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By IRA JACOBS

(Manuseript received December 17, 1957)

The problem of obtaining a broadband microwave termination is con-
sidered from the point of view of nonuniform transmission line theory. At-
lention s restricted to lines in which only the distributed shunt admzttance
may be varied. An optimization argument is presented which leads to the
consideration of a line tn which the fractional increase in admittance per
wavelength in the line is constant. The nonuniform transmission line equa-
lions are solved exactly for this case, and the results are expressed in terms
of readily inlerpretable elementary functions. It 18 shown that a fived geo-
metrical length of line can lead to an arbitrarily large effective length without
destroying the match at the input. The introduction of a small loss term
makes the line almost totally absorbing regardless of its termination.

The line has a long-wavelength cutoff given by 4w times the actual length
of the line. If the line is short-circuiled at its far end, a return loss of greater
than 11.4 db is obtained at all frequencies above lwice the cutoff frequency.
The effect of certain practical limitations on the performance of this line s
also discussed.

I. INTRODUCTION

Classical transmission line analysis leads to the propagation of a wave
in which neither the electric nor magnetic fields have components in the
direction of propagation.! These transverse electromagnetic (TEM)
waves are characteristic not only of the usual transmission line structures
such as parallel wires and coaxial cable; they are also characteristic of
plane-wave propagation in isotropic media.

It is often convenient, when dealing with TEM-wave propagation, to
make use of results of classical transmission line analysis. Some care
must be exercised, however, in applying these results at microwave fre-
quencies. Consider, for example, the problem of terminating a lossless
line. Classical analysis tells us that, if the line is terminated in its charae-
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teristic impedance (which is a pure resistance for a lossless line), the
termination will be reflectionless. Two difficulties arise at microwave
frequencies, where the physical dimensions are no longer small com-
pared to the wavelength. First, as the frequency inereases, the concept
of a lumped circuit element becomes less meaningful. For example, a
resistive disc termination for a coaxial line will have an effective im-
pedance which is strongly influenced by the geometry and has very little
correlation with the de resistance of the dise.? The second difficulty is
that, even if the appropriate effective lumped impedance is obtained,
the analysis assumes that this impedance is connected across an open
circuit. An open-ended line at high frequencies is by no means an elec-
trical open circuit. There is a true open circuit, however, one-quarter
wavelength in front of a short circuit. Therefore, if the line is short-
circuited by a metallic surface, and the appropriate characteristic im-
pedance is placed one-quarter wavelength in front of the short, the
termination will be reflectionless. However, if the frequency is changed
the quarter-wave condition is destroyed, so that the termination is not
broadband.

The purpose of this paper is to consider analytically the use of a non-
uniform transmission line as a broadband termination. If this structure
is to be finite, it too must be terminated. To make the results independ-
ent of what is beyond the nonuniform line and still maintain physical
realizability, it will be assumed that the nonuniform line is terminated
by a short circuit. The problem, then, is to match from a given charac-
teristic impedance, Zy, to a short circuit by means of an appropriate
nonuniform transmission line.

There is extensive literature® on the use of nonuniform transmission
lines for impedance matching. Optimum matching procedures have been
discussed* for matching two uniform lossless lines to one another by
means of a lossless nonuniform line. In addition to the assumption of no
loss, it is assumed that the magnitude of the reflection coefficient is
much less than unity at all points along the line. Both of these assump-
tions, however, are not applicable for matching to a short circuit. Since
the object here is to absorb all incident energy, the line cannot be loss-
less. Also, the magnitude of the reflection coefficient is unity at the short
circuit. Thus, the matched-termination problem must be considered
apart from the usual matching problem.

In order to define the problem more precisely, it is necessary to con-
sider the transmission line equations which determine the voltage V
and current I along the line:
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= — Y@V, (2)

where Z () is the distributed series impedance per unit length and Y (x)
is the distributed shunt admittance per unit length. The line is said to
be uniform if both these quantities are constant.

A uniform line may be used to match from an impedance of Zo to a
short circuit if Z and Y are both large complex constants (so that the
wavelength in the line is small and the losses are large) and if, in addi-
tion, v/Z/Y equals Z,. Thus, in principle, a fixed length of uniform
line can be made electrically long and extremely lossy, and yet it may
have the same characteristic impedance Z, as does the line it is desired
to terminate. In practice, however, this may be difficult to accomplish.

Consider, for example, the problem of finding a microwave-absorbing
material for anechoic chambers. Using the above principle it would be
necessary to find a material with large complex relative permeability
and relative dielectric constant, but such that the ratio of these two
quantities was unity. It is not too difficult to obtain high dielectric con-
stants at microwave frequencies,® but it is difficult in general to obtain
equally large permeabilities.® Lt is of interest, then, to consider a medium
with a permeability equal to that of free space, and to attempt to match
this medium to a short circuit by increasing the dielectric constant as
the termination is approached. In the analogous transmission line prob-
lem, the distributed series impedance, Z(x), is a fixed constant, and only
the distributed shunt admittance, ¥ (z), is at our disposal.

The following problem is thus suggested. A uniform lossless line,
characterized by a distributed series impedance per unit length of jwL,
and a distributed shunt admittance per unit length of jwC,, is to be
terminated by a nonuniform line of length s (see Fig. 1). The nonuniform
line has a constant distributed series impedance per unit length of jeL,
but the distributed shunt admittance per unit length, V(x), is as yet
unspecified. This line is, in turn, terminated in a short circuit at v = s
it is desired to find that function ¥ (x) which minimizes the reflection
coeflicient at x = 0.

The general variational problem is outside the scope of the present
work. In the following sections a somewhat intuitive argument will be
presented which leads to a particular form for Y(x). An exact solution
of the transmission line equations will be obtained for this particular



916 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1958

nonuniform line, and it will be shown that the line indeed has the prop-
erties indicated by the simpler intuitive arguments.

II. DETERMINATION OF THE ADMITTANCE VARIATION

Approximation techniques’ indicate that, if the fractional change in
the properties of the line per “local wavelength over 27”°* is small, then
reflections may be assumed to be negligible. The exact solutions of par-
ticular nonuniform transmission lines, such as the exponential line? in-
dicate that reflections become important when this condition is violated.

Since we are attempting to match from an admittance level joC, to
an infinite admittance, it is natural to ask the following question: How
large can the admittance be made at x* = s, subject to the conditions

Lydx L,dz

va\I-- ————— I
C,dx T Glx)dz

C(x)dx ‘[

Fo M——

T | e dz—al

LOSSLESS LINE, GENERATOR AT —00 I TERMINATING SECTION

o S
Fig. 1 — Nonuniform transmission line termination.

that it be equal to jwC; at * = 0 and that the fractional change in ad-
mittance per local wavelength in the line be small?

The wavelength in the uniform lossless line characterized by L; and
Cl iS

27
A = ——— 3
o VLG, (3)
The local wavelength in the nonuniform line is given by A/+/ e—(.?:), where
() = Y@ _ @ _ 6@ "

ij& 01 WCI. ’

in which C(z) is the distributed shunt capacitance per unit length and
((x) is the distributed shunt conductance per unit length. For the pur-

* “Local wavelength” is defined as the wavelength in a uniform line which has
the same distributed constants as the line in question at the point in question.
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pose of the present section, it will be assumed that the nonuniform line
is lossless, so that G(x) is zero and e(z) is real. The condition that the
fractional change in admittance per local wavelength over 2r be small
can then be written

A1 de
—— < 5
o7 & . = a, (0)

where a is an as yet unspecified small constant.

The problem to be considered is thus: Given s greater than zero, find
that function e(xr) which maximizes e(s), subject to the conditions that
¢(0) equals 1 and that the inequality (5) is satisfied over the interval
[0, s). The solution to this problem is obtained by replacing the in-
equality in (5) by an equality, which leads to the result

elz) = (1 - ”_;x) (6)

Thus, as z approaches \/ra, e(x) becomes infinite. It would then appear
that, in a fixed length of line, an arbitrarily large change in admittance
can be utilized, and consequently a large effective length obtained,
without violating the slowly varying condition. The introduction of a
small imaginary component (shunt conductance) to ¢(x) should then
muke the line totally absorbing regardless of termination.

In order to verify the above conjectures analytically it is necessary
to solve the transmission line equations. This will be done in the follow-
ing section.

III. SOLUTION OF THE TRANSMISSION LINE EQUATIONS

For a line with uniformly distributed series impedance per unit length
jwLy and distributed shunt admittance per unit length jeC'e(x), the
transmission line equations may be rewritten in the form

&V o (22N o

a + (T) e(x)V =0, (7)
&I 1dedl | (2 B
a:@‘;d—xa*'(i @I =0, ®)

where \ is given by (3).

If e(x) is of the form (4 + Bzx)", (7) may be transformed? into Bessel’s
equation of order 1/(n + 2). The fact that considerable simplifications
result when n equals —2 has been noted previously,"® but the physical
implications do not appear to have been discussed.
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The expression for e(x), given by (6), is real. Since we are interested
in absorption, the shunt admittance must contain a conductance term
in addition to the capacitance, and consequently e must be complex. In
order to maintain the same functional dependance for e, it will be as-
sumed that the ratio of shunt conductance to shunt capacitance is con-

stant,

G(x) _
C(’C) = a (9)
so that e(x) is given by
1 — jo/w (10)

e(x) = (1_—2;23:)2.

If the change of variables

r=—In (1 - ’i‘x) (11)
A
is made, (7) and (8) can be rewritten
'V dv | 4 . .
W"‘-@'i‘;;(l —Ja‘/w)r/ = 0, (12)
' dl | 4 .
T ar + g (1 = jo/w) = 0, (13)

where the expression for € as given by (10) has been used. The solutions
of these equations are

vV = e—riﬂ[Vle—Tr + Vzc‘rr] (14:)
and |
7= Jg N 6:-.'2[_ (‘Y + ;) Ve ™ + (.’, - %) Vzcvf], (15)
where

v= 4/ 5~ 50 = ol (16)

may be interpreted as an effective propagation constant and r may be
interpreted as an effective length.

The lossless line (¢ = 0) is cut off when the effective propagation con-
stant becomes real; that is, when @ = 4. If the shunt capacitance, C'(2),
is to be frequency-independent, it follows from the form of e(x) that @
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must be proportional to wavelength. A cutoff wavelength Xo and cutoff
frequency wo may then be defined such that

_ A

Ao 1)

(17

Thus, v can be written as

7=(%)/‘/1—wi.,+ja—‘i,,. (18)
wo” wp”

It is interesting to note that these results are identical in form to the
results that would be obtained for an exponential line,® in which the ad-
mittance and impedance vary as ¢’ and ¢~ respectively, and where »
is defined as ax. However, in order to obtain the same effective length,
R, the actual length of the exponential line must be longer by a factor
R/(1 — ¢ ™), which increases linearly with R for large effective lengths.
Thus, the equivalent exponential line will, in general, be considerably
longer than the line considered here.

1V. REFLECTION COEFFICIENT

If the boundary condition, V = 0 at © = s, is substituted into (14),
the following relation is obtained for the input admittance:

, _ Ie=0) _ 4
Vo= ve=o - Ve 1/;(2“““‘”1‘)’) 1)

where R is the value of r corresponding to x = s; that is,

R = —In (1 — -418) (20)
Mo
The complex voltage reflection coefﬁcient, p, is given by

p =
vV C,/ L + Y
Substitution of (19) into (21) gives
1+ 34 + °Jv~coth~rl?

p= (22)
1 - jr— — 2j‘y—ucoth'yR
w w

For the reflection coefficient to be small over a broad frequency band,
it is necessary that the transmission loss be large; that is, the real part
of ¥R must be large. For any nonzero loss, ¢ > 0, one can, in prineiple,



920 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1958

S -—{Jet]
4 e E— Fom ]

3
\ | Y(x)=jwC(x) + G(x)
BN Clo) = ¢,
Gx)/Clx) =0

wos A
T LG

10 | | | | | |

d/wq
Fig. 2 — Admittance ratio required for 13-db transmission loss.

make the effective length of the line, R, sufficiently large so that the
transmission loss is as large as desired. It follows from (20) that this
can be accomplished in a line whose length is

s=2 — P, (23)
4
Thus, if the physical length and the desired effective length of the line

are specified, the cutoff wavelength can be determined from (23). For
large R, the cutoff wavelength is essentially given by 4ws.
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A large value of R is obtained by approaching the singularity in e(x).
The real part of e(x), at @ = s, is given by

C(S) _ ( _ 47 )t2 _ 2R DY,
Cl =|1 io_s = € (.a"l:)

so that exceedingly large values of distributed shunt eapacitance are re-
quired to obtain moderately large effective lengths.

The above formalism may be used to calculate the distributed shunt
capacitance at * = s required to ensure a given transmission loss. This
result will, of course, depend on the value of the loss parameter, o/wy .
As an example, in Fig. 2 the value of C(s)/C required to ensure a mini-
mum transmission loss of 13 db for all @ = w, is shown as a function
of ¢/wo.* If ¢/wy is very much less than one, an astronomically large
value of €'(s)/Cy is required. Although this may not be realizable in prac-
tice, it gives an upper limit to the ideal behavior of the line.

If the transmission loss is sufficiently large,

coth yR = 1. (25)

If, in addition, ¢/wp is neglected in comparison to unity, it follows from
(18) and (22) that

2=1—'\/1—wu2/w2 Y]
of = (26)

Equation (26) gives the intensity reflection coefficient of the ideal line.
The return loss (— 10 logo | p |*) is plotted as a function of frequency
in Fig. 3. The return loss is zero at the cutoff frequency, but increases
rapidly as the frequency is increased.t

As a more practical example, the return loss will also be ealeulated for
o/we = 2. It follows from Fig. 2 that this requires C'(s)/C\ to be 400 to
ensure a 13-db transmission loss. This choice, in addition to being physi-
cally reasonable, leads to some computational simplifications. It follows
from (18) that, if o/wo is 2, then

v=3(1+is), 27
wo

* The 13-db transmission loss requirement is equivalent to | e2® | = 0.05. It
can be shown from (18) that the real part of v has a minimum, e , given by the
smaller of v/a/8w, and /4w, . These two results, together with (24), were used
to obtain Fig. 2.

t In Section II the parameter a was introduced, and it was assumed that re-
fleetions would be small if @ were small. It has since been shown [in (17)] that
@ = 4/(w/we). Fig. 3 then gives a quantitative demonstration of the initial sup-
position. For a = 4, there is total reflection. As a decreases (w/wo increases), the
reflection is seen to decrease rapidly.



922 THE BELL SYSTEM TECHNICAL JOURNAL, JULY 1958

20 T —
| —
/
16}
] /
o - T— _
@ / L<<|
2 o
92— / o — —
z
o S -
o)
o]
= |
z 8 f - i ——1
4 | { [
=] [ |
b= B E— _ S — e
w |
n
4% ‘ 1 _ - I S
0 |
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
w/wy

Fig. 3 — Return loss of the ‘“ideal line”.

so that the effective attenuation constant (real part of v) is frequency-
independent. The effective length of this line is & = 3. For these values
of v and R, coth ¥R varies between 0.9 and 1.1 as the frequency is
changed. If, as before, it is assumed that coth yR = 1 (thus assuming
R > 1, which is equivalent to neglecting interference effects due to
multiple reflections), the reflection coefficient of the line is given by
P T
1 4 (w/wo)?’

If this approximation is not made, the exact expression for | p |* is more
complicated but still easily amenable to numerical evaluation. The solid
curve in Fig. 4 gives the return loss as a function of frequency, as eval-
uated from the exact expression. The dashed curve gives the return loss,
neglecting interference effects, as determined from (28). In the frequency
range depicted, the exact return loss is seen to oscillate about the value
obtained when interference effects are neglected. However, in the high-
frequeney limit (w 3> wg) the two curves diverge. The return loss in-
creases without limit if the effective length of the line is infinite. How-
ever, for B = 3, the return loss at high frequencies approaches 26 db,
which is just the two-way transmission loss of the line.

It is seen from Fig. 4 that there is a 3-db return loss at the cutoff fre-
quency of the “ideal line.” However, as the frequency increases, the loss
increases only gradually; at w = 4w, the return loss is 13.3, db as com-

| p (28)
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Fig. 4 — Return loss of a “practical line”.

pared to 17.8 db for the ideal line. Thus, practical limitations on maxi-
mum shunt capacitance have an appreciable influence on the behavior
of the line.

V. CONCLUSIONS

Properties of nonuniform transmission lines have led to the considera-
tion of a line in which the fractional change in shunt admittance per
wavelength in the line is constant. The transmission line equations have
been solved exactly for this ease. The solution indicates that a fixed
length of line s can be made to have as large an effective length as de-
sired. Hence, with the introduction of a small loss term, all energy
matched into the line is essentially completely absorbed regardless of
the line’s termination.

It has been shown that the line has a long wavelength cutoff given es-
sentially by Ao = 4ms. As the frequency increases beyond cutoff fre-
quency wo, the reflected intensity from the short-circuited line dimin-
ishes rapidly, being 11.4 db down at 2w and 17.8 db down at 4w, as
seen from Fig. 3.

If practical considerations limit the maximum shunt capacitance, it is
necessary to use a larger shunt conductance to obtain the same trans-
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mission loss. This degrades the performance of the line somewhat, as
shown by the example in Fig. 4. If a return loss of 10 db is required, it
is seen from I'ig. 4 that the line must be operated at frequencies above
3.1 wg . Thus, the length of the line would be s = Ao/47 = .25\, where
A is the longest wavelength for which the return loss would be equal or
greater than 10 db. This length is one-third of that which would be re-
quired with the equivalent exponential line.

The “ideal line”, as indicated by T'ig. 3, gives a 10-db return loss at
1.75 wo . The length of line required for a 10-db absorption would then
be 0.14Xx. The differences between the ideal structure and the practical
example become even more pronounced as greater absorption is required.
However, practical structures may approach the performance of the
ideal line if one considers a variation of the loss term o in addition to the
variation C'(x).

The nonuniform transmission line analyzed here may be considered
to be a singularity of the general Bessel line. It is of analytic interest be-
cause the solutions are in the form of readily interpretable elementary
funetions, It is also of physical interest because the particular varia-
tion of line parameters is suggested by a common approximation pro-
cedure for analyzing nonuniform transmission lines, and because the
exact solutions indicate that the line has desirable properties as a broad-
band termination.
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