Gray Codes and Paths on the n-Cube

By E. N. GILBERT
(Manuseript received May 27, 1957)

Cerlain problems in coding and in swilching theory require a list of
distinct binary n-tuples such that each differs from the one preceding it in
just one coordinate. Geomelrically, such a list corresponds lo a path which
follows edges of an n-dimensional cube. This paper finds all types of closed
paths on cubes with n < 4. For larger n, a process given here will produce
large numbers of paths.

I. INTRODUCTION

A Gray code is a means of quantizing an angle and representing it in
a binary alphabet. The encoding is such that angles in adjacent quantum
intervals are encoded into n-tuples of binary digits which differ in just
one place. For example, taking n = 3, as the angle increases from 0° to
360°, the binary code for the angle might go through the succession
000, 001, 011, 010, 110, 111, 101, 100 and back to 000. Gray codes are
used when the encoding is performed by a code wheel. At angles close
to the boundary between two quantum intervals, any of the digits
which change at the boundary are likely to be in error. In a Gray code
there is only one such questionable digit, and a mistake in this digit only
gives to the angle the code for the adjacent quantum interval.

Although the Gray code example given for n = 3 is easily generalized
to obtain the well known Gray (reflected binary) code for any n, there
are, in general, a large number of other codes which also change one
digit at a time. Our problem is to find these other codes. In special
applications, some of the others may be preferable to the conventional
Gray code. For instance, it may be desirable to use other numbers of
quantum intervals beside powers of 2; powers of 10 might be a natural
choice. If the quantity being encoded is a length rather than an angle,
one can drop the requirement that the first and last quantum interval
have codes differing in just one position. Then there is a still larger
variety of encodings from which to choose.

TFor n < 4, we will exhibit all possible codes which recycle (i.e., are
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suitable for angles). As n grows beyond 4, the number of possibilities
soon becomes enormous; we will give a procedure by which a large num-
ber of codes may be constructed. The purpose of this paper is to con-
struet, classify and catalogue codes, but no attempt will be made to
single out those codes which are particularly useful.

In searching for codes the following geometrical picture is helpful.
The set of edges of a unit n-dimensional cube forms a linear graph which
we will call the n-cube graph Q.. @. has 2" vertices, each labeled by an
n-tuple (xy, -+, x.), ¥; = 0 or 1. Two vertices are joined by a line of
Q. if their coordinates agree in all but one of the n places. We are inter-
ested in the paths and cycles of Q.. By a path of length L is meant a
set of lines (VoVy, ViVa, -+, ViaV1) of @, where the vertices V,,
-+, Vi are distinct. Cyele of length L is similarly defined but with
Vi, -+, Vi distinet and Vo = V. If we follow a path or eycle of Q.
and interpret the n-tuples which label the vertices as codes for succes-
sive quantum intervals, we obtain an encoding in which only one digit
changes from interval to interval. Thus, our problem is to find all paths
and cycles of @.. The cycles are the encodings suitable for angles.

A permutation of digits in the n-tuples of a code produces a new code
which is not significantly different from the original one. Its code wheel
is obtainable from the original wheel merely by permuting tracks. Simi-
larly, a complementation (interchange of 0 and 1 in certain coordinate
positions of the n-tuples) is a minor change. These operations correspond
to rotation and reflection symmetries of the cube. The symmetry group
of @, is the hyperoctahedral group 0, of order 2"n!. The typical sym-
metry operation of 0, consists of one of the n! possible permutations of
the coordinates of the n-tuple, followed by one of the 2" possible comple-
mentations. Two paths or eycles will be called equivalent or of the same
type if one can be changed into the other by applying to @, one of the
symmetry operations in 0,. Although there are tremendous numbers of
paths and cycles, it suffices to give just one of each type. Even our list
of distinct types of cycles becomes rather long at n = 4. The exact
number of types of cycles is not known for larger values of n. We give
below a procedure for constructing large numbers of paths and cycles.
If L = 2" — 1, we can specify in advance the numbers Ny, --- , N,
where N} is the number of times ;. changes as one follows the path from
Ve to Vi. A similar specification is possible for eycles of length 2.
The cycles of this length contain every vertex and thus are the Hamil-
ton lines of @, (Ref. 2, Ch. 2). Even the number of types of Hamilton
lines is found to grow rapidly with n; there are nine types of Hamilton
lines for n = 4.
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Another application of paths on , may be found in switching theory.
Here the labels on the vertices represent the states of a relay network
with n relays. Coordinate ; is 0 or 1 according to whether the ith relay
magnet is turned off or on. Since it is physically impossible to change the
state of two relay magnets precisely simultaneously, the state of the
entire network can change only by following lines of Q.. If the network
is a counting circuit it is made so that its state follows a path or a cycle
according to whether the network is intended to lock or recycle at the
end of the count (Ref. 1, Ch. 11).

II. .COORDINATE SEQUENCES

A path is specified completely by listing the L + 1 vertices Vy,
-+~ , V, in order. For example, on the 3-cube, a list might be

000, 001, 011, 010, 110, 100, 101, 111.

Ignoring the starting vertex, a more compact notation is to list in order
only the coordinate places in which the change occurs. In the example
cited, one would obtain (3231232). This L-tuple of coordinate places
will be called the eoordinate sequence for the path.

The vertices of a path might equally well have been written down in
the reverse order V,, - -+, V, . Hence the list of coordinate places writ-
ten in reverse order [i.e., (2321323)] will be regarded as another notation
for the same coordinate sequence.

Fach coordinate sequence represents not only the given path but also
every other path obtainable from it by one of the 2" complementations.
All of these paths are of the same type; it suffices here to study coor-
dinate sequences rather than the paths themselves.

Two paths, P and P, are of the same type if and only if one of the
n! permutations of coordinates changes the coordinate sequence of P
into the coordinate sequence of P’. Our problem thus becomes one of
classifying coordinate sequences into symmetry types with respect to
the symmetric group on the n coordinates.

In a similar way, a cyele (say 001, 011, 111, 101, 001) may be repre-
sented by a coordinate sequence (2121). Now, however, in addition to
the two orders in which the coordinates may be written, there are L
different vertices at which the list of changing coordinates can begin.
Thus, for any cycle there may be as many as 2L distinet L-tuples of
digits, all of which are considered to be the same coordinate sequence.

Not every list of digits is the coordinate sequence of a path or a cycle.
A typical list, such as (121323131), represents a way of wandering along
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lines of the cube graph, possibly visiting some vertices more than once.
In the example cited, the vertices visited after the first and the sixth
steps are the same. In the intermediate steps (213231) all digits & = 1,
2, 3 appear an even number of times; for all & the net change in a; dur-
ing these steps is even, i.e., zero. This observation leads simply to the
following result.

Theorem I. An L-tuple A = (m1, a2, -+, ay) a; = 1, -+, n s the
coordinate sequence of a path of @, if and only if every one of the L(L + 1)/2
blocks of consecutive digits (a;, ;a1 , - - -, a;) contains at least one of the
n digits an odd number of times. A ts the coordinate sequence of a cycle of
Q.. if and only if every one of the blocks of length 1, -+ , or L — 1 contains
some digit an odd number of times while A dtself contains every digit an
even number of times.

As an illustration of Theorem I, we construct a simple cycle of length
2" (Hamilton line) on @,. Fork = 1, 2, .-+ | 2" define the kth digit of
the 2"-tuple to be the number

@, = Max (d such that 27 divides k).
1=d=n
That one obtains a cycle thereby is easily proved by induction on n.
When n = 2, the construction yields (1212), the coordinate sequence of
a cycle on the square. Ior larger n, the construction yields a 2"-tuple of
the form

A, = (B, ,n, B, n), 1)

where B, is the (2" — 1)-tuple obtained from A4,_; by removing the
n — 1 in the 2" place. Consider any block €' of ¢ < 2" consecutive
digits of 4,. If (' does not contain one of the two n's, it is a block of
the path B,. If (' contains only one n, n appears an odd number of
times. If €' contains both n’s, the digits of A, not in C form a block of
B, and contain some digit & an odd number of times; since & appears
an even number of times in A4, it appears an odd number of times in C.
In any case, some digit appears an odd number of times in €. The Hamil-
ton line in question corresponds to the conventional Gray code.

I11. THE 4-CUBE

Since cycles are of greatest interest, we have constructed a list of all
types of cycles on 4. This list also includes all the cycles on Qs and Qs ,
since such cubes are contained as subgraphs (faces) of @, . There are
no cycles of odd length, since every coordinate must change an even
number of times. The numbers of types of cycles of lengths 4, 6, --- , 16
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are 1, 2, 7, 10, 23, 20 and 9. Of these, the eycle of length 4 is found on
(s ; both eyeles of length 6 and one cycle of length 8 are found on Qs .

The computation consisted of the enumeration of a large number of
cases using whatever ad hoe simplifications could be found. FFor exam-
ple, consider any cycle of length L which contains no pair of points which
differ in all four coordinates. Complementing all four coordinate places
changes this cycle into a new disjoint one. Then 21, < 16. It follows that
every cycle of length 10 contains such a pair of “diametrically opposite”
points. The cycle can be cut into two paths joining these pointg, one of
length 4, the other of length 6. Hence, coordinate sequences for types of
cyeles of length 10 can all be written in the form (1234...... ), and
only the ways of filling the six empty places must be enumerated.

It is also helpful to draw a picture of the 4-cube in such a way that
certain equivalences between cycles becomes geometrically obvious.
The diagram deseribed by Keister, Ritchie, and Washburn (Ref. 1, Ap-
pendix to Chap. 8) is convenient. Their cube has the appearance of a
piece of graph paper; it is agreed that any two points which can be con-
nected by a path made up of horizontal and vertical line segments of
length 4 represent the same point on the cube. The graph paper itself
has symmetries, each of which is also a symmetry of the cube. Then any
two cycles which, when drawn on the graph paper cube, can be trans-
formed into one another by a sequence of translation, reflection or rota-
tion symmetries of the graph paper must be of the same type. Unfor-
tunately, these symmetries account for only 128 of the 384 symmetries
of the 4-cube. Cycles which are equivalent with respect to the 4-cube
group 0, may fall into as many as three distinet types with respect to
the subgroup of graph paper symmetries. This phenomenon is illustrated
in Fig. 1, which shows three cycles which are of the same type in spite
of the differences in their graph paper pictures.

|
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Fig. 1. — Graph paper representation of eycles on Q.
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TasLe I — Concluded

(1213423123421 3)
(12131214121324)
(12131214123124)
(12131214213124)
(12131241213124)
(12131241213214)
(12132124121314)
Length 16 (1213121412131214)
(1213121421232124)
(1213212412132124)
(1213212423213234)
(1213212432312324)
(_123212343212321-})
(1232123412321234)
(1232123413121314)
(1213414243212343)

A complete list of coordinate sequences for distinet types of cycles on
(4 is given in Table I.

1V. COMPOSITION

The example (1) suggests the following result.

Theorem I11. Let the L-tuple A = (ay, -++, ai) and the M-tuple B =
(by, -+, ba) be coordinate sequences of two paths in Qu—y. Then the (L
+ M + U)-tuple (A, n, B) = (ay, -+, ap, n, by, -~ , ba) is the coor-
dinate sequence of a pathin Q, . If each of the digits 1, --- , n — 1 appears
an even number of times among ay , -+ ,az, by, -+, b, then (4, n, B,
n) is the coordinate sequence of a cycle in Q..

A formal proof is easily given along the lines of the example. However,
we prefer to note only that the theorem is obvious geometrically. We
may envision @, as composed of two (n — 1)-cubes R and S. An extra
coordinate x, = 0 is added to the labels on the points of R and, simi-
larly, @, = 1 for S. Then 2" lines are added joining corresponding
points of R and S in order to construct @, . The path obtained by fol-
lowing the A path in R, then stepping over into S and following the B
path is represented by (A, n, B). If all digits appear an even number of
times in ag, -+, ay, by, -+, by then the two-end points of (4, n, B)
differ only in their a, coordinate; an additional step back to R returns
one to the starting point and (4, n, B, n) represents a cycle.

The n-dimensional path and cycle (if it exists) so constructed will be
called the composite path and composite cycle of the paths with coordinate
sequences A and B. Of the nine Hamilton lines listed, only the last is
not composite.
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A large family U, of paths and cycles on the n-cube can now be con-
structed inductively. For n = 2, the family consists of all paths and
cycles. When U,_, has been constructed, U/, will contain all members
of U,_, plus all paths and cycles obtainable by making a composite
from a pair of paths of U,_;. It will be convenient to admit single
vertices as paths (having the null coordinate sequence). Then such
coordinate sequences as (n, A) with 4 in U,_;, or even (n), represent
paths in U, . Next, we complete the construction of U, by adding all
paths and eycles equivalent to the ones just constructed. Paths and
cycles belonging to U, will be called uliracomposite.

The Hamilton line given as an example following Theorem I is ultra-
composite, as may be seen using (1) and induction. The first five of the
nine Hamilton lines in Table I are ultracomposite.

V. CHANGE NUMBERS

Let A be a coordinate sequence and let N, &k = 1, ---, n, be the
number of appearances of the digit £ in A. N, will be called the kth
change number of A. The change numbers of any other sequence A’ of
the same type as 4 are just a rearrangment of Ny, ---, N, . Hence a
comparison of change numbers often suffices to prove two coordinate
sequences to be of different type. There are, however, many examples
of coordinate sequences of different type but having the same set of
change numbers (the list of Hamilton lines contains two with change
numbers 6, 6, 2, 2 and five with change numbers 6, 4, 4, 2).

If A4 and B are coordinate sequences of paths on the (n — 1)-cube
and have change numbers Ny, -+, N, and My, ---, M,_;, then the
composite (4, n, B) has the change numbers

N1+ ﬂ{l, "',Nu—1+ ﬂ'ln—ly ]-

This observation suggests the possibility of an arithmetic test to decide
whether a given set of numbers N,, ---, N, are the change numbers of
some ultracomposite.

In what follows we call an n-tuple (N, ---, N,) aword if Ny, ---, N,
are the change numbers of an ultracomposite path. We ignore ultra-
composite cycles because they may be found merely by adding single
steps to those ultracomposite paths which have words in which all but
one change number is even.

Following the inductive definition of U, given above, an inductive
scheme for computing all words may be given:

(i) (0,0), (0,1), (1,1) and (1,2) are words.
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(ii) If (N1, -+, N,) and (NY', ---, N.') are words; so are (N1, ---,
N,,0) and (N, + NY, ---, N. + N/, 1).

(iii) Any permutation of the change numbers of a word produces an-
other word.

Thus, the only words with n = 3 are (000), (001), (011), (012), (111),
(112), (113), (122), (123), (124), (133), and their permutations. The
following theorem gives an arithmetic property of words.

Theorem II1. Let the change numbers of a word be written in numerical

order, a; £ a2 £ +++ = . Then forall kb — 1, --- n,
a2t — 2 )
i=k

Proof: (Induction on n)

When n = 2, all words satisfy (2) (see (i) above). Suppose (2) is
true for words of lengths = n — 1 and consider one of length n.
If a; = 0, the ultracomposite path deseribed by the given word lies
entirely on a lower-dimensional face of @, . Then (a., ---, a.) is a word
of length n — 1 and thus satisfies (2). If @, = 1, then the given word
describes a composite path made from two paths B and C. For i = 2,
.+, m, a;is a sum B; + C; of certain change numbers of B and C. Then
for k = 2, ---, n,

n n n n—l1 n=—1
Yai=2YBi+ 0= 2 bt 2 oe, (3)
=k 1=k =k i=k—1 i=k—1

where by, - - -, b,y are the numbers Bs, ---, B, arranged in numerical
order and ¢; are similarly defined. Since the b; and ¢; satisfy (2), the
sums on the right of (3) total 2" — 27", Finally, when k& = 1, (2) is
necessary because there are only 2" vertices in @,.

Not every n-tuple satisfying (2) is a word. An example is (0002). It
is immediately recognized as not a word because every word either must
contain some 1’s or contain only 0’s. Even ruling out such obvious
examples, one still finds others, such as (114). In the case of paths of
length 2" — 1 the following stronger result is obtained.

Theorem V. A set of necessary and sufficient conditions thal an n-tuple
composed of numbers a;, ay < -+ = a, shall be the word for an ultra-
composite path of length 2" — 1 is that (2) holds for k = 2, -+, n; that
a, = 1 and, in addition, that

a; = 2" — 1. 4)
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Proof:
Given an ultracomposite path, (2) is necessary for £ = 2, -+, n by
Theorem III. Also a; = 1, since any composite has some coordinate

changing only once. Equation (4) is the requirement that the length of
the path be 2" — 1.

Conversely, suppose the given a; satisfy the stated arithmetic condi-
tions. If n = 2, the only possibility is a1 = 1, as = 2 and the coordinate
sequence in question is (212). If » = 3, we are able to use a lemma of
C. E. Shannon (Ref. 4, p. 84). Given a set of numbersb; = b, = --- = b,
containing a pair b, , b, with 1 < b, < b,, a flow operation is defined
which replaces b, by b, + 1 and b, by b, — 1. Shannon shows that those
sets of numbers which are obtainable by repeated flow operations start-
ing from the initial set 1,2, - - -, 2" are exactly thosesets a; < -+ < a,
which satisfy our (2), (4) and @4 = 1. The lemma in question states
that if 1, az, - - -, a, is such a flow pattern then for k = 2, -+, n

ak=BJa+0k,

where B2, ---, B, are a set of numbers (not necessarily in increasing
order) obtainable from 1, 2, ---, 2"7* by means of flows, and similarly
for Cy, -+, C, . By induction, (Bs, - -+, B,) and (Cs, - - -, C,) are them-
selves words for some paths B and (. Then (B, 1, C) is a path having
the word (a;, -, a.) and the theorem is proved.

The decomposition of a; into a sum B; + ) can be done either by
inspection or using the procedure by which Shannon’s lemma is proved.
Thus the problem of finding a path for a given word reduces to two such
problems in lower-dimensional cubes. Continuing, one finally requires
only 2" paths on certain square faces of @, . Since the decomposition
of the a; can generally be done in several different ways, there may be
many types of paths which can be found for a given word.

VI. HIGHER DIMENSIONS

For the two applications mentioned earlier, one might suppose that
a complete list of all types of paths, or only of Hamilton lines, would
be useful. Such tables must lengthen rapidly as n increases. For example,
the number H, of types of ultracomposite Hamilton lines is at least as
large as the number of words, satisfying Theorem IV, for which as,

.+, a, are all even. An enumeration of such words shows Hy = 19.
A rapidly increasing lower bound on H, is now given.

Theorem V. Let s, 81, - -+ be defined by the recurrence

Snp1 = (n 4+ s, — (g) Sns (5)



GRAY CODES AND PATHS ON THE 1-CUBE 825

and the initial values sy = 1,8, = 1, 8 = 2. Then H, 12 = s, . For large
n, an asymplolic formula 1s

S0 & nl(na) P (6)

Proof:

By Theorem IV the (n 4 1)-tuple W = 2', 2% ---,2" 1) is a word
for some coordinate sequence 7'. Let a permutation P, say & — p(k), be
applied just to the first n coordinate. Then T' changes to PT' with the
word (27", ..., 27" 1), The coordinate sequence S(P) = (T, n + 2,
PT, n 4 2) deseribes an ultracomposite Hamilton line in which the &th
coordinate change number is

2k+2p(k) fk=1, -, n
Nu(P) = {2 il =n+41orn+ 2.

Among the n! Hamilton lines S(P) there are at least as many distinct
types as there are distinet sets of coordinate change numbers. It follows
from the uniqueness of binary notation that 2° + 2" = 2° + 2%is equiva-
lent to the statement that the (unordered) pairs (a, b) and (¢, d) are
the same. If one of the coordinate change numbers 25 4+ 27 of S(P)
equals a coordinate change number of some other line S(P’) then P’
[say © — p’(4)] satisfies either p'(K) = p(K) or p'[p(K)] = K. Then,
in order for P’ to have the same set of coordinate change numbers as
P, every cycle of P’ must either be a cycle of P or the inverse of a cycle
of P. To get a lower bound on H,iz, we may count the number s, of
equivalence classes of permutations in which P and P’ are considered
equivalent when every cycle of P’ is either a cycle of P or the inverse
of a eycle of P. Precisely this enumeration is also required for Cayley’s
problem of counting the number of terms in the expansion of a sym-
metric determinant. In this connection, (5) and (6) were given by I.
Schur. Derivations may be found in Pélya and Szégé’s book (Ref. 3,
Vol. 2, Ch. 7, probs. 45 and 46).

In higher-dimensional cubes, it seems likely that the majority of the
types of Hamilton lines will not be ultracomposite or even composite.
To support this guess, we now construct a large class of non-composite
lines. The last of the nine types listed for n = 4 was one such type.
Using its coordinate sequence, (1213 --- 3), we construct sequences of
the form

A= (11 "11 ] 2: "12 ) 1, ‘43 y T 3, ‘415):

where each of Ay, .-+, Ay represents a path of length 2"* — 1 and
contains only the digits 5, - - -, n. We also require that 5, ---, n each
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appear an even number of times. Ifach such A is the coordinate sequence
of a non-composite Hamilton line.
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