Nonstationary Velocity Estimation

By T. M. BURFORD

(Manusecript received January 3, 1958)

A nonstationary noise may frequently be approximaled by the producl
of a stationary noise and a deterministic function of time. From observa-
tions of the sum of such a nonstationary noise and a linear signal, an esti-
mate of the rate of change of the signal is found. More exactly, a random
[unction, x(t), is assumed lo be one of the following:

a + bt + g(t)n(t),

o+ bt + g(t) f_ "Wt — D) dr, or

a 4+ bt + -[L h(t — r)g(rIn(r) dr,

where o and b are constants,h(t) is the impulse response of a lumped parame-
ter filler, n(t) is white noise and g(t) is a nonzero deterministic function.
A least squares estimate of b is found as a L'ncar operation on a finite sam-
ple of x(t).

I. WHITE NOISE CASE

A well-known estimation problem is that of forming a mean square
estimate of the constant, b, in the random function z(¢) = a + bt + n(f),
where n(f) is white noise and @ and b are unknown constants. The esti-
mate of b is required to be the linear operation

b= f‘ K({t — 7)a(7) dr,

where K(z) vanishes outside (0, T') and b is to equal b in the absence of
noise. The solution is known'* to be

K(2)

6
— (T —22); 0=2z=T
e (1)

= 0; elsewhere.
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The above problem will be generalized here to include one type of non-

stationary noise.
Let

a(t) = a + bt + g(On(d), (2)

where a and b are unknown constants,* n(¢) is white noise of unit spectral
density and g(f) is a nonzero, deterministic function. Formally, it fol-
lows that

Elg(tn(Dg()n(l)] = g()g(t)s( — 1). (3)

We wish an estimate of b in the form
t
- f K, t — () dr, ()
=T

where K(t, z) vanishes for z outside (0, 7). A constraint is that, in the
absence of noise, (4) should give b exactly. Therefore

t
h = K, t — 7)a + br) dr,

—T

which implies, with a change of variable, that
T
f Kt z) dz =0, (5)
0
and
T
[ K2 de = 1. (6)
0

Using (3), (5) and (6) and again changing variables we find that the ex-
pected error is now

T
Bl — 1) = f KX, 2)g%t — 2) de. )
0
The minimization of (7) is easily done by the usual variational tech-
nique, using (5) and (6) as isoperimetric constraints. The variation gives
2°(t — 2)K(t,2) + X+ pz =0
Therefore
_ —\N — uz
K(t, 2) S5 = 2)’ (8)

* The linear a 4+ bt is used here for simplicity. The coefficients of a general
polynomial may be estimated in a similar way.
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where A and p are undetermined multipliers to be fixed by (5) and (6).
From (5),

T

T AT dz zdz
fu Ix(t,z)fEZ——gjo 721 = 2) z git—2
and, from (6),
T N ([T zdz 2 dz
fo zK(t, z) dz = _§~L 72 f =2 —1.

Solving the preceding equations for A and u and substituting into (8)
gives

1 — zAy
0= T
(Adods — AP — 2)° N (9)

=0 elsewhere,

K, z2) =

[
A

with
T i
z' dz
o = [P
J() Jo gg(t _ z))
which gives the minimized error

Ay

BO =0 =

The denominator of K({, z) does not vanish, since g(t — 2) is assumed

nonzero, and
T (z _ %)‘3
dz > 0,

o gt —2)

Az—'&>0
Ao

Agds — A7 > 0.

In general, the K(¢, z) found here defines a time variable filter over a
finite time interval. However, if g is a constant, (9) reduces to (1). An-
other interesting special case is that in whieh g is assumed to be of ex-
ponential form, which implies that

gt — 2z) = g(Hg(—=2),
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and therefore

) f 2 dz _ B;
=G0k =2 " e
Substitution into (9) gives

Bl —_ ZBn .
(BuBy — By?)g*(—2)’
= 0; elsewhere.

K(z) = 0=z=T

Now, however, the B,’s are constants instead of functions of ¢, as the
A /s were. For an exponential g, therefore, the filter given by (9) is time-

invariant.
The function g(f) is not necessarily continuous. For example, let

g@) = q; z<pB

=g2; x> B.

Then

1 J”'*‘

1 T’“ (1 1) gt

g7+1+ g 9+ 1 A<h

1

ERal b

which implies that K(, z) is linear but has a discontinuity in value and
slope at z = B.

Many applications involve a linear g(¢). For this case, it is possible to
plot a one-parameter family of curves which completely describe K (i, 2).
If g(t) equals & + B¢, we define @ = —(a + Bt)/Bt. Then, by a change
of variable,

Tt sl ds 7!
gt (@4 s B

and substitutioninto (9) gives
2
Cl - C[J (T)

T°K(t, 2) = oo [Q . (%)]

A; = ¢,
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All of the time dependence is now included in Q. Fig. 1 shows T°K(t, 2)
plotted against z/T for several values of Q. A positive value of @ implies
that | () | is decreasing with time and therefore that recent data are
superior. Values of Q in (—1, 0) are not permitted, since stich a @ would
imply that g(f) vanished somewhere in ( — T, 7). If g(?) is constant, Q
is infinite and (1) applies.

T2K(t,2)

z/T

Fig. 1 — Weighting functions, K(¢, 2), for linear g(¢).
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The K(1, z) just found for the linear g(t) case may be substituted into
(7) to give the variance of b as a function of Q:

T 2 —1
mei - =[1- (%) e+ 0] a0
B2 . Q

An interesting comparison may be made with the variance resulting
from using K(z) of (1) in (7), which gives

71
B

Equation (11) shows the error to be expected from using a K(z),
which is optimum in the stationary case, on this type of nonstationary
data.

Equations (10) and (11) are plotted in Fig. 2. The difference between
the curves is a measure of the improvement possible* with time-variable
smoothing.

As @ approaches =, (10) may be written

B — b)* = 320 + 1) + 2 (11

T 273 2 . 2 7 1
g b — D" = 360+ 17 — £+ 0 (Q),
therefore (10) and (11) will asymptotically differ by 16/5.
Fig. 2 is plotted for @ > 0; however, it may be used for @ < —1 since
both (10) and (11) are even on either side of @ = —0.50.
Fig. 1 also suggests a simple approximate realization for K(t, z). The
several curves have approximately common intersections near z/T = 0.2
and 0.8. Therefore, K(¢#, z) might be represented as

K(t, z) = Ki(z) + f(Q)Ks(2),

where K;(z) is one of the K(t, z) curves near the middle of the range of
@’s to be considered. The function Ks(z) vanishes near the points
z/T = 0.2 and 0.8 and takes on relatively small values elsewhere. This
approximate realization thus involves two time-invariant filters and a
multiplier which depends on @ and thereby on ¢.

II. PRE-FILTERING OF NOISE

Filtering and multiplication by g(¢) are not, in general, commutative
operations, so a choice must be made between

0@ [t = nte) dr (12)

* It has been shown by E. N. Gilbert that, even if a linear g(¢) vanishes in
the smoothing interval, the best possible estimate has variance 82/T and, there-
fore, perfect estimation is not possible.
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Fig. 2 — Variance for linear g(t).

and
f_t h(t — rg(r)n(r) dr (13)

as noise functions to be added to @ + bi. In certain cases, the representa-
tions (12) and (13) are virtually equivalent in the sense that, given
h(t — 7), there exists an A(f — 7) such that

M”L ML—ﬂMﬁdr=£ﬁﬁG—rMﬁM&h&

From the point-wise uncorrelation of n(7), the preceding equation, if it
is true at all, must be true for all values of 7. Therefore

i —n =25 -,
g(r)
which implies that g(¢)/g(r) must be a function of ({ — 7). The only
nonconstant g(f) satisfying this condition is the exponential. If g(¢) is an
exponential, the choice between (12) and (13) is arbitrary. In general,
however, the choice is not arbitrary and depends on physical considera-
tions. The forms (12) and (13) will now be treated as Cases 1 and 2.



1016 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1958

Case 1
The observed quantity, z(¢), is
t
2(0) = a + bt + g) [ At = () d,
I\ —og
where n(r) is white noise of spectral density unity. The transform of
h(f) is assumed to be

i ﬂJ(ZW)J
ThH)] =———; m<n
Zn:a,(zw)’

It is also assumed that the numerator and denominator of T[h(f)] have
neither common factors nor multiple roots. The covariance of

f_; ht — oyn(e) dr
is defined to be p(7). A particular K({, z) is sought such that
b = f‘l_TK(t, t — Dalr) dr
minimizes

E(b - 1) = Lsz gt — 2)K(t, z)j;sz'g(t — 2K, 2z — 2). (14)

A

In obtaining (14), it was assumed that, in the absence of noise, b
equals b, or

fDTK(z, 2 dz = 0 szK(t, 2 de = —1. (15)

Using the constraints of (15), the variation of (14) gives the integral
equation®

;)_7\+u2

- 2a. (16)

dez'K(t, gt — 2Nplz — 2

From the form of T[h(f)], it is evident that
]. jf(w) tw(z z
—w N(w?)

Ul* A similar equation, of somewhat different origin, has been considered by
e’

:)d

p(z — &) =
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where M (w’) and N («’) are polynomials in w of degrees m and n. Now
form* the operation N(—d’/dz") and apply it to (16), giving

1 fT ' ' ' fm 9 iw(z—z") ( d2) A+ uz
— — 3 - _G AT KR
5 Jo dZ' K(t, 2)g(t Z') . [(w)e dw N i) gt =2

which is, formally, the same as

1 d2 f'r ' ’ ' fm iw(z—z7) ( da) A + uz
Il —— { —_ dw = —
21‘_111( dzg) ) dZK(t, 2Ng(t — 2) | ¢ w=N ) ai=2’

or, the differential equation

d* _ _d"’ N+ pz
M (—@) K(t, 2)g(t — 2) = N( agz) -2 (17

The general bounded solution of (17) will not necessarily satisfy (16),
however. As is well known,” singularity functions up to ordern — m — 1
should be added at the end points of the interval in order to satisfy the
boundary conditions of the integral equation (16).

Therefore, let

K, 2)gt — 2) =-m;_ a;e" _|_j: k(z — ;t:)N(—%)(;L(:—__#—;)d.v
I (18)

n—m— n—m—1

1
+ ; b0 (2) + 2 ez — 1),
0

where 8@ is the Dirae delta function, 8 its derivative, ete. The func-
tion k(z — x) is the Green’s function associated with M(— (d*/dz*)) and
the 2m constants m; are the roots of M (—X?%. The a;, b, and ¢; com-
prise 2n undetermined constants. They may be determined by substitut-
ing (18) into the integral equation (16) and requiring an identity in the

2n exponentials of p. For example, assume h(z) = € ", which implies
that
M@) _ 1
N(w?) a +
Then
. s d\ N+ pz
‘ f—2) =" —— )= 1= _
K(t, 2)g(t — 2) (a dzg) 2= 2 + bd(2) + edlz — 1),

and substitution into (16) gives the following equations for by and ¢o :

A\ Mt d\ A+ ue
bo = (" dz) il = 2) )

2=0 "":("‘JHTZ gt —2)|z=T.
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Except for evaluating A and g from (15), the solution is

K z2) =
1 2 d d d\] N+ w2
i st 0= g) s - n(e+ S

Case 2
The observed quantity z(f) now is

t
() = a + bt + f h(t — m)g(r)n(s) dr.
—e0
We define b, K(t, z) and h{t — 7) as in Case | and again require that>
in the absence of noise, b equal b, or that the constraints (15) hold.
These assumptions lead to the following integral equation:
T
f dZ’K(t, 2)0(t — 2,t — 2') = X + pz,
0
where

Bt — 2zt — 2) = fo hh(y + 2 — 2)g°(t — 2/ — y) dy.

Instead of dealing directly with the integral equation, we first rewrite
x(t) as

2(l) = L Bt — DB + vr + g()n(@)] dr, (19)
where
_ b
Y BDJ
and
e b B
B_ﬁn+ﬁu(l 50)’

and

fm ch() de = P _ P
0

a02 (2 3)]
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from the assumed form of T[h(f)], and that

f h(t — 18 + y7) dr =

8 fﬂ hix) de + i j; hix) de — ‘/; xh(z) dv = a + bt

when the values of 8 and v are substituted from (19).
A function y(¢) is now defined as
y(t) = B + vt + g)n()
and a funetion K(¢, z) is defined as the convolution of K(¢, z) and h(z),
so that (14) is replaced by
b= f; K@, t — ny(r) dr.

The function y({) is similar to x({) as defined in (2). Therefore, K, 2)
may be found in a manner analogous to that used in the case in which
the noise was not pre-filtered. Recalling that K(f, z) is required to
vanish outside (0, T), we may define K(t, z) more exactly by

K, z2) = _ﬂ dvK(t, h(z —v); 0<z2<T

T
- f dvK({t, Vh(z —v); 2> T (20)
0
= 0 z <0,
or the equivalent:
ia-drj.li'(t 2) = iﬁ-ﬂih’(t z2); 0<z< T
T dz ’ o dz T (21)

=0, z>T, z < 0.

Since K(t, z) may be discontinuous at z = 0 and 7', these points have
heen excluded. While K(f, z) is constrained by (15), it follows that
K(t, z) must satisfy

/;w K(t,2)dz =0
) (22)

/‘ K1, 2) dz = _bo.
0

(241]
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The variance to be minimized is now
Eb — b)? = )uw K, 2)g°(t — 2) da.
From (21),
K, z2) = HZ;:I s €% 2> T, (23)

where the s; are presently unknown but will be selected to minimize
E(b — b)* and the ¢; are known in terms of the a; . A variation of

fm (KL, 2)g°(t — 2) + AK(t, 2) + uzK (1, 2)] dz
o

gives
2K(t,2)g°(t — 2) + AN+ puz=0; 0<z2<T (24)

and a set of n equations defining the s; :

n—1

2> ij STV — 2) dz + f N\ + w2)ék’dz = 0, (25)
i=0 T T

where
kF=01,---,n—1.

Equations (23) and (24), together with the constraints (22), define
K(t, z) completely. The function K(f, z) may now be found from (21).

From the discontinuities in K(¢, z) at z = 0 and T, delta functions
of order as high as n — m — 1 may be expected in K(¢, z) at z = 0 and
T. For example, if h(z) equals € **, (21) becomes

dKéi’ 2) 4+ aK(t,2) = K(t,2); 0<z<T
=0; 2<0, z>T
and
Kt z) =se™, z>T.
From (24),
= Thowe
K(t,z)—m, 0<z<T

and, from (25),

2s f €t — 2) dz + f A+ we)e “dz = 0,
T T
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which defines s and therefore K(t, z) for z > T. Except for evaluating
A and g from (15), the solution is

K(t,2) = [5(z) —8(z—T)+a+ HdE] (?‘_‘Lﬂz_)

gt — 2)
N+ u (T + ;)
+ __{],H(t, T-_) - 5(Z - 7))

where

HT) = &7 f R — 2) de.
T
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