Circular Waveguide Taper of
Improved Design

By HANS-GEORG UNGER
(Manuscript received August 22, 1957)

Transitions between round wavequides of different sizes for TEy lrans-
mission are required lo be free of mode conversion. Conical tapers with a
gradual change of cone angle transform cylindrical waves in the round wave-
quide into spherical waves in the transition region. They thus cause very
little power conversion to spurious modes. Optimal tapers and almost opti-
mal tapers are found. An improved taper connecting § in. to 2 in. Lb,
waveguide must be 3 ft long to keep the spurious mode level below —50 db
for frequencies up to 75 kme. A taper of constant cone angle would have to
be 58 fl long to obtain the same spurious mode level.

I. INTRODUCTION

In long-distance waveguide transmission, multimode waveguides of
large diameter must be used to exploit the low-loss properties of the
circular electric wave. Multiplexing of a series of frequency bands into
one pipe is, however, most easily done at certain smaller diameters. Like-
wise, sharp intentional bends can be negotiated more easily at small
diameters. Therefore, transitions between different diameters must be
made quite frequently in a waveguide system.

If these transitions are built in the form of a conical taper which
matches the waveguide sizes of both sides, they tend to excite higher
circular electric waves. Since no simple means are known to suppress
higher circular electric waves without affecting the lowest circular elec-
tric wave, mode conversion-reconversion distortion can only be avoided
by keeping power in all the higher circular electric waves at an extremely
low level. Trar..tions are therefore required which will introduce very
little conversion to higher circular electric modes. Conical transitions
with a qonstant cone angle, unless they are made very long, generally
excite too high a level of these spurious modes.

Wave propagation in the conical taper is most easily explained in terms
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of normal modes. The normal modes of the circular electric wave fam-
ily — the only family of interest here — are, in the cylindrical guide,
cylindrical circular waves with plane equiphase surfaces and, in the
conical guide, spherical circular waves with spherical equiphase surfaces.
At the junction of a eylindrical guide to a conical guide — such as oceurs
twice in a conical transition — a cylindrical wave from the cylindrical
guide excites a series of spherical waves in the conical guide. For in-
stance, an incident TEy wave will excite all the TEo, waves, thus caus-
ing a rather high spurious mode level.

To avoid this mode conversion, a transition which transforms the
cylindrical wave into the spherical wave must be introduced at the junc-
tion. 8. P. Morgan! has suggested and worked out the design of dielectric
inserts placed near the junction which, acting as quasi-optieal lenses,
transform the eylindrical waves into the spherical waves. However, be-
cause of the dispersive character of the lenses and of the waveguide,
good broadband performance is difficult to achieve.

Another way of making a transition from cylindrical waves to spheri-
cal waves — at least approximately — is to taper the cone angle from
zero at the cylindrical guide to the finite value of the conical guide. If
this is done gradually enough, nearly all the power incident in the cylin-
drical wave will be transformed into the spherical wave, with a very low
spurious mode level. Although this is only an approximate solution to
the problem, it does have good broadband characteristics.

II. WAVE PROPAGATION IN A TAPERED WAVEGUIDE

In a tapered circular waveguide such as the one shown in Fig. 1, the
radius @ is related to the distance z along the taper by a function which
is assumed only to be smooth and to have a zero first derivative at both
ends,

Fig. 1 — Tapered waveguide transition,
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The field excited in any cross section by an incident TEy wave can
be expressed as the sum of the TE,, waves of a eylindrical guide having
the same radius as that of the cross section. With this representation,
the tapered waveguide appears to be an infinite set of mutually coupled
transmission lines, each line representing one of the cylindrical TE,,,
waves. The wave propagation is described by an infinite set of first-
order differential equations. If we assume the taper to be gradual enough,
the power in all TEy,, terms with m greater than 1 will be small compared
to the power in the TEy term. We may then consider only coupling
between TEy and one of the TEy, terms at a time, Furthermore, we
need consider only the forward travelling waves, since the relative power
coupled from the forward waves to the backward waves is quite small.
Thus, the infinite system is reduced to the well-known coupled line
equations:?

. dA .
i _ g dy + Tnds, 2= gy 4 kds 1)
dz dz

in which A4;, are the complex amplitudes of the eylindrical TEy and
TRy respectively, 8;.» are the phase constants of these eylindrical modes
and ks , k12 arve the coupling coefficients. The coupling coeflicients are cal-
culated in the Appendix by converting Maxwell’s equations into general-
ized telegraphist’s equations. Both the phase constants and the cou-
pling coeflicients are functions of the distance along the taper. Power
conservation requires

| 111'12 i =5k | ]\‘EIE
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Coupled line equations with varying coupling coefficient and varying
phase constant have been treated by Louisell 3

In order to solve (1), local normal modes must be introduced. Normal
modes are waveforms in a uniform waveguide which propagate without
change of field configuration or, in terms of the coupled line description,
do not couple mutually. Analogously, local normal modes in a non-
uniform waveguide are waveforms of a local cross section which would
propagate without change of field configuration in a waveguide which is
uniform with respect to that local cross section. For example, local nor-
mal modes in the waveguide taper are the spherical waves of a conical
waveguide with a cone angle corresponding to the local cone angle in
the taper. They would propagate in the conical waveguide without mu-
tual coupling.
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For the system of equations (1) local normal modes are defined by

FREAS T S
2 2 0
Az = —Vﬁ(Wl si11§E+ W, 00355) exp (_‘7.[9 8 dz),
in which
1 k Ik
B‘é(ﬁl""ﬁh), an!;‘-?ﬁltE_.zA_ﬂ (4)

Upon substituting (3) into equations (1), the local normal modes must
satisfy

dg
dz

dW; 1df dWs
2 dz Ws, dz
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where

I() = 3/AF + 4k

Equations (5) are coupled only through the terms proportional to d&/dz.
If £ is constant, they reduce to uncoupled equations for Wi and W,.
For a gentle change in taper angle, with

e

5T T «1, (6)

approximate solutions of (5) which proceed essentially in powers of
dt/dz can be written down:
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in which

o(2) = j; &) dz. (®)
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The initial conditions in the taper are 4,(0) = 1 and A4.(0) = 0. The
taper begins with zero cone angle; hence, from (3),

Wi(0) =1 Wa(0) = 0,

in which W, eorresponds to the TEy wave and 18 the wanted local nor-
mal mode, while W, corresponds to one of the TEy, waves with n = 1
and is an unwanted mode. At the end 2 of the taper, the unwanted mode
amplitude is

1 IZI At _ajps |
V. _—— &g
| Walz)| 2‘ e, )
At the taper end the cone angle is again zero, (((z;) = 0). Therefore
Wa(z1) | equals | As(z1) | Equation (9) integrated by parts becomes

z] i
| Walr)| = ‘ f Tge "7 dz | . (10)

The mode conversion in a smooth but otherwise arbitrary taper can be
aleulated with (9) or (10).

III. DESIGN OF A TAPER

A waveguide taper can always be built to have as low a mode conver-
sion as is wanted in a certain frequency band merely by making it long
enough. However, an optimally designed taper has the smallest possible
length for a given difference in diameters at its two ends and for a spec-
ified unwanted mode level in a given frequency band.

Some analogies between this problem and the problem of a trans-
mission line taper of optimum design are evident. The transmission
line taper for matching impedances is nothing but a tapered waveguide
in which only one mode is propagating. Power can only be converted
into reflected waves, and it is this reflected power which is kept small in
a properly designed transmission line taper. If more than one mode is
propagating, power will be scattered not only into the reflected wave
but also into the other propagating modes. In fact, the power scattered
into backward traveling waves is quite small compared to the power
scattered into forward traveling waves, and only the latter need be
considered in o multimode waveguide taper. Therefore, the mode con-
version in the waveguide transition corresponds to the reflection in the
transmission line taper.

It has been shown that a transition between transmission lines of dif-
ferent characteristic impedances is optimally made by a series of steps
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spaced about a quarter wavelength apart.* The magnitude of these steps
is chosen to give an input reflection described in its frequency dependence
by a Tschebycheff polynomial. Similarly, a conical waveguide transi-
tion is expected to perform optimally when it is composed of a number
of sections with different cone angles, as in Fig. 2. The lengths of these
sections should be chosen so that the converted energy from adjacent
joints of sections is 180 degrees out of phase, and the changes of angles
from section to section should be chosen so that the over-all conversion
pattern corresponds to a Tschebycheff polynomial. However, since there
is more than one mode to which power is converted and since the phase
constants change along the transition, the design of such a multisection
transition will be very difficult, if not impossible.

If the number of sections in the line transition is allowed to in-
crease indefinitely for a fixed over-all length, a continuous transmission
line taper is formed. The results of the multistep transition of optimum
design have been extended to this case.® The input reflection of the
continuous taper of optimum design is described in its frequency de-
pendence by a Tschebycheff polynomial of infinite degree. The taper
curve itself is given essentially by the Fourier transform of this Tscheby-
cheff polynomial. The frequency band of constant low reflection now
extends from a certain lowest frequency to infinity.

The transmission line taper of optimum design does not have a con-
tinuous reflection distribution, but it has reflection impulses at both ends.
Assuming a completely continuous reflection distribution, an almost
optimum design has been found.® The raised cosine function is a reflec-
tion distribution which, in practical cases, closely approximates in its
frequency dependence the input reflection of the continuous taper of
almost optimum design.

If the integration in (9) for the mode conversion in the waveguide
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Fig. 2 — Multisection waveguide transition.
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taper is extended over the parameter p,

[Walp)| = -/:}pl Ep)e " dp |, (11)

the relationship of the mode conversion in the multimode waveguide
taper to the input reflection of the transmission line taper becomes
evident. In (11) p corresponds to the longitudinal coordinate and #(p)
to the reflection distribution of the transmission line taper.

The reflection distribution for an almost optimally designed line taper
can be substituted for £(p) to give the almost optimally designed wave-
guide taper. Even the optimum design can be found when some care is
exercised in using steps in the waveguide taper to simulate the impulse
functions in the reflection distribution.

Once £(p) is given, we can find the waveguide radius a(p) and the axial
distance z(p) from (4), (5) and (8). The coupling coefficient, can be written

k= e(@) % = 1 e(a) % (12)
dz dp
Therefore,
da _ tan £(p)
4D 3 = VT F tan 6 =

which ean readily be integrated by separation of variables to give a{p).
With a known, I' is also known as a function of p, and the axial distance
can be caleulated:
P
A (14)
o T'(p)

Some restricting remarks must be made in concluding this outline of
the taper design.

Only one of the coupled higher-order modes has been considered here.
This is adequate as long as the cone angle changes only gradually. Since
all other higher order modes are weaker in coupling and farther removed
in phase constant, the conversion to these modes will always be much
smaller than the conversion to the TEg wave. If, however, there are
abrupt changes in cone angle or even if the diameter of the guide changes
in steps, as in the waveguide taper of optimum design, the power con-
version to higher modes must be checked.

The design procedure outlined here works only as long as the coupled
mode does not go through cutoff within the transition. Power converted
to backward travelling waves has been neglected, since the coupling
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to these waves is smaller and they are much more removed in phase
constant than are the forward travelling waves. In the vicinity of cutoff,
this is no longer true. Here, the propagation is more suitably described
by the original generalized telegraphist’s equations (35) and (36) of the
Appendix. They are, however, not easily solved in the cutoff region of a
mode.

Since the coupling coefficients in (35) and (36) do not change with
frequency, and since the difference in propagation constants of the
coupled waves does not increase with decreasing frequency, the power
conversion does not increase when the frequency is lowered to bring a
coupled mode to cutoff within the taper. Consequently, the waveguide
taper can be designed for a frequency high enough to keep the lowest
coupled mode propagating throughout the taper. It will then work pro-
perly at all lower frequencies.

IV. THE RAISED COSINE TAPER
As a characteristic example, we will design a taper whose conversion
distribution follows the raised cosine function

o) = Lsin'r?, (15)

(4} P1
in which € is yet to be determined from the radii a; and a, . According to
(11) the over-all conversion will then be given by the Fourier transform
of the raised cosine function

| Walp)| _ |1 — ™™
C 9 ( _ &) (16)
P1 2

Equation (16) is plotted in Iig. 3.
We assume the TEy and TEg modes to be far enough from cutoff so

that
x \2
(ﬁ) <1 17

for both modes throughout the taper. Furthermore, we assume the taper
to be gentle enough so that

2L, (18)

These assumptions will enable us to carry out the integrations analyti-
cally.
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Fig. 3 — Mode conversion in the raised cosine taper.

Integrating (13) with
2]51’\'?2
lr‘;.'gﬂ —_ ]‘Glz
[from (42) and (12)] and £(p) from (15) we get
mne = Ina—z(p— — ‘_)lSiDZII'P),

a a; \p1 27 P

1
a

907

(19)

where € has been eliminated by the boundary conditions a(0) = @, and

alpi) = ay:

2/\'-1’\'2 111

[£2]
’\';1,2 — ]f-ll'! [22] ’

O =
Because of (17) and (18)

— A'q,ﬂ — ]C12

r )
2,80(1‘

(20)

(21)
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The axial distance is found from (14) by substituting (19) for a in (21):
2 P

2z = -—iﬁ&f exp |:2 In % (E~ _ L sing ﬂ):l dp, (22)
V]

B ]\722 - }{212 a; \p1 27 T P11

where g is the phase constant of free space. With a = 1/7 In ay/a; and
z = 27(p/p), the integrand can be expanded in a series
2

2lﬁ.ﬂalzﬁ'l fx oz . [
— T . 2 F ...
z ot — k) do e“|1 —asinz + 5 sin” x dx (23)

and, for moderate values of @, the axial distance z can be calculated by
term-by-term integration. The total length of the taper is approximately

2 2 2 2 Q2
2 In" = In" =
a=n as ks? — ki as [£2] ’
In — 72 + In? — 47 4 In? —
a 431 (03]

A numerical example will show the advantage of a properly tapered
waveguide transition. Suppose a transition designed for the TEwn wave
and connecting £ in. I.D. pipe to 2 in. 1.D. pipe is required to have a spuri-
ous mode level of less than —50 db for all frequencies up to 75 kme.
The most seriously coupled wave is TEg . For a raised cosine taper we
get, from (20), C equal to 1.28 and consequently, from Fig. 3, p: equal
to 14.8. Hence, from (24), the required taper length is z; equal to 3 ft.
The taper curve is plotted in Fig. 4. This curve has been calculated from
(19) and (23), using p as a parameter. A taper of constant cone angle
satisfying the same requirements would have to be 58 ft. long.!

]
)
e il It

Fig. 4 — Raised cosine taper.
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Circular waveguide tapers have been built according to Fig. 4. Their
TEn-TEg conversion loss was measured at frequencies near 55 kme and
found to be higher than 50 db.

V. SUMMARY

The power conversion from Ty to higher circular electric waves oe-
curring in conical transitions of round waveguide can be reduced by
changing the cone angle gradually rather than abruptly. Instead of a
taper with constant cone angle, a transition with changing cone angle,
which transforms the cylindrical waves of the round waveguide into
spherical waves in the transition region, is suggested.

Upon converting Maxwell’s equations into generalized telegraphist’s
equations, the transition is represented as a set of nonuniform transmis-
sion lines, nonuniformly coupled. With proper choice of the coupling
distribution — and hence the cone angle — as a function of the distance
along the transition, we can find an optimum design which minimizes
the length of the transition for a specified frequency range and spurious
mode level. In a transition of optimum design the mode conversion is
given by a Tschebycheff polynomial of infinite degree in its frequency
dependence, and the geometry of the transition is found from the Fourier
transform of this Tschebycheff polynomial. A simpler design, but still a
good one, has a transition geometry given essentially by a raised cosine
function.

APPENDIX

Generalized Telegraphist’s Equations of the Circular Electric Waveguide
Taper

A very convenient mathematical formulation of the electromagnetic
problem in the waveguide transition is provided by S. A. Schelkunoff’s
generalized telegraphist’s equations for waveguides.” Maxwell’s equa-
tions for transverse electric and circular symmetric waves are, in cylin-
drical coordinates:

0L, _ JouH,, (25)
dz

oH, . Ol

= Juell, + 52, (26)

il .
3,_ (rE,) = —jwurH., (27)
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where E, , H, and H, are the only nonvanishing components of the field,
¢ is the dielectric permittivity, » the magnetic permeability and w the
angular pulsation. The exponential dependence of time is understood.

The boundary conditions of the waveguide taper are, at r equal to a:

E,=0 (28)
da

H =-—-H.. (29)
dz

The field at any cross section of the paper is represented as a super-
position of the fields of the normal modes in a eylindrieal guide of the
same cross section:

J (k,,, ’i)
By= X Ve (30)
% ‘\/’ﬂ'al](](k'm) ’

- J1 (k»m ?-:)
Ho= -1 —N Y (31)
; \/FaJﬂ(km)

At
Ho= Y o (‘T‘ a)T (32)
S Vrad (k)

where JJ, and J; are Bessel funetions of the first kind and k., is the mth
zero of J1 . The V.., I, and 7, have the dimensions of voltages and cur-
rents. The factors of V,, and I, are normalized so that P,, = 1/2(V,.0.*)
is the complex power flow in each normal mode. It has to be kept in
mind that a is a funetion of z.

The boundary condition (28) is satisfied by the individual terms of the
series for I, . Hence, this series converges uniformly. Not so the series
for H,: (31) is a representation for H, only in the open interval
0 < r < a, since the individual terms vanish at r = a but, according to
(29), H. does not. In the closed interval, the series (31) represents a dis-
continuous function and therefore does not converge uniformly. Term-
by-term differentiation will make the series diverge.

The relationship between 4,, and V., is found by substituting in (27)
the series (30) for E, and the series (32) for H., and comparing coef-
ficients-

Iy = J—— Vo (33)
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Using this relation and substituting the series (30) for E, in (25) at r = a,
we find that the boundary condition (29) is satisfied.

To convert Maxwell’s equations into generalized telegraphist’s eqﬂ»
tions, we introduce (30) and (31) into (25) and (26), multiply bﬂﬂl«sﬁeﬂ
of both equations by Ji[k.(r/a)] and integrate over the cross seetion.
Since the series for H, does not converge uniformly, we write for the left-
hand side of (26)

rJy (kn %) a;‘; "= —rH, gg [J1 (k,. g)] + -a%[rJl (k,. ’é) H,] (34)

and invert integration and differentiation in the second term of this
expression.
The generalized telegraphist’s equations have the following form:

dV 1 da 2k ko,

aVn _ _ _ 2Rnkim s

dz Jouln + 2 2 g Ve (35)
dl, ,8,, . 1da 2knles o
P Vot o dzgﬁ,,,-—k"f 436)

The summations are extended over all m except m = n. The quantity
B, is the phase constant of the nth mode in a cylindrical guide'of the
particular cross section; 8, is a function of @ and therefore of z.

The generalized telegraphist’s equations represent an infinite set of
coupled nonuniform transmission lines. For our purpose, it is convenient,
to write the transmission-line equations not in terms of currents and
voltages, but in terms of the amplitudes of forward and backward travel-
ling waves. Thus, let A and B be the amplitudes of the forward and back-
ward waves of a typical mode at a certain cross section. The mode cur-
rent and voltages are related to the wave amplitudes by

= VK (4 + B), (37)

I=—(4 - B), (38)

{-

where K is the wave impedance

K, (39)

.Bn
If the currents and voltages in the generalized telegraphist’s equations
(35) and (36) are represented in terms of the traveling-wave amplitudes,
after some obvious additions and subtractions, the following equations
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for coupled traveling waves are obtained:

!
A _ g dy — LB g S (ot Aw + kanB)  (40)

dz 2K,
B, . . 1K/ e -
dz = Jﬁan 5 E A, + ; (I“nm B,. kum Am)- (41)

The k’s are coupling coefficients defined by :

N O K. K,,,) 1 da .
L"m - lr\:m..2 - kng( Km. = /|/E a E (42)

and

dK.

K, = .
dz

For a eylindrical guide, da/dz is equal to zero and (40) and (41) reduce
to uncoupled transmission-line equations.
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