Synthesis of Series-Parallel Network
Switching Functions

By WARREN SEMON*

(Manuscript received February 13, 1958)

From the switching functions of n variables, those which correspond lo
networks are abstracted and called network functions. Properties of those
network functions corresponding to series-parallel networks are studied
and a method for synthesis is developed.

I. INTRODUCTION

It is known that one may establish a mathematical model in which
Boolean polynomials explicitly represent two terminal single-impulse
series-parallel contact networks. The conventions used in this paper are
Boolean plus, symbolized by @, to represent parallel connection; Boolean
times, symbolized by - or by juxtaposition, to represent series connec-
tion; zero, to represent an open circuit; and one, to represent a closed
cireuit. The symbol * is used to represent Boolean negation, also called
“ipversion” or “complementation.” Whenever f represents an open
cireuit, f/ represents a closed circuit and conversely. This is a conductance
analogue, the dual of that used by Shannon.! If f(zxy, a2, --+, as) is a
switching funetion it may be represented in tabular form® asa “canonical-
form matrix”’ whose rows consist of those configurations of the variables
for which f = 1, as shown below for the function

f = a/(x) @ 173’) = n'w'y ® o'vyn @ 2, Ty’

* The Computation Laboratory of Harvard University, Cambridge, Mass.
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Definition 1

A “sertes-parallel” network is a sertes or parallel combination of two series-
parallel networks; a single element is a series-parallel network.”

Definition 2

A “network” function is a switching function of n variables, having no
vacuous variables, which can be realized by a network conlaining n switches.

As an example: f(z; , 22, 23, 4) = 22’ @ a3'2s is a network funetion.
A four-switch realization is shown in Fig. 1.

Definition 3

A “‘series-parallel network function’ is a network function at least one of
whose n-switch realizations is a series-parallel network.

The network of I'ig. 1 is series-parallel, hence the corresponding func-
tion is a series-parallel network (SPN) function.

In what follows we will be concerned with the characterization of
SPN functions and the synthesis of the networks to which they cor-
respond. It should be noted that, although series-parallel networks com-
prise a small subelass of the class of all relay contact networks,” there are
other types of switching elements for which they represent the only
electrically useful networks.

II., GENERAL THEORY

Theorem 1

The inverse of any SPN function 1s also an SPN function.
Proof: A Boolean expression may be derived which corresponds explicitly

|

I

Fig. 1 — Four-switeh realization.
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to the series-parallel realization of the funetion.' DeMorgan’s law, when
applied to this expression, yields a Boolean expression which exactly
corresponds to a series-parallel n-switch realization of the inverse func-
tion.

Theorem 1 may be extended to cover all network functions whose
n-switch realizations are planar.’

Theorem 2

A minimum generating set* of network functions of n variables may be put
inlo a one-to-one correspondence with the distinctt networks of n elements.
A proof of thistheorem has been given by Ashenhurst.” Some implications
should be noted explicitly: (a) the n-switch realization of a network func-
tion is unique, and (b) only network functions correspond to networks.

Theorem 3

Supposethat £(x, , Xa, + -+, Xu) ts an SPN function. Thenf can be expressed
as an SPN function of the variables oy, az, -+, ax, where each a is itself
an SPN function of the variables in one of k nonoverlapping subsets of the
vartables x; , Xp, *** , Xn .

Proof: This is obvious from the definitions of SPN function and series-
parallel network.

Theorem /

Let f(xy, Xa, -+, Xa) be an SPN function which in canonical form has
m ferms. Let f be expressed as an SPN function F(ay, a2, -+, o),
k = n, where each «; is itself an SPN function of S; variables with m; lerms
in its canonical form (as a function of its S; variables only). I'n the canonical
form of F(a;), replace each a; by m;i, each o' by mi’ = 2% — my, each
Boolean @ by algebraic + and each Boolean - by algebraic -; then the
result 1s m.

Proof: Tt is only necessary to prove the theorem for two variables, since
Definition 1 and Theorem 3 may then be used to complete an inductive
proof. Suppose f equals ayas. I Each term of the canonical form of f may
be formed by selecting one of the m; terms of a; and one of the m; terms

* The group of variable transformations (permutations and inversions of the
variables) divides any class of switching functions into N nonoverlapping subsets,
called equivalence classes; a set of N funetions, one from each equivalence class,
is called a ““minimum generating set.”

t Two networks are ‘‘distinct’” if one is not derivable from the other by trans-
formations consisting of the reversal of two-terminal subnetworks.

1 Such a function is said to be “‘essentially series.”
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of ay. All such terms must appear, and no others can. Hence m equals
myms .

Now suppose f equalsa; @ a» .* Foreach of the m, terms of «, there are
2% configurations of the variables of a» which appear in the canonical
form of f; similarly, 2°' configurations of the variables of a; are associated
with each of the m, terms of a,. This gives 2°'m; + 2°%m,; terms. Of
these, mm, are duplicates. Hence

S S
m = 2"'my + 27m; — mym, ,

mymy 4+ my'ms 4+ myms .

Il

Theorem &

If f(xy, - -+, Xa) 28 any SPN function, and m is the number of terms in its
canonical form, then m is odd.
Proof: By induction on n. The theorem may be verified by inspection
for the casesn = 1 and n = 2.

Now assume the theorem true for all & < n. Consider an arbitrary
SPN function of n variables. It can be expressed either as aje or as
oy @ ay, where a; and a» are SPN functions of fewer than n variables.
Again let m; be the number of terms of ¢; and m, the number of terms of
oz . Then

m = My + Mo
is odd, or
_ 952 51
m—2m1+2mg—'mlmg

is odd, since m; and m; are odd by the inductive hypothesis. This proves
the theorem.

Corollary

It follows immediately thal any network function for which m is even has
only a bridge circuit realization.
As an example, consider thefunction f(x; , @ , 3 , 24 , 25), whose canonical-
form matrix is given in I'ig. 2 (m = 16). It has the five-switch realization
shown, but no series-parallel five-switch realization.t

It is reasonable to ask whether an odd number of terms in the canon-
ical form of a network function implies that its realization is series-
parallel. This is not so, as may be seen from the following example.

* Such a function is said to be “essentially parallel.”

1 Note that Theorem 2 asserts that there is no other five-switch realization of
this funection.
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The function F(z1,2s,%3,34,%5,26,27), Whose canonical-form matrix and
seven-switch realization are shown in Tig. 3, has m = 59 but the net-
work is not series-parallel.

Theorem 6" *

The function f(x,, Xz, -+ , Xa) defined by f; = 1,1 =0,1, ---, m — 1
and f; = 0 for i = mis an SPN function for m odd.

X1 X2 X3 X4 Xp

00000

00001

00010

00011

00100 Y x,
00101

001 10 / . \
00111 Xs
01000 \ /
01001 xh xh
01010

10000

1 0 0 01

10100

11000

11001

Fig. 2 — Five-switeh realization.

Definition 4

The SPN function defined by f; = 1,i = 0,1, ---, m — 1 and f; = 0
for i = m, m odd, is called a ‘‘canonical-form network function.”
All SPN functions of one, two and three variables are, to within a vari-
able transformation, canonical-form network functions. The first SPN
functions which are not canonical-form network functions appear in
four variables. Such functions may be characterized by the following
discussion.
Consider the Boolean expression for an SPN function which explicitly
represents’ the n-switch series-parallel network for the function. Then
i. There may exist a variable z such that f = xg, with g an SPN
function.

* Here, f; is the value of the function for the configuration of the variables
which would represent the integer 7 in the dyadic number system.
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ii. There may exist a variable 2 such that f = 2 @ g, with g an SPN

function.

iii. The function may be such that no 2 exists which satisfies either

1 orii.
In cases i and ii the function is said to be “reducible’; in case iii, “ir-
reducible.”

If a function is reducible, then the “residue’ function g may be ex-
amined for reducibility. For any SPN function such reduction will ulti-
mately lead to a residue function which is (a) a single variable, or (b)
irreducible and a function of more than one variable. An SPN function
whose ultimate residue function is a single variable is said to be “‘com-
pletely reducible.”

Theorem 7

An SPN function is, lo within a variable transformation, a canonical-form
network function if and only if it is completely reducible.
Proof: By induction on n, the number of variables. Forn = 1 and n = 2
the theorem is obviously true.

Now assume the theorem true for all ¥ < n. Suppose [ to be an SPN

X1 Xo X3 X4 Xp XoX7| | X1 X2 X3 XsXsXeX7| [ X1 XaXgXeXsXeX7

000010
000100

—

0000000

x|
x5
’
X3
x4
k'
Xs
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O OO0 O k- D
HEHOOOHEKMEFOOOMMOOO - -
HOOO~MOROO-OHOQo D
COCOoOHR OO HOoOOODO RO O~

—
I

=== = R eI Y = I e i e B e I e B e e T e B e e I e B
cCoCcocoCcC oo Ccooooococoooco
HE - - -0 000 0C0C0CCC0CQ
- OO0 00C R -MREEROOOOD
COCO - MH=MHOOOH~HOOOHFRFROO
— OO~ O0OO0O=OoOO~O~OO—HOD~=O
C-HOO~ROOHOOOO OO OO
——CcOoOCcCOoOCcCOoOOOCCcCCOoCOoOCOCOCOCO
== el e e e B e O e Sy ]
COFHMEMHMMHNOOoOOOCoCOoOOoOCOC O kM-
C OO OO meEE OO0 -
COHHFOOOHF M OOOHKFMEOOO M -
COC OO OHOOHOOROOFOD
—HOoOHOOHOCOO=ROOROOHODOD

Fig. 3 — Seven-switch realization.
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funetion of n variables which is completely reducible. Then either f = a'g
orf = a2’ @ g, and ¢ is a completely reducible SPN function of n — 1
variables. The induetive hypothesis then guarantees that f is a canonical-
form network function.

Suppose now that f is a canonical-form network function of m terms.

(a) If m < 2", then f equals 2,’g(21, - -+, xa1), wWhere g is a canon-

ical-form network function. ,
(b) If m > 2", then f equals &’ @ g(x:1, - -+, u_1), Where g is a
canonical-form network funetion.
In both cases, the inductive hypothesis guarantees that g is completely
reducible, hence so is f. This proves the theorem.

The irreducible SPN functions of =, variables are a set of some in-
terest. One question occurs immediately: How many such funetions are
there? This may be answered as follows.

Let S, be the number of functions in a minimum generating set of
SPN functions of n variables. Since, by Theorem 2, the correspondence
between functions and networks is one-to-one, S, is the number of
series-parallel networks of n elements.* Let 7, be the number of functions
in a minimum generating set of irreducible SPN functions of n variables.

Theorem 8
in+] - Sn+1 - QSn .

Proof: S, is the number of series-parallel networks of n elements, and
7. is the number of series-parallel networks of n elements which have no
single elements in series or in parallel with the entire network. Form
networks of n + 1 elements by adding a single element in series to each
of the S, networks of n elements; form the corresponding set by adding
one element in parallel. There are 28, such n 4+ 1 element networks.
None of these corresponds to an irreducible function. If the networks
corresponding to all the irreducible functions are now adjoined, giving
28, + 741, this includes all the SPN functions of n + 1 variables, since
any reducible function is included in the set of 2., functions, and all
irreducible functions are included in the set of 7,4, functions. Hence
S.41 = 28, + 7.1 . It is obvious that there are 2"7! completely redue-
ible SPN functions of n variables since they are canonical-form network
funections, and these correspond to the odd integers m, 1 £ m = 2"
The remaining SPN functions of n variables are each either irreducible
or reducible to some irreducible function. Theorem 9 exhibits this divi-
sion.

* These numbers are discussed in Ref. 3.
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Theorem 9

n—2

Sa=2"" i+ 2 G2

i=1

(a) The term 27! represents the canonical-form network functions of
n variables.

(b) The term <, represents the irreducible SPN functions of n variables.
(¢) The remaining terms

n—2

. n—j—1
2 i
i=1

represent. the SPN functions which are reducible to irreducible functions
of more than one variable. To prove Theorem 9, it is only necessary to
solve?® the difference equation, S,.; — 28, = 4,41 . Table I shows the
numbers of interest for n = 1(1)10.

Let f(x,) be a function of n variables, represented by a canonical-form
matrix of zeros and ones (n columns, m rows), as in Section 1. Let mo
and maq = m — Mg be equal to the number of zeros and ones respec-
tively in the 2; column of the matrix.

Theorem 10

If £(x;) is an SPN function, il is a function of xi’ or x; according as my
or mjo 18 the lesser.

Tasre I
n—2
" Sn in fn= % ijul® -i- Cn
juml
1 1 0 0 1
2 2 0 0 2
3 4 0 0 4
4 10 2 0 8
5 24 4 4 16
6 66 18 16 32
7 180 48 68 64
8 522 162 232 128
9 1532 488 788 256
10 4624 1560 25562 512

8. = total number (taken from Ref. 3) of SPN functions in a minimum gener-
ating set.

i, = number of irreducible SPN functions in a minimum generating set.

r, = number of reducible but not completely reducible SPN functions in a
minimum generating set. . ) )

(', = number of completely reducible SPN functions in a minimum generating
set.
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Proof: By hypothesis, f can be written as [ = z*4 @ B, where (a) x,*
is either a; or z;/; (b) 4 and B are functions of the remaining variables
only. Then

f=z*4 ® 2B ® 2;¥B
x*(A ® B) @ z/*B.

Since B £ 4 ® B, the number of terms in B is equal to or less than the
number of terms in 4 ® B. Now suppose that 2 be equal to x;, then
f =24 ® B) ® z;/B. But the number of terms in B is mjo, and the
number of terms in (4 ® B) expanded as a function of all n — 1 vari-
ables is m; , hence m;o < m;; . But m = mj + m;, is odd, hence m;o <
Mij .

Similarly, if 2* = x,/, mj is the number of terms in (4 @ B) and
m; is the number of terms in B, so that mj = mj . Again, the equality
is impossible, so that m;; < mjo . This completes the proof.

As an example, consider the series-parallel network shown in Fig. 4.

The corresponding function is

f@) = o'(xs @ 2o'zy),

and the eanonical-form matrix for f is:

Ty T2 Xz X4

o o o @
= = o © <
—_— o = = O
[ T =

Fig. 4 — Network for f(z) = z."(2: @ 22'z3).
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The counts for each element are:

J Mjo | My
1 5 0
2 3 2
3 2 1.3
4 1 4

By Theorem 10, f is a function of ', 2/, x; and 24, and this is clearly
true.

Consider any element x; in a series-parallel network. Let A, represent
all of that part of the network which is in parallel with z;. Let B,
represent all of that part of the network which is in series with the
parallel combination of 4, and ;. Let g be equal to Bi(4; @ z;). In
general, let A, be that part of the network which is in parallel with
gi1, and B; be that part of the network which is in series with the
parallel combination of 4; and g ;. Then an SPN function f may be
expressed as:

N N N
f = IEj!IIIB; @ );AkIIIkB{’*
where A; and B; are SPN functions of distinet variables (see Fig. 5);
A; may be the trivial function 0, while By may be the trivial function 1.

Definition 5§
X;j 18 said lo be a “series” element if and only ¢f A, = 0, and x; s said lo
be a “parallel” element if and only if A; ## 0.

Theorem 11

In the circuit for an SPN funcfion, x;j is a series (parallel) element if and
only if the lesser of mjy and myj; vs even (odd).
Proof: Suppose that f is expressed as:

with A; and B; SPN functions of nonoverlapping subsets of the vari-

* Henceforth the symbol 2 will be used to signify extended application of the
operation &.
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ables. Then

N N l
fle; =1,4:,B) = I:-I; B:® ,é 4 I‘lBi

N N N N
=[IB®allB® ;Aquf.
i=1 i=1 =2 1=k

Clearly 4, is a vacuous variable in this function, and wherever A,P
appears in the canonical form A,'P appears also (P is a product involv-
ing Ay, -++, Ay, By, ---, By and their primes). Hence, if m,, is the
number of terms in A; and A4, is a function of S,, variables, then, by
Theorem 4,m,, + m4, = 2*41isa factorof m,; . If A; #£ 0, then S,, # 0,
hence m;; is even and m, odd.

Now suppose 4, is identically equal to 0, then

N N
fx; =0,4;,B) =2 A, [ B:

k=1 1=k

Il

N N N
Al B@ EAL.HLBi
i=1 i=k

k=2

N N
:j;AkHB,-,

1=k

. S .
and clearly B, is vacuous. Hence, ms, + mz,” = 2781 is a factor of my,

N N N
Fig. 5 — Network forf = 7, II Bi @ 2 A, II B:
i=1 K=1 = i=&
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and mj is even, m;; odd. (Note that S,, = Sz, = 0 implies f = 0;
this case need not be considered.)

Theorem 12

If two elements x; and Xx are in series or in parallel, then mj equals
Mo and mj equals my, .
Proof: If the function is expanded as

N N N
f=$j$kIlBl'@.§AkHBi

i=k

or as
N N N
f= (.x,»@:vk)_HlB,- @j;Af..Hka,

and Theorem 4 is applied, the result follows immediately.

It should be noted that the converse is not true; that is, mj = my
and mj; = myu does not necessarily imply that x; and x; are in series or
in parallel. This will be seen in one of the examples which will be given.

Theorem 13

One of myo and myj, 1s even; call this m. Let k be the largest integer such that
2k | .* Then k is the number of swilches in the subnetwork which is in
series or in parallel with x; .

Proof: Suppose that f is a funetion of x; (not of z;/). This assumption is
irrelevant in the argument, and is made only for the sake of definiteness.
Then mu < mj .

Case 1: Suppose that z; is a parallel element. Then m ;) is odd, by Theorem
11, hence m = m;, . Clearly, in the function f(z; = 1, 4;, B)), A;is a
vacuous variable. Therefore, in the canonical form of f(z; = 1, A;, BJ)
wherever A,'P appears so does A;P. Hence, by Theorem 4,

Mmjiy = (mal + mAl’)C
= 2%, (¢,

But C is odd (if it were even, then removing the subfunction 4, would
make x; a series element, with m; odd, and this is impossible by Theorem
11). Therefore 2541 | 7, and 254 N @ fork = 1,2, --- .

Case 2: If x; is supposed a series element, then clearly m = mj . Also
B, is vacuous in f(x; = 0, A;, B;). (Note that 4, = 0 by hypoth-

*a | b as usual means “a divides b"; a‘]\b means ‘“‘a does not divide b.”
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esis.) A similar argument shows that 21| m, while 2“2\ i for k
= 1,2, --- . This proves the theorem.

Theorem 14

Consider an SPN function f. Of f and {', one 1s essentially series, say f.
Then f may be expressed as f = « - 3, where a, B are SPN functions of
nonoverlapping subsets of the variables. If o equals a(x;), then mg | mjo
and mg | mj; ; if B equals B(x;), then M | My and M, | mj; .

Proof: If a equals a(z;) then mg | mj and mg | mj;, since every term in
the canonical form of & (as a funetion of its subset of the variables) is
repeated in the canonical form of f exactly ms times.

III. SYNTHESIS

Consider the function defined by the canonical-form matrix:

Ty X2 Ty Ta Xs
01011
01 1 00
01 101
01 1 10
01 1 1 1
10011
1 01 00
L o1 01
1 01 10
101 1 1
1 1 0 11
1 11 00
111 01
11 1 10
l1 1 1 1 1

Suppose it is given that this function is an SPN function, and it is re-
quired to find the network.

Table 1I shows the counts for each variable and the information which
is derived from these counts by application of Theorems 10 through 14.
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TasLe I1
. Prime Factorization of

7 mja mjL Variable Sl’?;:jlglr k . F .

Mo mij
1 5 10 o P 1 5 2,5
2 5 10 Ty P 1 5 2, 5
3 3 12 3 P 2 3 3, 2%
4 6 9 T4 5] 1 2, 3 32
5 6 9 Ts S 1 2, 3 32

The column headed “variable” is filled in by applying Theorem 10.
Since in every case m,o < mj , only unprimed variables occur. The
column headed “series or parallel” is filled in by applying Theorem 11.
Since mryg , meg and myy are odd, @, , 22 and z; are parallel elements; a4 and
x5 are series elements, since my and my are even. The column headed
“k” is filled in for use in applying Theorem 13. Since 2 | 10 and 4 } 10,
the values for x; and x; are 1. Also 4 | 12 and 8 } 12 givesk = 2 forz;.
Similarly for z; and x; the values are 1. The last two columns give the
prime factors of mj and mj; . Since my = Mgy = 10 and each of z; and 2,
is in parallel with a single switch and since no other m; equals 10, 2,
and x; are in parallel, ie., (x; @ x.) represents a component of the net-
work. Similarly (x4 - 25) represents a component. Since x; is in parallel
with a two-switch network but not in parallel with #; (by Theorem
12), it must be in parallel with 2, - 25 . Hence (23 @ a4a5) represents a
component. Since 23 cannot be in parallel with z;, these two components
must be in series, therefore [ = (z; @ x2) (3 @ wxyr;) and the net-
work is as shown in Fig. 6. Note that if a equals (z; @ ) and 8 equals
(r3 @ xa1;), then m, = 3, mg = 5 and

mg | Maa , mg | ma, mg | My , mg | M , mg | Mao ,
My | My, My | My, My | M, M | Mo , My | M,

as required by Theorem 14, If Theorems 10 through 14 are to be applied
mechanically, the following fact should be noted. Once it has been deter-

Xz — X, —— X5—

x X3

Fig. 6 — Network for f = (z; @ z2) (22 @ z475).
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mined that (x; @ ) and 2,25 represent components, these combinations
may be treated as single elements; the canonical form may then be
modified and the count repeated. For example, let A equal (x; @ )

Then the original canonical form may be rewritten

and B equal aa; .

(in two steps) as

)
S
—

1 0
1
1

Ts

A..T-:: Xy

1
1
1
1
1
and this funetion is obviously A(zx; & B).

Iy Iz T3 Ty Ts T Ty Ty Ty

—_ O S o S D A A D A A O e A DA e O e A O O i O
OHOOHOCHOO~OOHOOH OO0~ oo
L b L R ™ 1= L= R e R R R B s e B B e B R B e e B B I e B B B B o e B
OO SO OO~ oD~ O~~~
—H—H—H—— OO OOt A At T OO OO OO OO i
[=T=T=T=N=E R R R R R R ke R R R R R R R R R B B R R R e e o
bbb b ki e b b han b b R R R R R B o B B e R B B B B B e B
OO0 COoOCCCOOOCOCLOLLOOmmmrirdr rrd —irdr riri =l =

e im il i el bbb b b R R R R R B R R R R R R R B o B B B B el

Ty Ty Ty Ty Ts Tg Ty Ty Lo

— D A A D et et D A A S A A D A A Ot A O et =~ QDA O~ D == O
OO OOmMOO~OO-HOO-0O0~0O0~0OOo~Coo OO ~O
e et et e e et el e et () (D D et e e e el e e e e e e e (D D et e
O OO~ OO0 =00 O
=l=I=1=E il aiaiaiai= === 1= 1= 1= == Rl a ke k==l el
== 1=1=1=1=1= 1= 1= L b e ik b b b Ran R e R R R == R =R R e e e )
[=f=felololelel-l=l=l=l-l=l=lolelel=f=l=l=l=f—k—N=F L Rokokolakakakel el

I~ elelel=l=f=ff-f-l-l-l-l-l=l=l=lel-l-lel= ittt lm =Rl a k= R ) |

e e e e e b b b R R R R R R R R e R R e R o o

Consider the canonical-form matrix:

Xy Ta Ty Ty Ty g Iy Tg Xy

Ot A O A DA A D A A S A DA A O A O A A O DA = O = O~
OO OO OO0 0000 -2 o —OC
D et 1 vt 1t et et et e el o e T D D S e e e e e el e e = D OO
=I=1= === it = = et a bl ===l =R R R = == h o o R Rl
=1l ===l == heiaiaiaiaial=l—t=E=l=l=l=—l ==k ok R o R o R =l R
et e et 7 7 Tt e et et e i P i e A H A A A T —H A A A A —H—_ D OO O
et i v vt e ok o e ek ot o e T e et T T el e e o e e e — —_—_—_—_—_ OSSO0
[=T=1=1=1=l=]=1=1=1=F—F=F=F=t=F ol R R R R R R R R R Rk b b k=T ===

=I=1=1=1=1=1=1=1=E=1=1=1=1—l—l=l=l—l=l— ===l ==L il =L L R R R
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TagsLE II1
Prime Factorization of
Fi Mjo 1 Variable | Sor P k
mjo mj
1 30 75 T, S 1 2, 3, 3, 5
2 75 30 ' S 1 3, 5 2,3, 5
3 30 75 3 S 1 2, 3, 3, 5
4 30 75 4 S 1 2, 3, 3, 52
5 63 42 xs S 1 32, 7 2, 3,7
6 63 42 xe S 1 32, 7 2, 3,7
7 21 84 I P 2 3, 7 22, 3,7
8 70 35 a8’ P 1 2, 5, 5, 7
9 35 70 Ty P 1 5, 7 2, 5, 7

This gives Table III. It is evident that
i. one of xxs’, 2123, 2124 appears in the network;
ii. x5z’ appears in the network;

iil. a" @ xy appears in the network.

In order to select the correct one of a2y, x1@3, xyxs, Table IV is con-
structed. Note that if 2y is to be a component it must be possible to
substitute A for ay in the canonical form. Then a count can be made
of mo and m,; . But 4 equals zero implies three terms as shown:

A=1

xy
11

A:

0

xy

00
01
10

Therefore, the number of occurrences of a2y = 00, xy = 01 and 2y = 10
must all be equal. Clearly, in the example only the combination xx.’
satisfied this requirement. This implies that xxy’ and vy represent

TasLE IV
00 ot 10 1
1T 15 15 60 15
ERR 0 30 30 45
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components. Reducing the canonical form in terms of the new variables

= e
Yo = T3y

ys = a5’y
Yo = X7

Ys = 15 @ Ty

gives the following matrix:

Yo Y2 s Ys Ys
01011
01101
01 1 1 1
1 00 11
1 01 01
1 01 11
11 0 11
1 11 01
1 11 1 1

Analysis of the counts for this matrix is shown in Table V. A count for
Wy, Yiys, s yvields Table VI. Therefore z, = xx) @ a2y, 22 =
as're ® x7, and 2z = a5 @ ay represent components. Again reducing
the canonical-form matrix leads to

21 Z2 Z3

111

Hence the function is
f = (xa @ aar) (vs'as’ @ x7) (0 @ o)

and the network is as shown in Iig. 7.

It should be noted that an attempt to apply Theorems 10 through 14
to a non-SPN function will lead to a contradiction. For example, the
function whose canonical-form matrix and bridge network are shown in
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TasLE V
Prime Factorization of
ki mjo mj1 Variable SorP k
mjo mi
1 3 6 n P 1 3 3, 2
2 3 6 Ya P 1 3 3, 2
3 3 6 Ua P 1 3 3, 2
4 3 6 on P 1 3 3, 2
5 0 9 Ys S — — 32
TasLe VI
00 01 10 11
Y2 0 3 3 3
Y1ys 1 2 2 4
Y1l 1 2 2 4
Lz=——1X4 X7 Xg
—
Xy —— Xh T5— X5 Ty

Fig. 7 — Network for f =(z122" @ z374) (25'2s" D 1) (25" D z0).

TasLe VII
7 njo mi Variable SorP k
1 38 21 T’ P 1
2 43 16 T S 4
3 33 26 '’ S 1
4 34 25 xy P 1
5 33 26 x5 S 1
6 38 21 e P 1
7 43 16 ' S 4

Fig. 3 yields Table VII. If this function is to be an SPN function, x4
must be in parallel with a one-element subnetwork. But no other element,
exists with the number pair (34,25) as (m;o, m;), and this contradiets
Theorem 12.

The results produced thus far by this investigation suggest many
intriguing possibilities. For example, if a function is not an SPN fune-
tion because it requires both z; and x; contacts, can rules be derived for
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augmenting the canonical form of the given funetion so as to produce
the canonical form of a new funection which (a) is an SPN function of
n + 1 variables and (b) reduces to the given function when the new
variable is replaced by a7 Obviously this notion can be extended to
cover all functions by introducing a large enough number of new vari-
ables. That this is not a trivial question is shown by the following
example:
Let f(x;, a2, @3, ¥1) be defined by the canonical-form matrix

- o o o o O
- -0 © © O
o O = = O O
DO = O = O

Since m = 6, it is clear that this function cannot be an SPN function.
Let us assume however, that it can be realized using five switches in-
cluding both an 2 and an a’, and attempt to form a function g(z:, 2,
s, &1, a) such that (i) ¢ is an SPN function, and (ii) g(zy, x2, @3, @4,
a = ') equals f(a; , 22, 73, xs). We proceed as follows:

1. Copy the canonical form matrix of f, adding a column headed a.
This column is the inverse of the column headed x .

T Tz Iz T4 @
00001
00011
00101 (2)
001 11
01000
11000

Condition (i) requires that these terms appear in the function g.
2. The canonieal form matrix for f/ is similarly augmented, giving
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Xy Ta T3 T4 A

®3)

= e e e e O OO
—_——_-oo oo~
——OHHOOHHO
—_ Ok O (O = O =
SOoOoOHHFEROOO

and condition (ii) requires that these terms appear in g’.
3. List the remaining possible terms of g. (These will include all
combinations for which a = x3.)

Ty T2 T3 g4 a
00 0 0O
00010
00100
00110
o1 0 01
01 011
01 1 01
01 1 11 (4)
1.0 0 0 0
10 01 0
1 01 00
1 01 10
1 10 01
1 1011
1 1 1 01
1 1 1 1 1

Since these terms will vanish when a is set equal to 22’, any of them may
appear in the function g. Assuming that g is to be an SPN function of
primed variables only, it follows that
(a) whenever, in the function g, the combinations x;0x3v:1 or a;laze,0
appear, so must x;0x;x0, and
(b) the combination xlxzr,l may appear in g only if 2023140, 2025241
and ;13240 all appear as well.
4. By the application of these rules the terms in (4) may be divided
into three sets: (a) those which must appear in g, (b) those which must
appear in ¢’ and (¢) those which these rules do not determine. For this
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case, these sets are

not determined

/

appear in g

appear in g

Lo Tp Ty @

£y

—

0

00

Ts 3 Ty a

I

1 0 01

1
1

0 1

a

Ly T2 T3 s

00000

0

I}

0 00

00 00

1

5. Combining these with the known terms of g and ¢’ gives

not determined

’

appear in ¢

appear in g

2 T3 Ty @
01001

Xy

10010

01 00
01 10

1
1

11

Ta

Xy Lo T3

1 011

0

0

1

0

1

01
01110

1 00 01

1 00

1

11
110 01

101

1 010

1
1

1

1 01

1 01

1

s Tz Ty @

Ty

00 000
0000
000

0 00

1

0

1
11
0 0

1

0

0

01 000

0000
11000

1
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The terms presently given as appearing in g form an SPN funetion
g = x'v @ v'zyd
and
gy, 2, &5, 24, a = ') = o'z @ vaws'vd’ = (1, 22, 23, 24).

However, note that if all the terms listed as “not determined’ are ad-
joined to those which “appear in g,” a canonical form for the SPN
function

g, X, 5,20, 0) = (0 @ a) (@ @ az))
is produced, and
gy, 2, 23, 0,0 = 22) = (7 @ 1) (1) @ ay'xy)
= flay, 22, 23, 24).

From this example, it isclear that the requirement that g be an SPN func-
tion, with gy, 22, 23, 24, @ = 2) = f(x1, 2, 23, 24) does not specify
g uniquely.

IV. CONCLUSIONS

Clearly the derivation of the circuit for an SPN funetion is a process
which can be mechanized. If a method for augmenting the canonical
form of a non-network function can be formulated, then a purely me-
chanieal process could be set up for deriving the minimum series-parallel
networks for an arbitrary funetion.
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