, and W." defined in (1) and (2). For this purpose,
we shall make use of the following three relations:

flv.g PdS = k. f |£PdS + 9{ (EV.E*) -no dl, (10)
3 s ¢
2k, j‘; |[£]7dS = ﬁ[(vk,f'kc)(vts*‘na) - E*Vz(vkcf'kr)'ﬂo] di, (11)

[SVLE'(ZO X V.!E*) dS = ﬁ (EV:E*) -dl, (12)

Here V;, is the gradient operator in k. space and £ stands for either
¢ or . Iiquations (10), (11) and (12) apply to either ' and S or to ¢’
and S’. The above relations are derived in Appendices I, IT and III,
respectively.

Caleculating first the electric energy stored in the cavity we have

W =2 [BeBtar = O [ ||Vl + v P

(e

where we are assuming that a ¢ and ¢ wave do not exist simultaneously.
Making use of (10) and (11) with the condition that ¢ = 0 on ' and
(ay*/dn) = 0 on O, we find

(13)

ol I
8 B
_al

WP = 3 ?g V(Y ¥ k) ng dl for ¢ waves,
C

A fmymmJMﬂ for ¢ waves;
)

(14)
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We next calculate the magnetic energy stored in the sample:

W =8 f M-H,"d7,

p—1 JK 0 (15)
M=xH, x=|-jx w—10
0 0 0

According to the perturbation theory, the Hy and H appearing in (15)
are the rr magnetic fields in the empty cavity and ferrite sample, re-
spectively. I'rom (15), M. = 0; therefore (H.),* is not needed in the
expression for W, Continuity of tangential H from air to sample
shows that we may use H, in place of H in (15). The field to be used
throughout (15) is, therefore, that given by (9) without the (H.), com-
ponent:

¥
BE
When (16) is used in (15) we find (Appendix IV)

H, = B [—er,b cos Bz +

(A

Zy X Vip cos ﬁz:| ) (16)

IIIS‘ M) _ fﬂu (10.‘52 '830

2a’up

Cf M= D | VEF + iz X vETdS (17)

where z, (not to be confused with z,) is the position of the sample along the
axis of the cavity and f = 1 or (k*/8%) for £ = ¢ and £ = ¢, respectively.
It is assumed { << L. Transforming (17) to contour integrals through
(10), (11) and (12), we have

W = ‘w’t{(p —-1 f (&V,£*) 0o dll

2wy

e 1'?2’ (V£ k) (Vi n0) — £Vu(Vit k) -n/ldl - (18)

2

+ Jx f ) (EVfE*) 'dl’} .

The final step is the calculation of the electric energy stored in the
sample:

W = g“ f P-E,*ds, P = x.E, xe=€—1, (19)

e being the dielectrie constant of the sample and E, and E the electric
fields in empty cavity and inside ferrite, respectively. Since E, = E,,
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and el., = ek, we have

wym = ole—1) 5 D f [lEm *+ 61 | E., i"] dr'

E———O(e 2_ Dl ’:Sin2 Bzo f (Ve |* + | Ve [) dS’ (20)

$ OB (BN [ g pas].

Making use of (10) and (11), we find

Wy - ol D {Sinz o [?Q (V) -n dl
"

+ %_ ﬁ (Vi b k) (V£ " ny) — £*Vi(Vi £ ko) 0] dl'] (21)

+ O (1Y § () O ) — £ ) ) dz'}
where for TM modes (¢ waves) both the sin® 8z, and cos® 8z, terms are
needed, and for TE waves (¢ waves) only the sin® 8z, term is needed.

2.1.2 TM ,p type modes. The TM,, type modes are obtained by con-
sidering 8 = 0 in all =™ field dependences, i.e. the cavity is cut off in
the z direction and there is to be no field dependence on z. In this case
we have

(VE+E =0,

(22)
k=1 — 8 =1, k. = k.

Since transverse E must be zero at z = 0 and z = L, and since there
can be no z dependence in this case, transverse F must vanish every-
where in the cavity. There can only be an A, component. Thus a TE,,
mode can not exist, for then E; = 0 everywhere and H, « curl E, gives
H, = 0 also. A TM,,, mode is the only possibility and we have

E, = E.z,,
Hn=-J—VXEo= —JZuXVNz,
Who wio

where F. is a function of transverse coordinates only. E. plays the same
role now as ¢ did in the TM,.v case before. The boundary condition
E. = 0 on C causes H,orma to vanish automatically on C, as required,
as is seen from (23).
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Proceeding exactly as in the steps leading to (14), (18) and (21), we
find

euL

We® = LK) (V,E.* 1) dl, (24)

{,u—])?g (B.V.E.*) -n dl

+ ; L 9( (VE, k) (V.E.*n) — E.*V,(V:E.-k)-n/] dI'  (25)
o

+ jx f (E.V.E.Y -dl’} ,
.

& _ €le — 1)555 . , /
A B, -K)(V.E.* 1
e ) [(Vy ) (V. ) (26)

- E;_*Vg(VkEz‘k) 'no’] dl’.

2.1.3 TEM type cavity. In this case A, = Ao, 8 = k, and k' = 0. We

can write the fields in terms of a single potential ¢:

Eo = (Vi) sin 8z,
j (27)
Hy= - VXE =" (zo X Vi) cos Bz,
Who
where ¢ satisfies div E; = 0 or

Vie = 0. (28)

The boundary condition Epgentiay = 0 on cavity walls gives (d¢/dl) = 0
or ¢ = constant on €. This automatically makes Huorma = 0 on cavity
walls as we see from (27). The end plate condition on transverse E again
gives L = Nm.

The various stored energies are found as before, with use made of

(10), (11) and (12):
We® =@ [BBrdr =< [ v a3
2 4 Jg

(29)
_ al f (oVio®) -0 d,

o _ g cos” Bzo « ¢ ot
W = BSO8R (= 1) @ (Vi) i dI

2w’

(30)

+ gk jge (V’Vﬂ’*)'dl’],
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W™ = gfp.Eu* ds = w f | Vi |* sin® g2’ dS d2’

_al—1 t sin® Bz fs | Ve | dS’ (31)

2
= 50(6—2_12 t Sin2 ,BZ[) é‘ (an;ga*) 'n()’ dl’,
o

where we have, in (31), used the fact that E is purely transverse and
must be continuous from air to sample (E = Ey).

2.2 Cireular Coaxtal Cavity (Higher Modes); Circular Cylindrical Cavity;
TEM Type Cavity; Rectangular Cavity.

We are now in a position to calculate the frequency shift in various
cases from (1).

2.2.1 Circular coaxial cavity, ferrite ring, TE,,x modes. The geometry
we are considering is shown in Fig. 2,

We are here dealing with a ¢ wave only. Consider the sample placed
at sin Bz = 0 (node of the electric field) so that from (21) there is no
electric energy stored in the sample.

The solution of (V" + k)¢ = 0 for the empty cavity potential in
this geometry is

Il

P (k) + CNy(kr)),
= ™7, (kar), am <7r<as,

where J, and N, are Bessel functions of the first and second kind of

Y (32)

Fig. 2 — Circular coaxial cavity with ferrite ring of thickness ¢ placed at z =
2y ; @ and a are inner and outer radii of ¢ylinders; b, and b.: are inner and outer
radii of ferrite ring.
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order p, Z, is the general cylinder function and €' is an arbltrary con-
stant to be determined by the boundary conditions. Z, satisfies’

Z,) (x) + - zp'(.r) + (1 — —) Z,(x) =0,

(33)
Z, = Zpy— g-z,,.
The boundary condition (d¢/0n) = 0on €' (r = a1, a2) gives
Z,) (k) = Z, (kas) = 0,
—(C = ]p’(kcal) _ Jp’(]\'va:’)
N,/ (kear) N, (keas)’
ks = o, P, q = integers, (34)
opq = gthroot of J, (ka)) N,/ (k.as) — J,'(keas) N, (kay) = 0,
BL = N.

When (32) and (33) are used in (14) and (18) (remembering that C'
consists of the contours r = a, and r = a» taken in opposite senses and
(" consists of the contours r = by, r = b also taken oppositely) we find

t _ 2 2p
=N} l:(.u 1) {Zp (1 7 ’b) + , ZpZpa(1 — P)

2 2ep _22b2
+Z-1} kzbu/ ]A-cb}bl

{kc"’aﬂ (1 - W) Z,2(ka) }

with (8*/k%) = (Ao/A,)%, BL = N, keas = 0, = roots of (34). The =«
term arises from each of the two types of circular polarizations which
are possible, i.e. ¢+ The functions Z, in the numerator are defined by
Z, = Z, (kD).

2.2.2 Circular coaxial cavity, ferrite ring, TM p,x modes. Here we are
considering a ¢ wave with the sample again placed at sin 8z = 0. The
solution of (V. 4+ k’)¢ = 0 in the geometry of Fig. 2 is again given by
(32), but the boundary condition ¢ = 0 onr = a;, @ now gives
Z (ko)) = Zp(keas) = 0,

—0 = Jplkew) _ Jp(keas)
N p(kear) Np(keaz)’
bty = Tpq, P, ¢ = integers,
75q = qth oot of Jy(ka)Ny(keas) — Jp(keazs)Np(kear) = 0,
BL = Nm.

(35)

(36)
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The evaluation of the eavity energy, magnetic energy in a sample,
and electric energy in a sample [(14), (18) and (21)] is straightforward
and leads to the following result for the frequency shift:

do _
wo
t _ 2 2p 2
EI:(P 1) {Zp ( .,bg) + ]C [)7 Zp._](l P) + Zp—l} (37)
2 -1k} 2 b2
A {z =Bl 7y }] ’"'ﬂ’z}bl

{kc aa < p—1 U‘ca) }al
with (k’/k) = 1 — (Ao/N)*s Ay = (2L/N), keats = 7,, = roots of (36).
The argument of the cylinder functions in the numerator of (37) is
implicitly &.b.
2.2.3 Circular coaxial cavity, ferrite ring, TM,e modes. The solu-
tion of (V) + k*)E. = 0 in this geometry is

E, = ™ Z,(kr),
Z,=J,+ CN,.

The boundary condition £, = 0 on r = a;, a: gives the same set of
equations as in (36) with k., replaced by k, except that 8L = N is not
now applicable. When (38), (36) and (33) are used in (24), (25) and (26)
we find for the frequency shift

dow

(38)

wWo

{ 2 2
Hu-nlz (1 ,W) D LR A

-1 2 b2
* e {Z : kgz Zr1 + Z”*lz}]bg}b
{aQZ,,_lﬂ(ka) jaz '

with kas = 7,4, 7p¢ = roots of (36). The numerator argument is kb.
2.2.4 Circular cylindrical cavity, circular ferrite disc, TEypun , TMpon
TM,,0 modes. The geometry of this situation is obtained from Fig. 2
by letting a1 , by approach 0, so that the ferrite ring becomes a disc. The
frequency shifts in the various modal cases can then be obtained from
(35), (37) and (39) by letting a; , by approach 0 and putting C' = 0 in (32),
(34), (36) and (38), since only the Bessel funection which is regular at
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r = 0 (J,) is now allowed. Under these conditions the following quanti-
ties approach zero for p = 0:

2 2 0
r (1 — T?) Jy (), 2 () p (1) (1 — p),
Pl t@),  plt(), Y0, 2pn ()T ()
where r = k.a, or kb, approaches 0. In other words, all quantities at the

lower limits vanish in (35), (37) and (39) for this geometry. Equation
(35) becomes for TE,,» modes:

—dg =
wo
.32 t by? _ 2 _ E'P_)
kL af [(“ ) {J” (1 keb® (40)
2 - 2 ﬁzlp_:|
+p - P+ J“} * 5 o,

|:(1 - F) Iy (A,;a)] -

with (8%/k%) = (\/N)°, BL = N, ks = sp, = roots of J,/(kaz) = 0,
p, ¢ = integers. The numerator argument is kcb.
For TM,,» modes, (37) becomes

duw

wo

t by’ .
E?[(“ -1 {Jpz (1 - b) + E Il pa(1 — p) + J,,_l}

L2 (e—1D K. [, 2
‘ff" ] + . F {.]p - FI%JP‘IP—I + J.’Pflﬂ}]

J p_]_?(i\'cﬂ,g)

ke MY _ 2L
Fe-Q) v

with kas = tpe= roots of J,(k.a) = 0, p, ¢ = integers. The numerator
argument is k.b.
For TM,, modes, (39) becomes

= (41)
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do
w

t by? 2 2

EG—ZE [(.u - 1) {Jpz (1 - AE_};E) + _.'BJPJ:P—I(]' - p) + Jp—lg}

2 P : 2p
i:bQ J + {J b Sl p1 + Jpwlz}:l
2Jp_1 (kag)

kas = tp,, = roots of Jy(ka:) = 0,k = (27/N\), p, ¢ = integers. Again
the sample is considered placed at sin 8z, = 0 in (40) and (41). The nu-
merator argument is kb.

2.2.5 TEM type cavity. In this case the quantity ¢ appearing in
(29), (30) and (31) is real so that

' 1 6(992)
*, = — = _ =
ﬁ' V™ -dl 5 ﬁ .l 2 i, T dl 0.

Consequently, there is no coupling to « and this type of cavity is not
suited for measurement of the off-diagonal component of the Polder
tensor. If the sample is placed at sin Bz, = 0, the frequency shift is

b=br  (49)

given by
2
w_ i b
= - (43)
L ?g d(e)
dl
c on

where d/an’ is the derivative along the normal to C or C".
2.2.6 Rectangular cavity, thin reclangular ferrite slab, TEpn , TM pon
modes. The geometry is shown in Fig. 3.

Fig. 3 — Rectangular cavity containing rectangular ferrite slab.
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For TE,,y modes, ¢ = cos k. cos ky. The boundary condition
ap/on =0onC (x =0,z = a,y = 0,y = b) gives k.a = pm, kb = qr
where p, ¢ = integers. The wave equation (v + kS = 0 then gives
k2 =k + k2 =k — 8. Again BL = Nm.

For TM,,,~ modes, ¢ = sin k.2 sin &,y and this satisfies the boundary
condition ¢ = 0 on C if k.a = pm, kb = gw. Again k= k4 k) and
BL = N.

In each of these cases it is elear from (32) that the ferrite sample does
not couple to « since £ = ¢ or ¢ is real. As a result,

* ?{  Evagredl = %f}g- Vi)l =0,

unlike the situation in the ecircular coaxial cavity [(35), (37) and (39)].
Thus the situation described here, as with the TEM cavity, is not suited
to o measurement of x. We shall, however, write down the frequency
shift in the TL,,~ case.

We shall again consider the sample placed at sin gz0 = 0, s0 that there
is no electric energy stored in the sample (21). After evaluating the
various quantities needed in (14) and (18) and carrying out the inte-
grations, we find for the frequency shift of a transversely centered slab.

dw _ L ‘32 a’b" (” . 1) [1+ (—[)’1+Q+1 sin 6, sin 0>

C.IJ() o _I; EE’EE- 01 02
b} — k. sin 6, kz——k.ﬂsinﬁg]
_ e =z —1)e = ] 44
+ (=1 k)t + k2 6 +( )kzg-l-kf 6 |’ (44)
2 2
%-_- (:—,DJ) , BL = Nm, k. = %r’ ky = (J;_)r’ b = ]“Iaia b, = 'r"'yb’!

p, ¢ = integers.

III. REMARKS

In the case of TM,,y modes in the circular coaxial cavity or circular
eylindrical cavity, we see from (37) and (41) that the frequency shift
depends on the values of the three quantities g, | k| and e In these
cases we placed the sample at sin 8z = 0. If now we place the sample
at cos Bz = 0, (18) shows that the stored magnetic energy in the sample
would be zero while (21) would give a stored electric energy in the sam-
ple proportional to ¢ — 1. The frequency shift corresponding to (37) and
(41) for this situation would thus depend only on e. From these two
situations we could infer all three quantities g, x and e. A similar argu-
ment holds in the TE,,y case in circular coaxial or circular eylindrical



652 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1958

cavities [(35) and (40)]. If we placed the sample at cos 8zp = 0 we would
again find zero magnetic energy in the sample and now dw/w; would
depend only on € — 1 [see (18) and (21)]. Thus, we could again infer the
values of g, k and e separately. In the TM,, case, on the other hand,
we can never separate the effects of u and x on the one hand and e on
the other, since the stored magnetic and electric energies in the sample
are independent of longitudinal position of sample, as (25) and (26)
show.

An interesting mathematical point is the manner in which g, « and
appear in the equations. From (18), (21), (25), (26), (30) and (31) we
see that the contour integrals which are the coefficients of u and e in-
volve normal components at the ferrite periphery of vector functions
of the field quantities, while the contour integral coefficient of « in-
volves tangential components of vector functions of field quantities.

Another point observed from (18) is that cavities in which the field
potential (aside from the time dependence) is real (e.g. rectangular or
TEM type cavities) are not suited for determination of  since the basic

k integral, f £V E*.dl', vanishes. A polarization that is natural to the

spin precession is needed and this is provided in the circular or square
type cavities. In these cases the spatial field potential is complex and the
x integral does not vanish.

All results presented here apply also to the situation when the ferrite
is lossy. In that case, g, ¢, x and « become complex in all formulas. A
discussion of the @ of the cavity in this case is given in the various papers
of Ref. 1.

APPENDIX I

Derivation of Equation (10)
Gauss’ Theorem applied to the disc of Fig. 1 is

f div (£VE%) dif = f (EV.E*) -ny’ dA’, (45)

Sinece £V.£* is parallel to the surface S, there is no flux of this vector
through S’. Thus, with d4’ = tdl’ and dv’ = dS’-i we have

f div (¢v,*) dS' = 560 , (V) no' dll = f (Ve + | v ) as'.
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With (v + k)¢ = 0, this becomes
fs | vEdsS = kS f e dS + jtg (V) md dll,  (46)
C

which is also applicable to € and S.

APPENDIX II

Derivation of Equation (11)

Consider two functions & and & which differ slightly, both satisfying
the wave equation, and corresponding to the wave vectors k., and k.,
respectively:

(V¢ + kg = 0,
(V' 4+ k8 =0,
k., = k. + dk., (47)
k 2
b= &+ (Vb)) dk.,

kl + 2k,.-dk.,

where V,, is the gradient operator in k. space. We insert (47) into
Yreen’s identity which, for the geometry of Iig. 1, is
"

f (8*V. 't — &V E*) dS' = ﬁ, (E*ViE — EVE®) 0 dl,  (48)

and equate coefficients of dk. terms on both sides. Then in the limit as
&; approaches & = #, and noting from (48) and the wave equation that

%C,(EO*VJEB - EDV:EO*)'no' dll = 0,
this procedure gives
3"2_[ [£[Pas = jgc (Vi k) (V¥ n) — VUV, £-k) -0l dll,  (49)

which is again applicable to € and S. A one-dimensional form of this
result is given by Sommerfeld.!
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APPENDIX ITI

Derivation of Equation (12)
The following identity holds:

V,g X (EV[E*) b VtE X Vi!E* + Evt X Vté* = V!E X Vts*) (50)
so that
f, (fo'Z[) X st*) d.SI = ./.;, Z()‘(VQE* X V,g.f) dSr
8

(51)
B f ,(VE* X Vig)-dS' = f Ve X (£VE¥)-dS' = 55 (Evgr)dl’
8 8

where Stokes’ theorem has been employed and dS' = zdS".
APPENDIX IV

Derivation of Magnetic Energy Stored in Ferrite, Equation (17)

We decompose the rr H, field in the cavity (16) into a combination of
two circular polarizations of opposite senses and possibly different am-
plitudes H, and H_,

H, = H,é, + H é_, (52)

where 6, and é_ are two-dimensional column vectors describing circular
+
polarizations of opposite senses and unit amplitudes:

R T

Both ¢, and é_ satisfy the following relations:
6.* = d_, 6p-6.* =1, é_-¢_* =1, 646, = 0,

dg* = d.{_, d+'67 6_-d_ = 0

Il
Ja—
(="
|
="
-+

Il
—

Further from (15) we have
X6t = X304,
e = k-1 %«

(55)

Then it is easily shown that

M-H* = x4 |Ho "+ x- | H_ [}, (56)
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where from (16) and (53)
Hy = Ho-6.*

—jBeosBz[foy | .o\  —K (_ Ao _aq,)] (57)
R [(5; *7 3*') e 3 = au

for a ¢ wave and ¢ wave, respectively. Then (56) and (57) give

,62 cos” Bz

M'HD* = f w"Fuﬂ [(,U. - ]) l VIE |2 + jKVfE.z“ X Vlf*] (58)

where f = 1 or (1*/8)* for £ = ¢ and £ = ¢, respectively. Equation
(17) follows from an integration of (38) throughout the sample, with
dv' = dS' dz.
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