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The design of an experimental electronic swilching system presenled
many new problems in specifying the funclions lo be performed and in
developing the means to carry them out. This resulted in the use of a number
of techniques new to the telephone switching field. This paper, divided into
two parts, describes some of these. Part One deals with a specification of
what the system must do and with ils general mode of operation; Part Two
describes a conlrol philosophy employing a stored program.

ParT ONE

I. INTRODUCTION

In the development of a large system, one of the most important
problems is completely specifying its internal organization. The task
is a complex one in the case of a telephone switching system because of
the multiplicity of logical interactions involved. This paper discusses
this problem as applied to an experimental electronic telephone switching
system developed by Bell Telephone Laboratories.*

During the course of designing the system many techniques new to
the telephone field were employed. These include a stored-program con-

* The system was described in a paper! in the previous issue which provides
pertinent background material for this article.
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trol philosophy and separation of the basic system functions, such as
memory and logic, into efficient functionally concentrated blocks of
equipment.

The experimental system, a prototype of a practical telephone office,
is a real-time special-purpose machine. One of the ever-present problems
was that of effecting a balance between real-time occupancy, amount of
memory and other equipment, and complexity of system operation.
In this balance good telephone service and over-all economy are the
ultimate objectives.

Finally, a method of system operation had to be developed in order
to process numerous types of telephone calls. An ideal solution is one
where there is no interdependence between equipment requirements and
telephone call functions. This would give rise to a universal system in
which the addition or deletion of features or traffic in a telephone office
would require no basic equipment changes. Within limits, this ideal
solution was approached in the experimental system.

II. BASIC SYSTEM ORGANIZATION

The experimental system is composed of six major components: the
switching network, the scanner, the barrier grid store, the flying spot
store, the signal distributor and the central control. They are shown in
I'ig. 1 with their functional interconnections.

The function of the switching network? is to provide voice transmis-
sion connections between telephone customers; it can be considered as
the primary output of the system. The switching network is made up
of two main parts: the distribution switching network and the con-
centrators. Each customer line terminates on a concentrator, which in
turn has access to the distribution switching network. Connections
are established in the switching network by means of orders given
sequentially to the two network controls, the concentrator marker and
the distribution marker. The functions assigned to the switching network
are kept as simple as possible to minimize the amount of network control
equipment required. Network actions are requested by one of three
orders (connect, release or trace), accompanied by appropriate terminal
addresses. The network markers report the outcome of each order.

The scanner? is an input ecircuit. It is eapable, on a one-at-a-time
basis, of determining the state (“on-hook” or “off-hook”) of each line
and trunk in the office and is used to gather supervisory and dialed
information. A particular customer line is interrogated by directing the
scanner to a specific address; the scanner, in turn, gives an answer cor-
responding to the state of the line.
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The barrier grid store! provides bulk temporary (erasable) memory
for the system. It is used to store dynamic records such as line and
trunk busy-idle states and dialed information. This information is stored
in binary form and is read one bit at a time with random address access.
A particular bit can be read and rewritten by appropriately addressing
the store and giving one of four possible orders: read and regenerate,
read and change, read and write zero or read and write one.

The flying spot store® is a bulk semipermanent memory file. It holds
the telephone translation records and the operational program, and
information is read out of the store on a word-organized basis. There are
two general types of orders that may be given to the flying spot store:
read the next program order according to a predetermined sequence or
read an order at any specified location. These are known as the “ad-
vance” and “transfer’” orders, respectively.

The signal distributor® is an output circuit that is capable of operating
any one of a number of flip-flops which in turn may operate an electro-
mechanieal relay. Its prime use is for controlling relays in trunk circuits
that communicate with conventional electromechanical systems. It
provides compatibility between the high-speed electronic system and
lower-speed mechanical systems.
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Fig. 1 — Block diagram of experimental electronic switching system.
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The central control logic and organization is deseribed in detail in
Part T'wo of this paper. It is a logic circuit which responds to the opera-
tional program stored in the flying spot store. It controls all of the major
system components, makes decisions (usually binary) based on answers
it receives from them and selects the next program order to be executed.

III. SPECIFICATION OF SYSTEM SEQUENCES

Telephone switching systems are recuired to perform a large number
of complex telephone call and administrative functions. It is necessary
to specify these funetions and the method of accomplishing them in
exacting detail to integrate them into the system and to expedite the

=Y N P — REQUEST NETWORK (1)
[o]cTol R — OUTGOING CALL (1)
::ES} ____________ PERMANENT SIGNAL AND PARTIAL DIAL TIMER (1)
AlT|-————— ABANDCONED CALL AND INTERDIGITAL TIMER (1)
DT |—commmmm o DIAL TONE (1)
7D |-om 7 TH DIGIT STORAGE (4)
| | !
6D|———-———————— BTH I ! }
| | |
50| ---————————= 5TH | 1 i
T i i ]
! ! :
4D |-—————————— 4TH | 1 |
| 1 |
| ! [
3D |---=----=-=--3RD | } }
I I !
i \ |
2D |- 2n0 | ! i
I i |
ID |—=~======—-— IST DIGIT STORAGE (4)
0] o [ —— DIGIT LOCATION COUNTER (3)
PC | -~~==--=---~ PULSE COUNTER (4)
[ T —— LAST LOOK (1)
OLE|--—- -~~~ -—— ORIGINATING LINE EQUIPMENT NUMBER (12)
. Q N—— ACTIVITY (1)

Fig. 2 — Originating register layout.
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preparation of a (stored) program. Conceptually, the program itself
could be written directly from broad requirements. However, it was
found that a link was needed between the required external features
and the specific means for implementing them in the experimental
system. This link was provided in the form of detailed “sequence charts.”

Before system sequence charts can be written, a language must be
established. Since the charts describe the operation of a specific system,
their form is somewhat tailored to the characteristics of that system. In
the design of the experimental system sequences, the operators Read,
Write, Transport and Add, abbreviated R, W, T and A respectively,
were found to be sufficient to satisfy a great majority of the requirements.
These operators generally act on some specified memory element or
system component and, in combination with the identity of the memory
element or system component, form a sequence-chart “order.” A typieal
sequence-chart order might be: Read the output of the scanner, abbreviated
R(S).

It is convenient to refer to locations, units of equipment and other
items in abbreviated form on sequence charts. As described in the
previous issue!, barrier grid store memory is allocated in the form of
“registers” performing specific functions. For example, Fig. 2 shows the
layout of an originating register, which provides the temporary memory
required for a customer while a call is being dialed. Storage locations in
the barrier grid store are generally represented by an abbreviation
designating the register followed by a hyphen and the abbreviation for
the spot (bit) or spots within the register. For example, OR-LL means
the “last look” spot in the originating register. The prefix may be omit-
ted when the identity of the register is obvious. Other commonly used
abbreviations are:

S for scanner,

D for signal distributor,

N as a prefix for flip-flops associated with the switching network,

FT as a prefix for specified flip-flops in the central control,

CC for unspecified flip-flops in the central control.

The four basic types of orders, described in more detail are:

1. The Read order has the general form of R (X) (Y) where X is
the identity of the information to be read and Y is its storage location.
Either X or ¥ may be omitted if not needed. A decision is always made
as the result of a read order.

2. The Write order has the form W(K) — (%), where K is a specific
fixed number, either in numerical or symbolic form, and Z is the storage
loeation into which the information K is to be written.
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3. The Transport order has the general form T(X) (Y) — (%), where
X is the identity of the information at storage location ¥ and Z is the
storage destination of X. As above, either X or ¥ can be omitted if not
needed. This order is used to move any information from one location
to another.

4. The Add order, which is also used for subtraction, is of the form
A(K) — Z or A(— K) — Z, where K is a positive integer and Z a storage
location.

IV. SYSTEM SEQUENCES AND TECHNIQUES

Although the experimental system is limited in scope, a large number
of sequence charts are needed to specify its functional operation. A few
sequences followed at the start of a telephone call are discussed in this
section in order to illustrate how certain typical functions are accom-
plished and what techniques are used. I'or the sake of brevity, many
details have been omitted, particularly in the latter part of this section.

4.1 Supervisory Functions

One of the functions of a telephone switching system is the recognition
of supervisory signals from customers, that is, new requests for service
and terminations of established calls. The customer signals the telephone
office by lifting his telephone receiver from the switchhook (off-hook)
to request service and later, by placing it back on the switchhook (on-
hook), to terminate service. These actions respectively close and open
a metallic path to the telephone office. Table I shows the scanner output
for each state.

Since the scanner can only determine the existing state of a customer
line, some memory must be provided in order to detect changes in line
state. This is done by assigning two barrier grid store bits to each line.
These are referred to here as the first and second line memory bits, or
L1 and L2 spots. The experimental system uses three of the four possible
combinations of each pair of line memory bits, with assignments as
shown in Table II. The “served by a register” state is assigned when

TaBLE I — LINE STATES AND CORRESPONDING ScANNER OQUTPUTS

Telephone Receiver | Telephone Line Scanner Output
on-hook ‘ open 0
off-hook closed 1
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TaBLE II — LINE MEMORY ASSIGNMENT

Barrier Grid Store Memory Bits
Status of Line

L1 1.2
Tdle. .. e 0 0
Talking . ... ... e 1 0
Served by a Register. ............................. 0 1

special action is taken on a line such as dial pulse recording, ringing or
disconnect timing.

The experimental system starts action on supervisory signals from
customers within 100 milliseconds of their oceurrence. I'ig. 3 illustrates,
in sequence chart form, the work that may be done on each customer
line once every 100 milliseconds; reference to Table III will be helpful
in understanding the deseription that follows.

FROM MAIN PROGRAM

R(S)
R(LI
(b) |
[ | (a) | ]
1,0 0,0 N 0,1
R(L2)
(c) (e)

Q0 |

| . T
(d)| OR l HUNT | HUNT

| DR
A=0 | A=0

T T 1T

(FOUND) (NOT FOUND) (NOT FOUND) (FOUND)
(f)
wW(l) —=L2 W(0) —= LI
w(l) —=L2
I 1 1
] 1 1
TO OR FIG.5 REPEAT FOR NEXT LINE} To DR
(ORIGINATING IF LAST LINE IN GROUP, (DISCONNECT
REGISTER SEIZURE) RETURN TO MAIN PROGRAM REGISTER SEIZURE)

Fig. 3 — 100-millisecond supervisory line sean.
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TasLe IIT — [iNE SiaNans RECOGNIZED IN SUPERVISORY SCAN
SEQUENCE BY CoMPARING ScanNNER Qurrur wiTH LINE Srots

Line Spots
Scanner Output - Customer Signal
L1 ‘ L2
0 0 0 None
1 1 0 None
1 0 0 Call Originated
0 1 0 Disconnect
Oorl 0 1 Line under control of other sequences

As deseribed in a previous paper! the “main program” is the vehicle
which assigns the multiplicity of real-time functions which the system
must perform at various periodic intervals. At the start of the super-
visory sean for originations and disconnects, the scanner is directed to
the first line of a predetermined group and the barrier grid store is ad-
dressed to read its associated 1.1 spot; this is specified by the symbols
R(S) and R(L1) near the top of the sequence chart. This leads to a
branch (point a) in the sequence which opens to four possible paths.
If the answers received from the scanner and barrier grid store match
(0,0 or 1,1), no further action is taken on the line (see Table III) and
the system advances to the next line in the group. However, if the
combination (1,0) is returned, the L2 spot must be examined (point b)
todetermine whether it is in the zero state, indicating that a call has been
originated by this line in the previous 100-millisecond interval. If this
is the case (point ¢), a hunt for an idle originating register (OR) is
initiated, as specified by the symbolic box in the left leg of the chart
(point d). If the L2 spot reads 1 (point ¢), the system advances to the
next line in the group, as above. Proceeding to the output of the idle
register hunt box, if an idle register is found (point f), a 1 is recorded in
the L2 spot, putting the line in the served-by-a-register state, and the
system advances to a sequence for seizing the originating register. If no
idle register is found, the above action will be repeated once every 100
milliseconds until a register becomes available. The leg on the right-
hand side of Fig. 3 shows the action taken when a disconnect is detected.
The sequence of system actions represented by the boxes of Iig. 3 is
shown in Fig. 4.

Although the above example is a simple one, it illustrates certain
fundamental principles. The majority of customer lines will always
be in the quiescent states of idle (0,0) or talking (1,0), and only a small
amount of system action is required for them once every 100 milli-
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seconds. Only when a line changes state does the system have a complex
job to perform. Since the number of changes of line state per 100-milli-
second interval is very small, the percentage of real time consumed by
the 100-millisecond line-sean sequence is correspondingly small. Another
factor to be considered is the amount of memory required for each func-
tion. Here two barrier grid store (BGS) bits are assigned to each line and
a certain amount of program space in the flying spot store is used for
the supervisory scan function. It is apparent after some study that a
decrease in the amount of BGS memory assigned to each line will result
in an inerease in real-time consumption and an inerease in program
space. To show that a good balance, in this respect, has been attained
in the experimental system is beyond the scope of this article.

4.2 Originating Register Seizure

In the experimental system, BGS memory is associated with certain
telephone functions in a manner somewhat similar to the use of common
control equipment such as registers, senders and markers in conventional
relay telephone switching systems. As mentioned previously, the originat-
ing register illustrated in Fig. 2 shows the BGS memory that is associated

(NOT FOUND) (FOUND)

R (OR-A) (FIRST OR)

[ |

(OTHER) (LAST OR)

R(OR-A) (NEXT OR)

(NOT FOUND) (FOUND)

Fig. 4 — Register hunt.
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with a line during dialing. FFor each bit or subgroup of bits, the functional
abbreviation, the full name and the number of bits (in parenthesis)
are given. The originating register is one type of a class of BGS registers
referred to as “‘call registers.” In this system a more than sufficient
number of eall registers to give a good grade of service can be economi-
cally provided, since no equipment other than the memory itself is
affected by the number of registers.

After the origination of a new call has been detected and an idle
originating register is found, as shown in Figs. 3 and 4, the originating
register must be seized and action started to connect a dial tone trunk
to the line via the concentrator and distribution network. The system
sequences for carrying out this task are shown in Ilig. 5. While a register
is idle the only useful information recorded in it is a 0 in the “activity”
(busy-idle) spot. This eliminates the need for keeping the remaining
register memory bits in a fixed state over long periods of inactivity, as

FROM 100 MS
SUPERVISORY LINE SCAN

|
T(SCA)CC — (OR-OLE)

OR-PSPD
OR-0GC
W) == lor-DLC
OR-PC
OR-A
W(1) — |OR-LL
(@| LOR-DT
R(NR-A)
(b)
I |
o] I
1
W(1)— (NR-A) w(1) — (NR-RWOQ)
T(OR-OLE)— LS W(I) — (OR-RN)

FF -CONA
win *’(FF—RES )

W(NODTIA) —+= (NR-NPA)

T(OR-ADD) — (NR-RAD)

T
RETURN TO 100 MS
SUPERVISORY LINE SCAN

Fig. 5 — Originating register seizure.
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would be the case for the last-choice registers in a large group. There-
fore, when a register is first seized various state and reference informa-
tion must be recorded, as shown by the Write orders in the top center
leg of Fig. 5.

4.3 Dial Tone Conneclion

The switching network operates at a speed of approximately one milli-
second per task, while the rest of the system performs operations at a
miecrosecond rate. For this and other reasons buffer memory associated
with the switching network is provided in the BGS and has been desig-
nated as the “network register” (NIRR). The network register is one type
of a second class of BGS registers which are referred to as “control
registers.”” Usually only a single control register is needed for a particular
function such as network control.

After the originating register is seized, the network register activity
spot (NR-A) is read as shown in Fig. 5. If a 1 is read, indicating that
the network is busy, a request for later action is recorded in both the
originating and network registers. If a 0 is read, indicating that the net-
work is available, the network register is seized. In this case, the line
equipment number (OR-OLE) is passed to the network line selector
(LS) in the concentrator marker and certain control flip-flops are set to
start conneeting the line through the concentrator to a distribution
network terminal. The type of action required (NODTIA—first part
of dial tone connection) and address of the originating register (OR-
ADD) are also recorded in the network register so the system will know
where to continue in the program when this segment of the network
action is completed. Having done this, the system returns to sample
the condition of the next line in the 100-millisecond supervisory line
sean.

Periodically the system checks the switching network to determine if
it has completed a task. This is done by reading a “break in” flip-flop
(FF-NBI) associated with the network control cireuits, as shown in
Fig. 6. When the switching network has completed an assignment, its
own control cireuit sets FI-NBI so that a 1 will be read the next time
it is interrogated. This in turn will cause a break in the main program
and will direct the system to determine, from information previously
stored in the network register, what task the network has completed
and then, from answers received from network control circuits, what
action should be taken next. The remainder of the dial tone connection
is established in this way.
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The ‘“‘simple-task-at-a-time” method of operating the network per-
mits efficient utilization of the common system memory and ecentral
control, thus minimizing the quantity of equipment individual to the
network. It also provides a means of coupling the lower-speed network
to the rest of the system.

4.4 Detection of Dial Pulses

After a line has been assigned to an originating register and a dial
tone connection is established, means must be provided for detecting
and storing dial pulses. This is accomplished by the sequence shown in
Fig. 7. The main program directs the system to carry out this sequence
for all active originating registers once every 10 milliseconds, as specified
by the symbolic box shown at the top of the figure. The pulses generated
by the customer’s dial are a series of momentary “on-hook” intervals,
the number corresponding to the digit dialed, except for zero which is
represented by 10 pulses. The 10-millisecond scanning rate is fast enough
to insure that every legitimate dial pulse and the ‘“‘off hook” intervals
that separate them will be sampled at least once?.

After the originating line equipment number (OLE) recorded upon
seizure of the originating register has been read as indicated in Fig. 7,
the seanner is directed to scan the line and the BGS is addressed to read
the last look spot (LL). This spot contains an up-to-date record of the
state of the line according to the last previous scanner reading (0 for
“on-hook” and 1 for “off-hook™). If the answers received from the
scanner and BGS match (0,0 or 1,1) no change has taken place since

FROM MAIN PROGRAM

R(FF-NBI)

1
TRANSFER TO |
! PROGRAM ADDRESS
] IN NR-NPA
TO MAIN PROGRAM —

Fig. 6 — Periodic network check.
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the last sean and the program proceeds to the next originating register.
However, if the scanner reads 0 and the LL spot 1, this is interpreted
as the leading edge of a dial pulse; in this case, the LL spot is put up to
date (0) and the pulse counter spots (PC) are incremented by one. In
addition, the abandoned call and interdigital timer spot (AIT) is written
to 0, thus permitting another sequence (not shown) to detect an aban-
doned call if the on-hook condition persists. The dial tone spot (DT)
is also read to determine if dial tone is connected to the customer line.
Dial tone is disconnected from the line as soon as the first pulse
of the first dialed digit is received, by a method similar to the one

OR | scaN |

F ————

‘ A=

T (OR-OLE)—=5
|

R(S)
R(OR-LL)
| (@)
[ | I |
0,0 I 1,0 0,

W(1)—=(OR-LL) W(0) — (OR-LL)
W(0)—=(OR-AIT) A(1) —= (OR-PC)

W(0) —= (OR-AIT)

R(OR-DT)
M (b) I
0 |
w(0) — (OR-DT)
R(NR-A)
| |
| @]
[
W(I)—-l(NR-RWOJ W()—=(NR-A)
w(1) —(OR-RN) !
| TO NETWORK
1 1 1 \ H SEQUENCE
1 | 1 1 I (TAKE DOWN DT)

RETURN TO SCAN

Fig. 7 — Originating register dial pulse scan.
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previously discussed for making a network connection. The remain-
ing leg of Fig. 7, when the responses from scanner and BGS are (1,0)
respectively, is followed after the trailing edge of a dial pulse is detected.

This sequence (I'ig. 7) only accomplishes the detection and storage
of dial pulses. Another one recognizes the end of each digit, stores the
accumulated pulse count in the appropriate digit storage slot and
prepares the originating register for the next digit. Still other sequences
carry out, the various tasks required to complete the call.

The previous examples are typical of the multiplicity of eall sequences
or flow charts that are necessary to describe and specify the system
operational requirements. They provide a convenient tool which permits
the designer to optimize the use of equipment and real time, keep an
intelligible record of what the system does and also put the requirements
into a form that can be readily programmed.

V. GENERAL INTERRELATIONSHIP OF SYSTEM SEQUENCES

From the few system sequences illustrated thus far, it is evident that
the experimental system is not equipped with specific control cireuits
or programs that are individually associated with a telephone call as it
progresses through the system. Instead, the necessary control functions
are provided by a single common equipment unit on a time-shared basis
as directed by a hierarchy of programs performing a multiplicity of
fundamental operations. There is, however, a general mode of system
operation which clearly emerges out of the interrelationships among the
system sequences.

There are several classes of jobs specified by the system sequences.
The more important ones are listed in Table IV with a brief explanation.
The relationships among these tasks form the basic operational pattern
of the experimental switching system. Fig. 8 illustrates this in block form.

A detailed example of the system action taken, if the left leg of
Fig. 8 is followed, can be obtained by tracing through the sequences
shown in Figs. 3, 4 and 5. The main program periodically directs the
system to determine if any calls have originated or terminated in a group
of customer lines, using an “input scan” (top of Fig. 3). If a particular
line shows no change, the sequence proceeds to interrogate the next line,
and so on. When the last line in the group has been served, the sequence
reenters the main program to determine the next task required. Should
a change be found on a line, an “idle call-register hunt” (Iig. 4) is made,
If no idle register is found the sequence proceeds to the next line or the
main program. If, as in the usual case, an idle call register is found, a
“call register sequence” is entered (up to point a on I'ig. 5). At this point,
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TaBLe IV — FuncTiONAL CLASSIFICATION OF SYSTEM SEQUENCES

Sequence Description Example
Input Scan A search or scan of system inputs for new | Top of Fig. 3 —
work R(S) R(L1)
Call Register | A search or scan of call registers (e.g. origi- | Box at top of
Sean nating register) for work Fig. 7
Call  Register | A specialized task associated with a call regis-| Fig. 7

Sequence ter o .
Control Regis- | A periodie examination of an equipment for | Fig. 6

ter Break-In control action

Scan
Control Regis- | A task associated with a control register (e.g. | Bottom half of
ter Sequence network register) and its corresponding Fig. 5

equipment unit
Main Program | The sequence which provides priorities and -
timing in assigning all system tasks
Idle Call Regis- | A search for anidle call register Fig. 4

ter Hunt

control action, such as network orders, may be required. The system then
proceeds to check the control register for availability and, if appropriate,
it advances to a control register sequence (starting at point b, Fig. 5).
On some sequences a decision will determine whether control action
is required (see point b on Fig. 7); on others, it is required uncon-
ditionally (point a, Fig. 5). The description of the remainder of Iig. 8
is left to inspection. This method of system operation was an outgrowth
of efforts to optimize the solution of a specialized problem, but many of
the techniques employed can be, and some have been, employed in other
real-time machines.

The material presented thus far has illustrated what the system is to
do, and how it should be done in terms of the external characteristics of
the system equipment units. The specific means for implementing the
actions prescribed by the system sequence charts, that is, the control
philosophy, is the subject of Part Two of this article.

Parr Two

VI. INTRODUCTION

In developing a control philosophy to govern the sequences of system
actions, at least two major alternatives must be considered. The first is
the use of electronic logic circuits to cause the required actions to be
carried out in proper sequence, similar to the way in which relay eireuits
control present switching systems. This would involve, to a large extent,
the individual tailoring of these logic circuits to requirements specified by
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the sequence charts described in Part One. The second alternative is
realization through a stored program, whereby the pattern of sequences
would he incorporated into the program, with the control circuitry de-
signed to interpret and carry out the different types of basic program
orders.

In the digital computer field stored programs are used where flexibility
is of paramount importance, because of the wide range of applications
general-purpose computers must have. Since a telephone switching sys-
tem is by nature a special-purpose rather than a general-purpose system,
the choice between the circuit logic and stored-program approaches was
not immediately obvious. The choice of the latter was initially based
largely on expected economies of control circuitry and removal of the
dependence of the circuit logic on the required sequences of actions. It
became inereasingly clear, as time progressed, that a still more important
aspect of stored-program operation is the flexibility it affords. Of immedi-
ate significance in this respect is the ease of addition and revision of
system functions; of long-range significance is the real possibility of a
universal control for telephone switching systems which could adapt
them for local, tandem or toll use as dictated by the stored program.

A stored program for an electronic telephone switching system is a
set of encoded orders specifying exactly what the system must do at all
times under all possible customer input situations. It exercises exclusive
control over the entire system. The detailed functional design of a stored-
program electronic switching system, after the control philosophy and
required sequences have been established, may be divided into three
phases: (1) enumerating the types of basic operations to be incorporated
as program orders and determining an encoding structure for these, (2)
designing the logie circuitry for their interpretation and execution and
(3) writing programs containing these orders to fulfill the requirements of
system operation as set forth on the sequence charts. These phases are
developed in the following sections.

VII. DEVELOPING A PROGRAM ORDER STRUCTURE

7.1 Enumeration of Required Operalions

From examination of the general pattern of system operation and the
sequence charts already deseribed, it is evident that the system must be
equipped to perform certain specific operations, These may bhe first
classified as decision and nondecision operations.

A decision operation oceurs at a branch point of a sequence chart and
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provides for a binary choice of alternative actions to follow it. In this
eategory may be included:

1. Read BGS at specified address.

2. Read specified flip-flop.

3. Read scanner at speeified address.

4. Match two binary words (determine whether they are equal).

A decision operation is further specified by the addition of a modifier
which determines which of two alternatives is to correspond to each of
the two possible results. One of the alternative actions following the de-
cision point will be to continue with the next operation appearing se-
quentially in the program. The other will be to transfer control to some
other (predetermined) location in the program.

A nondecision operation performs work called for as a result of some
previous decision operation. A nondecision operation is always followed
directly by the succeeding operation specified in the program. Included
in this category may be:

5. Write 1 or 0 in BGS at specified address.

6. Write 1 or 0 (set or reset) specified flip-flop.

7. Read BGS at specified address (nondecision) and write result in
specified flip-flop.

8. Read specified flip-flop (nondecision) and write result in BGS at
specified address.

9. Store a specified constant (usually a binary word representing an
address) in a specified group of flip-flops.

10. Gate the information in one specified flip-flop group to a second
specified flip-flop group.

11. Transfer control from the present program location to a specified
program location.

12. Add 1 to the binary number stored in a flip-flop group.

13. Regenerate the BGS at a specified address.

7.2 Encoding the Program Orders

TFrom the 13 basic types of operations listed above may be formed an
encoding structure for the specific program orders yet to be derived. The
process of encoding consists of determining the number of bits a program
order of fixed size will contain and what the function of each bit will be.

It is apparent from the operation types that a program order generally
contains an instruction (what) and an address (where). A first step in
deriving a coding structure is to classify the addresses required by each
operation type, as follows:

1. Read BGS. The BGS contains a square array of 128-by-128 stor-
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age locations. Access to one of these therefore requires an address of 14
bits. This erasable bulk memory is organized so that call registers and
other aggregates of temporarily stored information are arranged gener-
ally within either columns or rows of the array. In this system the BGS
will thus be addressed most frequently on suceessive usages to locations
within a single column or row. Therefore, it is logical to precede such
a series of BGS operations by presetting a constant row or column
address in flip-flop group memory. This will require program orders deal-
ing with the BGS to contain only a seven-bit column or row address
rather than a full 14-bit address. Most BGS reading orders will thus con-
tain a seven-bit address, the other seven bits being stored in flip-flop
memory.

2, Read Flip-Flop. The size of address required in this type of opera-
tion depends only on the anticipated number of flip-flops which must be
individually read. Sinee this number will be in the range between 64 and
128, a seven-bit address is required.

3. Read Scanner. It is required that an order to read the scanner out-
put be preceded by storing the desired address in a flip-flop register as-
socinted with the scanner. The Read Scanner operation itself contains
no address.

4. Match. This operation determines whether two binary words
stored in flip-flop groups are equal. A simple approach to this is to re-
quire that one of the two words be stored in a reference flip-flop group
with which a matching circuit is associated. The other word may be
stored in any one of a number of other flip-flop groups. The matching
operation then must include only the address of the latter flip-flop group.
Because it was determined that between 16 and 32 flip-flop groups are
required for various parallel-access, short-term storage functions, a
Match operation requires a five-bit address.

5. Write 1 or 0 in BGS. Same as Read BGS (seven-bit address).

6. Write 1 or 0 in Flip-Flop. Same as Read Flip-Flop (seven-bit ad-
dress).

7. Read from BGS to Flip-Flop. This operation requires two ad-
dresses, a seven-bit partial BGS address (the other seven bits preset in a
flip-flop group) and a flip-flop address. For circuit economy, however, 32
of the maximum of 128 individually addressable flip-flops (item 2 above)
will suffice to store directly information taken from the BGS. Thus a
five-bit flip-flop address accompanies the seven-bit BGS address.

8. Read from Flip-Flop to BGS. Same as above (seven-bit BGS ad-
dress and five-bit flip-flop address).

9. Store Constant in Flip-Flop Group. It is convenient in this case to
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consider the constant as the address-part of this operation. For a number
of reasons, involving mostly the detailed numbering plan of the entire
system, most of the flip-flop groups contain 14 flip-flops. This operation,
if accomplished by a single program order, would therefore contain a
14-bit “address”. Since the operation will be restricted to only a small
number of flip-flop groups for cireuit economy, it is convenient to con-
sider the identity of the flip-flop group in which the constant is to be
stored as part of the instruction rather than as an address.

10. Gate TFlip-Flop Group to Flip-Flop Group. This operation con-
tains two five-bit flip-flop group addresses.

11. Transfer. An operation causing an unconditional transfer to some
point in the program may (a) contain the full flying spot store address
to which the transfer is to be made, or (b) specify the identity of a flip-
flop group which contains the transfer address. In the latter case, a five-
hit address is required; in the former, a 14-bit address is required, assum-
ing the program to be limited to a portion of the flying spot store plates
so that 14 bits will afford complete access.

12. Add 1. If we assume that, for eircuit economy, a parallel Add 1
cireuit is associated with one particular flip-flop group rather than with
all flip-flop groups, then the Add 1 operation will cause the binary word
contained in that flip-flop group to be incremented by one. Thus, no ad-
dress is contained in this operation.

13. Regenerate BGS. Since the BGS will be periodically regenerated
hy rows or columns, this operation need contain only a seven-bit address,
the other seven bits being previously stored in a flip-flop group.

TaBLE V
Operation Type Address Requirements

No. Name L:i':jrﬂg;eo; Size (Bits)
1 Read BGS 1 7

2 Read Flip-Flop 1 7

3 Read Secanner 0

4 Match 1 5

5 Write in BGS 1 7

] Write in Flip-Flop 1 7

7 Read BGS to Flip-Flop 2 7,5
8 Read Flip-Flop to BGS 2 5,7
9 Store Constant 1 14
10 Gate 2 5,5
11(a) Transfer 1 14
11(b) Transfer 1 5
12 Add 1 0
13 Regenerate BGS 1 7
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The address requirements just developed are summarized in Table V.
With this information it is possible to establish tentatively the number
of bits required by program orders to be derived from the 13 operation
types. There are two operation types requiring I14-bit addresses, Trans-
fer and Store Constant. A single program order will be derived from the
Transfer operation which contains a 14-bit flying spot store address.
In the case of the Store Constant operation, however, it will be expedient
to permit a 14-bit constant to be stored in any one of three difterent flip-
flop groups; three program orders will therefore be derived from this
operation type.

There are, then, four program orders requiring a 14-bit address; thus,
two additional bits must be added to distinguish among them. If 16 bits
are consumed by only these four program orders, 17 is certainly a lower
bound on the number of bits required in a fixed-size program word, since
the remaining program orders must also be encoded. As will be seen, 17
bits is sufficient as well as necessary and is adopted as the program word
size.

Proceeding with the assumption of a 17-bit word size, the information
in Table V is converted to the form of Table VIa to begin the encoding
process. Here the addresses included in each operation type are assigned
bit positions, starting from the right-hand side. I'or those cases where
two addresses exist (7, 8, 10), the two are placed adjacent, except for
operation type 10, where the two five-bit addresses are placed as shown
so that the left-hand one is lined up with those of 7 and 8 to achieve as
unified a layout as possible,

TasLe VIa

Program Word Bit Position

Operation Type
1123 /4|5|6|7/|8]09[10]t1|1213 |14 |15 |16 |17

Read BGS

Read Flip-Flop

Read Scanner

Match

Write in BGS

Write in Flip-Flop
Read BGS to Flip-Flop
Read Flip-Flop to BGS
Store Constant

Gate

11(a) | Transfer

11(b) | Transfer

12 Add 1

13 Regenerate BGS | =

i
Il

—_
COW=I U= WS =

Il
Il

i
[l
Ml
Il
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TasLE VIB

Program Word Bit Position

Operation Type A B C D

10

=3
=
=
3

112|3[4|5]|6|7|8 13 |14 (15 (16 |17

L]

Read BGS
Read Flip-Flop
Read Scanner
Match

Write in BGS
Write in Flip-Flop =
Read BGS to Flip-Flop =
Read Flip-Flop to BGS
Store Constant

Gate

11(a) | Transfer

11(b) | Transfer

12 Add 1

13 Regenerate BGS

IR

i

L

—_
SOWITUTH Wb =

L

i
i
[
I
[

Table VIb repeats the information in VIa, with the lines of demarca-
tion bounding the addresses darkened so that the 17-bit word is subdi-
vided into groups of three bits (called A), two bits (B), five bits (C} and
seven bits (D). In places where a five-bit address occupies the rightmost
positions [4, 10, 11(b)], no subdivision is shown because it will prove
convenient cireuit-wise to treat these as seven-hit addresses with the two
most significant bits zero.

A program order word may now be thought of as containing an A code,
a B code, a C code and a D code. For orders derived from operation 1
above, for example, the BGS seven-bit partial address will be contained
in the D code, while the A, B and C codes together will specify the exact
nature of the operation to be performed. For operation 11(a), on the
other hand, the B, C and D codes together will contain the flying spot
store address to which a transfer is to be made, while the A code will
direct that a transfer be made.

A process of encoding has now been described except for the detailed
specification of all the program orders to be derived from the 13 opera-
tion types and the illustration of how these fit into the proposed struc-
ture. This final phase will be deferred to a later section which deals with
the writing of programs. In that section a complete set of program
orders will be presented.

At this point we turn to a discussion of the circuit logic of the central
control, whose funetion is to interpret and carry out all the types of 17-
bit program orders provided.
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VIII, THE CENTRAL CONTROL

8.1 Basic Constderations

The central control is the heart of the electronic switching system.
Its actions are required for all system functions to be accomplished. It
consists almost entirely of direct-coupled semiconductor circuitry’ ar-
ranged in logic configurations to accomplish the interpretation and
execution of each program order originating from the flying spot store
(FSS).

Central control processes these orders one at a time. The time allotted
to carry out an order is dependent upon the speeds of the major system
components, in particular the flying spot store, barrier grid store and
central control itself. The progress through the program, order by order,
is controlled by a clock whose period is constant and sufficiently long to
cover the operating time of any of the above-mentioned units. This time
will be referred to as the “cycle time’” and is of several microseconds dura-
tion.

When a program order is passed from the I'SS to central control on
the occurrence of a clock pulse, the central control logic circuits, within
the ensuing cycle time, decode the order and prime those parts of the
central control which are to participate in the execution of the order.
The succeeding clock pulse causes the execution of the order and, at the
same time, eauses the next order in the program to pass from the FSS to
the central control for similar processing, as shown in Fig. 9. This “over-
lap” arrangement between the FSS and central control is used to con-
serve system time. The order-by-order progression just deseribed is
altered in the case of decision orders, as will be discussed later.

LT

TIME =3

_CYCLE

[‘ TIME ~

TIME ACTION

0 ORDER A ENTERS CENTRAL CONTROL

| ORDER A IS EXECUTED; ORDER B ENTERS CENTRAL CONTROL
2 ORDER B 1S EXECUTED; ORDER C ENTERS CENTRAL CONTROL
3 ORDER C IS EXECUTED; ORDER D ENTERS CENTRAL CONTROL
ETC. ETC.

Fig. 9 — Electronic switching system cloek timing.
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FLYING 5POT STORE

< —-17 PAIRS OF LEADS

CENTRAL CONTROIL

1
LLLLLEEETELETELLL, , coo-reoms ano

__ASSOCIATED INPUT
ORDER REGISTER AND OUTPUT LOGIC
CIRCUITS

Fig. 10 — Central control order register.

Since the F'SS output is deteeted by means of a short sampling pulse,
the first requirement in central control is for a register to receive and
then hold the order for a cycle time. This register is called the order
register and is shown in Fig. 10. It consists of 17 flip-flops, one to hold
each bit of the order, and logic circuits to properly associate the register
with the cireuits connected to it. The first component of the cycle time
consumed during the processing of an order is the interval from the be-
ginning of a clock pulse to the time at which the outputs of the flip-flops
and amplifiers of the order register correctly indicate the bits of the order;
this is approximately one-third of the cycle time.

Since the order is binary-encoded, a decoding or translating process is
next required, to convert the order into a form which can be used for
establishing the circuit conditions required for its execution. The associ-
ation of an order translator used for this purpose with the order register
is shown in Fig. 11. The input to the translator is a 17-bit order; its out-
put usually consists of signals on a few of more than 100 leads. The trans-
lator logie eircuits and amplifiers themselves require about one-third of
a eycle time to respond, so that, by the time the proper translator out-
puts are active, approximately two-thirds of the cycle time has expired.
The remaining one-third of the cycle time is consumed by those logic
circuits that aet in response to order translator outputs. Clock pulses
control cireuit actions only at the input to central control (between the
1"SS and the order register) and at the output stage of logic eircuits where
the execution of orders is accomplished.

The order translator outputs are connected in some manner to almost
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ORDER REGISTER

I §
i ’ | - ~——— |«—-17 PAIRS OF LEADS
\

(DECODER)

”“”I - ——lq— OVER 100 LEADS

’ ORDER TRANSLATOR

DISTRIBUTED THROUGHOUT
CENTRAL CONTROL

Fig. 11 — Central control order translater.

every circuit of the central control.* Much of this circuitry consists of
flip-flop registers, including special-purpose registers associated with
specific functions and general-purpose registers with multifunctional ap-
plication. The registers are employed mainly for short-term high-speed
storage of addresses associated with the various major system units.
The communication among these flip-flop groups, and between them and
circuits external to central control, may be achieved through the use of
a common bus, since the program orders permit only one parallel ag-
gregate of bits to be communicated in a single cycle time. In addition
to establishing conditions for communications via the bus, the order
translator outputs also control actions internal to a register cireuit or
actions associated with eireuits having control rather than register fune-
tions.

T'ig. 12 shows a simplified picture of the relationships among the order
register, order translator, flip-flop group registers, bus, some control
circuits yet to be deseribed and eircuits external to central control. All
of the registers attached to the bus need only contain 14 or fewer flip-
flops if it is assumed that this number is sufficient to specify an address
in any major system unit. As shown, some registers have communica-
tions both to and from the bus; all of the general-purpose and some
special purpose registers are in this category. Other special-purpose
registers have communications either to the bus or from the bus but not
hoth, most of these heing directly associated with external system units.

The bus itself consists of 14 pairs of OR gates whose outputs serve as
the common communieation path. For a 14-bit register having communi-
cation to and from the bus, the paired outputs of its 14 flip-flops can
be gated to the inputs of the 14 flip-flops of any other register so con-
nected.

* It is beyond the scope of this article to cover completely the many detailed

functions of central control. It is intended, rather, to develop and explain only
the more fundamental features.
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To clarify this arrangement and to illustrate how a simple program
order is carried out by central control, an example is given which involves
only those circuits already disecussed. Let us examine how the order
“Gate the information in flip-flop group A to flip-flop group B” (opera-
tion type 10, Table V) is accomplished. The logie circuit actions result-
ing from this order are shown in Fig. 13, At time 0 in this example a pro-
gram order enters central control from the I'SS coincident with a clock
pulse and is held by the order register. As time elapses, the flip-flops of
the order register respond to the order and the order translator logic re-
sponds to the outputs of these flip-flops. For the order “Gate I'FG A
(flip-lop group A) to 'I'G B”, two translator outputs are activated,
one causing the outputs of the flip-flops of FF'G A to be gated to the bus
input, the other readying the bus output to be gated to the inputs of
the flip-flops of FFG B. Thus, within a cycle time following time 0—that
is, before the occurrence of the next clock pulse at time 1—the informa-
tion held by FFG A will have been transmitted via the bus to gates at
the input of FI'G B. Then, at time 1, coincident with the next clock

FLYING SPOT |
STORE |

|

(=TT

EXTERNAL CIRCUITS l
- ’ - — —

[ I ORDER

L | ,REGISTER |

(w)k;”” _____ —_

—
INTERNAL CONTROL
CIRCUITS
1 ‘ ¥
| | I— ORDER

‘ 1 ‘ ‘ | TRANSLATOR
(>100)—> "7"7' |

\ S ¥

FLIP -FLOP

GROUP -~-._
REGISTERS ~.

\Eﬂ#j' !Lm“"Lﬂ—_]J!ﬁI”I
] WT |

BUS (14 PAIRS OF LEADS) ‘

[T

T
EXTERNAL CIRCUITS

Fig. 12 — Simplified block diagram of central control.
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pulse, this information is gated into FFG B and the next order enters
the order register from the I'SS.

A second example, which brings into play an external system unit, is
shown in Fig. 14. Here the order to be processed, derived from operation
type 5, is “Write 1 in the BGS at an address whose Y part (vertical co-
ordinate of the 128-by-128 BGS array) is the D code of the order and
whose X part (horizontal) is stored in flip-flop group Q. Here the order
translator activates four of its outputs, which (a) gate the D code order
register flip-flop outputs to the Y half of the bus input, (b) gate the
X half flip-flop outputs of FFG Q to the X half of the bus input, (e)
ready the bus output to be gated to the BGS address leads and (d) ready

FROM FSS
L
] | E—
TIME ACTION ORDER REGISTER
O ORDER TO GATE FFG A TO FFG B
ENTERS CENTRAL CONTROL FROM I I I | 7777777777 |
FSS
| ORDER IS EXECUTED (AND FOLLOWING ORDER TRANSLATOR
ORDER ENTERS CENTRAL CONTROL)

(M

GATE FFG A TO BUS

m

(V]

w

w

FFO[R[S| _____FLIP-FLOP GROUPA  FF|3 o

gl =

B [}

[y 2

SRS W

ONE INPUT H

PER g

FLIP-FLOP ™

GROUP % [TIRNITENNEN Ll P
+H' i’ 1 IIILV--*******QGE‘ ——————————— Oy e

MULTIPLED TO
OTHER FLIP-FLOP

GROUPS AND / / Y '/
EXTERNAL UNITS

CLOCK

Fig. 13 — Central control eircuits for simple nondecision order: “Gate FFG
A to FFG B.”



1354 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1958

a Write 1 signal to be gated to the BGS. When the clock pulse oceurs at
time 1, this order is executed.

8.2 Decision Making

Both of the examples just presented involved nondecision operations;
that is, the Gate FFG to FFG and Write 1 in BGS orders can be followed
only by the succeeding order in the program, located at the next I'SS
address. We will now develop the decision-making logic which comes into
play on decision (reading or matching) operations when the following

FROM FSS
o] 1
[ |
TIME ACTION
0 ORDER ENTERS CENTRAL — —
CONTROL
1 ORDER EXECUTED. NEXT _
ORDER ENTERS ———%BJC[!?
ORDER aly
GATE X-HALF OF FFG Q To X-BUS REGISTER ~——F—— | 0|5
[ L— T@
\ ali
X—-HALF FFG Q Y —HALF wlo
‘ ORDER TRANSLATOR = I
X0 ___%8B Pl Yo _v§ U
‘ |
|
feh—trh TT T e
“““ | IN BGS
T
BUS
1 r
L — ij;b ! ! !
-l | s iy~ it s
|
|
| —

GATE ADDRESS
TO BGS

CLOCK

| - I - - nl

\ T
BGS ADDRESS BGS BGS
CONTROL CIRCUIT

Fig. 14 — Central control circuits for another nondecision order: ““Write 1
in BGS at Y address given in D code of order, X address preset in X half of flip-
flop group Q.”



FUNCTIONAL DESIGN OF STORED-PROGRAM ESS 1355

action is one of two alternatives, and discuss the way the clocking of the
system is affected.

A complication arises where decisions are involved because, at the
same time an order is executed, it is displaced from the order register by
the succeeding order. Since the response to a decision operation occurs
after the execution of that operation, means must be provided for recov-
ering certain basic information in the order which will determine, when
combined with the response, which of two alternative actions is to follow.
This point is illustrated in I'ig. 15 which shows the timing involved when
a Read BGS order (described in detail below the figure) is performed; it
should be noted that, if the BGS response is 0, the system continues with

DECISION ORDER  DECISION ORDER DECISION
ENTERS ™ 5 EXECUTED /1S MADE
|
—
BGS
ANSWER
ADVANCE
D 3| 4 5 6
|
T\ME——h- } - —
| P4 |_|
|
__TRANSFER] | ¥ - |
[

. _TRANSFER-COMPLETE
SIGNAL FROM FSS

TIME ACTION

0 NON-DECISION ORDER A ENTERS CENTRAL CONTROL,
FSS GOES TO ORDER B

1 ORDER A EXECUTED; (DECISION) ORDER B ENTERS

CENTRAL CONTROL, FSS GOES TO ORDER C

2 ORDER B EXECUTED; ORDER C ENTERS CENTRAL CONTROL;
FSS GOES TO ORDER D

IF_READING 1S O: IF_READING IS 1:
TIME  ACTION TIME ACTION
3 ORDER C EXECUTED; D ENTERS; 3 ORDER C NOT EXECUTED; FSS
F3S 10 E DIRECTED TO TRANSFER TO
4 ORDER D EXECUTED; E ENTERS; ADORESS STORED IN FLIP-FLOP
FSS TO F .
. 4+ 5SS SIGNALS CENTRAL CONTROL
5 gggEF‘mE GE"ECUTE':’; F ENTERS; THAT TRANSFER IS COMPLETE
5 ORDER J ENTERS CENTRAL
ETC  ETC CONTROL; F55 GOES TO ORDER K
6 ORDER J EXECUTED; ORDER K

ENTERS CENTRAL CONTROL;
FSS GOES TO ORDER L

ETC ETC

Fig. 15 — Central control timing on decision orders. The deecision order, desig-
nated order B, is: “Read (and regenerate) the BGS at the address whose Y part
is D the code of the order and whose X part is preset in flip-flop group Q. If the
reading is 0, continue with the next order (c) in the program; if the reading is 1,
transfer to order 1, which is another point in the program w hose FSS address is
(was previously) stored in flip-flop group T.”
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the next order in the program, whereas if it is 1, a transfer is made. At
time 2 the Read BGS order (designated order B) is executed; that is, the
Read-Regenerate lead and an address are pulsed to the BGS; also at
Time 2, order B is displaced from the order register by order ¢. The BGS
response is returned to central control during the interval between time
2 and time 3. Clearly, if a decision is to be made at time 3 whether or
not to transfer, the specification contained in the order as to which sense
of BGS response should cause a transfer must be stored when the order
is displaced at time 2. Then, at time 3, this partial memory of the order
may be combined with the BGS response to determine the decision. Here,
if the BGS response is 0, order ¢, which follows order B in the program
and which entered the order register at time 2, is executed. If the BGS
response is 1, order ¢ is not executed but, instead, a transfer signal is
sent together with an address to the I'SS. If we assume hypothetically
that the I'SS requires between one and two cycle times to reach the trans-
fer address and read out the order J stored there, a transfer-complete
signal® will be returned to central control at time 44-. The effect of the
clock pulse oceurring at time 4 is inhibited because at that time the trans-
fer has not yet been completed. However, the transfer-complete signal
at time 4+ permits the clock pulse at time 5 to bring order J from the
FSS into the order register and causes the I'SS to go on to order k. At
time 6, 7 is executed, & enters the order register, and the FSS goes on
to L, and so forth.

The addition of the order memory and decision logic used in conjunc-
tion with deecision orders is shown for the previous example in Tig. 16.
Here five order translator outputs are activated: one gates the X half of
FFG Q to the X bus; a second gates the D code of the order register to
the Y bus; a third readies the bus output to be gated to the BGS as
an address; a fourth prepares a Read-Regenerate order to be gated to
the BGS and a fifth prepares the “Transfer if 17 flip-flop in the order
memory to be set. The latter three actions will oceur at time 2 (Fig. 15),
when the clock pulse passes through the decision logic and exits on the
“Execute Present Order” (EPO) lead through gates not shown. Also at
time 2, order B will be displaced from the order register by order ¢, but
not before the order memory flip-flop is set to retain the sense of the
transfer specified in order 8. The BGS response occurs between time 2
and time 3. At time 3, therefore, if the BGS response is 0 an EPO pulse
will be generated, causing order ¢ to be executed. (The nature of order
c is not specified and the circuits shown should not be assumed to be
adequate to process it). If the BGS response is 1, on the other hand, a
“Clonditional Transfer” (CTR) pulse is generated by the decision logie,
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Fig. 16 - Central control cireuits for simple decision order: “RY1."”

which resets the order memory and causes a transfer signal to be sent to
the I'SS, together with the address previously stored in FFG T, In gen-
eral, every clock pulse is converted either to an EPO pulse, which causes
whatever order is in the order register to be executed and displaced by
the succeeding one, or a CTR pulse, which eauses a transfer of the F'SS
to a new order located at a previously stored address.

8.3 Functional Deseription of Central Control*

With the basic features of central control design now deseribed, we
may consider the more complete funetional diagram shown in Fig. 17.

* The material in this section deseribes in some detail the interrelationships
among the several registers and control cireuits of the eentral control. If the reader
wishes, he may proceed at this point direetly to Seetion IX (Programming) with-
out loss of continuity.
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8.3.1 Special-Purpose Regislers

On both sides of the bus in TFig. 17 are shown flip-flop groups which
will hereafter be referred to as ‘“‘registers.” On the right of the bus are
special-purpose registers which have access either to or from the bus,
but not both. Those registers which are used only to communicate
control or address information to external system units from central
control receive information from the bus output; those used to pass
information from external units to central control are connected to the
hus input.

In the first class are the following:

1. Seanner Register. Whenever a Read Scanner order is given, this
register must already hold the address of the line or trunk whose state
is desired.

2. Signal Distributor Register. This holds the address of the relay to
be operated or released by the signal distributor.

3. Network and Concentrator Control Register. The code stored in
this register instruets the concentrator and distribution network marker
cireuits what actions to carry out. The addresses involved are stored in
other registers.

4. A-Side Network Selector Register. This holds the A-side distribu-
tion network address to be used in establishing or releasing a distribution
network connection.

5. B-Side Network Selector Register. Same as above for B-side.

6. Concentrator Release Selector Register. This holds the concen-
trator trunk address when a concentrator connection is released.

7. Line Selector Register. This holds the line address when a line-to-
concentrator trunk connection is to be made through the concentrator.

All these registers may be considered funetional parts of the external
units to which they are connected, since the outputs of their flip-flops
directly control the actions in these units. They are made physically a
part of central control to avoid the need for transmitting pulses to them
from the bus over the distances between central control and external
units. With this arrangement, only de flip-flop outputs must travel over
long lead lengths.

The remaining registers shown to the right of the bus in Fig. 17 have
access to the bus input, passing information from the network to eentral
control. These are:

8. A-Side Distribution Network Identifier Register. Whenever a con-
nection including an A-side terminal is either established or released
this register will store the address of this terminal.
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9. B-Side Distribution Network Identifier Register, Same as above
for B-side.

10. Concentrator Trunk Identifier Register. This receives a partial
address of the concentrator trunk involved in a concentrator connection
or release operation.

11. Line Selector Identifier Register. This receives the line address
on a concentrator connect operation, or a partial address of a concen-
trator trunk on a concentrator release operation. The combination of
the information in this and the previous register specifies the full address
of a coneentrator trunk on a release operation, and of a line and con-
centrator trunk on a connect operation.

12. Network Response Register. The flip-flops in this register receive
indications of whether a network action is ended and whether it is sue-
cessful or unsuccessful,

8.3.2 General-Purpose Registers

To the lett of the bus in I'ig. 17 are registers which have access both
to and from the bus. Some are special-purpose but are available for
general-purpose use when their special functions are not required.
Others are provided only for general-purpose use. Their functions are
described below:

13. Flying Spot Store Address Register. This is included here to
facilitate descriptions of other registers, although it has access neither
to or from the bus. At all times this register holds the FSS address of
the program order awaiting execution in the order register. An Add 1
cireuit is associated with the I'SS address register so that, as each order
is executed and followed by the next order in the program, the address
it holds may be ineremented. When a transfer oceurs, the I'SS address
to which the transfer is to he made is sent to this register as well as to
the I"SS.

14. Return Address Register. Frequently a program is used repeatedly
and, because of this, is recorded in the I'SS as a subroutine. When a
program transfers into a subroutine it is often necessary that the pro-
gram Le resumed following the completion of the subroutine, i.e., that
the subroutine end with a transfer returning to the program which
initiated it. The return address register receives from the flying spot
store address register, upon each transfer, the I'SS address following the
one from which the transfer is made. Thus, a subsequent transfer to the
I'SS address stored in this register will cause the program from which
the original transfer was made to be resumed.
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15. Transfer Registers 1 and 2. These hold the FSS address to which
a transfer may be made as the result of a decision order. The decision
order must specify from which of the transfer registers the address is
taken. The reason that two are provided and the funetion of the Add 1
cireuit associated with one of them will be explained in a later section.

16. Barrier Grid Store Address Register. This supplies part or all of a
BGS address on all BGS reading and writing orders. As already ex-
plained, BGS orders provide at most a seven-bit X or Y address, the re-
maining seven bits being taken from a flip-flop register. This was the
register referred to and which also appeared in the examples of Figs. 14
and 16 as flip-flop group Q. The Add 1 circuit that is associated with it
is provided for the Add 1 operation listed in Table V. If a number is
to be inecremented by 1, it is first placed in the BGS address regis-
ter and then acted upon by the Add 1 circuit. Thus the register has two
special-purpose uses and may be employed for general-purpose use as
well.

17. Access Registers 1 and 2. These are the most versatile registers
of the central control. They are characterized by the fact that their
flip-flops are individually accessible. As indicated by the many paths to
and from these registers in Fig. 17, they are used: (a) for communications
to and from the bus; (b) when a bit is read from the BGS to be stored in
a flip-flop (operation type 7, Table V); (e) when a bit is read from a
flip-flop to be stored in the BGS (operation type 8); (d) when a bit is
to be read from or written into an individual flip-flop (operation types
2 and 6); (e) to receive translation information from the flying spot
store, since individual bits of a translation word must be examined.

18. Matching Register. This is used for the matching operation
(type 4). In it is placed a number to be matched with another number
stored in any other register with access to the bus. The associated
Match cireuit compares the two numbers and notifies the decision logic
of the result.

19. Memory Registers 1, 2 and 3. These are completely general-
purpose registers used most frequently to store program addresses for
later use.

The registers having intercommunications by way of the bus may be
thought of as a rectangular matrix of flip-flops, one dimension being the
number of such registers and the other the maximum number of flip-
flops per register (14). Not all elements of the matrix are occupied,
especially in the case of some special-purpose registers associated with
external units where the number of bits required is fewer than 14.
Clearly, the flip-flops in such registers must be assigned definite posi-
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tions on the bus so that proper communications can be earried on with
the remainder of eentral control.

8.3.3 Control Circuits

On the left side of Fig. 17 are shown the circuit blocks which have
control rather than register functions. Among them are the order
register, order translator, order memory, decision logic and clock, all of
which have already been covered in earlier paragraphs.

Associated with the order memory is an order memory translator,
whose outputs affect the two access registers. This translator is required
for operation type 7, which involves a BGS reading being stored in a
flip-flop of one of the access registers. As shown in Table VIb, the five-
bit C code identifies this flip-flop. Since the BGS response occurs after
the order has been displaced from the order register, the C code must
be held in the order memory and translated by the order memory
translator to a one-out-of-32 indication to prepare the input logic of
the appropriate access register flip-flop for receipt of the BGS response.

The three circuits associated directly with the BGS and shown near
the bottom of the figure are the read-write control, address control and
response circuil. The BGS read-write control determines which, if any,
of the four BGS orders is to be given (Read and Regenerate, Read and
Write 0, Read and Change, Read and Write 1); most often the order
translator alone determines this, but, in the case of operation type 8,
the state of an access register flip-flop will determine whether a Write
0 or Write 1 signal is given. The BGS address control gates the bus
output to the BGS address leads as shown on Figs. 14 and 16. The BGS
response circuit output is connected to the decision logic for determining
whether or not to transfer on BGS decision operations, and to the access
registers for storing a bit read from the BGS into a flip-flop for later use.

The flip-flop reading circuit shown in Fig. 17 is essentially a large OR
gate which combines the outputs of all the flip-flops of central control
which ean be individually read (using operation type 2). During the
processing of a Read Flip-Flop order, the seven-bit flip-flop address is
converted by the order translator to a signal which permits only the
output of the corresponding flip-flop to be transmitted into the flip-flop
reading OR gate. In this way the state of this flip-flop appears at the
output of the OR gate.

The flying spot store address control at the top of Fig. 17 receives a
FS8S address from one of a number of possible sources and transmits it
to the FSS when a transfer is made. Included among these sources are
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the two transfer registers, the return address register and the bus. The
I'SS address of a transfer also is stored in the I'SS address register of
central control, as already explained.

The flying spot store order conlrol generates the orders to the I'SS.
Except for a few special situations, whenever the decision logic converts
a clock pulse to an Execute Present Order pulse, an Advance pulse is
sent to the FSS, which causes the succeeding order to be gated from
an output register in the FSS to the order register in central control,
and then causes this same output register to be filled with the next order.
When the decision logic converts a clock pulse to a Conditional Trans-
fer pulse, this circuit sends a Transfer signal to the I'SS and the FSS
accepts a new address from central control rather than stepping along,
as it does in the ease of an Advance.

The last block yet to be deseribed in Fig. 17 is the sequence control.
This is the only basically sequential ecircuit in the central control. It
funetions whenever control of the system is temporarily taken away
from the program or whenever completely synchronous clock control
gives way to asynchronous control actions. The two major uses of this
circuit are in the cases of transfers and I'SS translations.

The time required to complete a transfer is somewhat variable over a
small range because of the characteristics of the FSS.> The sequence
control therefore acts to inhibit clock pulses following the one on which
a transfer occurs from affecting the central control until it receives a
Transfer-Complete signal from the I'SS. It causes the clock pulse fol-
lowing this signal to gate the order at the transfer location from the FSS
to the order register and then returns normal synchronous control to
the clock.

In the case of a FSS translation, a transfer is made to an address
where a translation word, not an order, is to be read out and stored
directly in the access registers. Clearly, a separate control circuit is
necessary to accomplish this, since the FSS eannot be used simultan-
eously to control the system with an order and to act as a source of
translation information. Here, the sequence control steers the FSS out-
put into the access registers rather than the order register. It then
causes n second transfer to the address held by the return address
register, causing control to be returned to the program order follow-
ing the one which initiated the FSS translation.

This completes a functional description of central control. All func-
tions are realized through the use of diode AND and OR gates, flip-
flops and inverters. Added to this basic logic are amplifiers, emitter-
followers and other supporting cireuits. A central control like the one
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described would contain on the order of 2000 transistors and 15,000
diodes.

IX. PROGRAMMING

This final section deals with the writing of the programs which will
he recorded on the photograph plates of the flying spot store. A program
is a group of orders, each encoded into a 17-bit word, which specifies in
complete detail what the system is to do. From the programmer’s view-
point, the nature of the central control and other circuit action occurring
in the execution of the order is of little concern. It is essential that the
programmer know only the action taken as a result of each order, and,
in all cases, this is specified by its definition.

This section of the article will, therefore, have little direct relation to
the previous one. Its purpose is to explain how electronic switching
system programs are composed and, in the process, to illustrate a few
of the problems confronting the programmer.

9.1 A Detailed Order Structure

Before programs can be written there must exist a complete list of
available program orders, each precisely defined. The basis for such a
list was established earlier and is shown in Table VIb. It is now ap-
propriate to derive from this list of operation types a set of program
orders. Considerations related to those discussed earlier are used in
arriving at variations of the operation types which will prove to be
useful orders. The patterns of system actions depicted on the sequence
charts are especially helpful in forming judgments as to the potential
utility of a proposed order. Ease of circuit implementation is also a
contributing factor.

After a tentative list of orders is composed and some programs are
written, orders which are found to have infrequent application and can
be replaced by combinations of other orders are deleted; others may be
added as a result of discoveries of useful applications by programmers.
A stable order structure eventually emerges.

The order structure to be used in this article is shown in Table VII.
The listing includes 38 orders, 16 decision and 22 nondecision. For each
order is shown (a) a symbolic designation having mnemonie significance,
(b) the operation type in Table VIb from which it is derived, (¢) its
numerical (ABCD) coding in decimal form and (d) an abbreviated but
precise definition.
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RY-
RX-
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LX-
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Read and regenerate BGS at Y specified by
D (X given by BGX).

Read and regenerate BGS at X specified by
D (Y given by BGY).

Read and erase BGS at Y specified by D
(X given by BGX).

Read and erase BGS at X specified by D
(Y given by BGY).

Read and change BGS at Y specified by D
(X given by BGX). Suffix refers to read-
ing before change.

Read and change BGS at X specified by D
(Y given by BGY). Suffix refers to read-
ing before change.

Read and regenerate the BGS at address
stored in BG. ]
Read and regenerate at Y specified by DD
(X given by BGX). Store Y in BGY.
Read and regenerate at X specified by D
(Y given by BGY). Store X in BGX.
Read and erase at Y specified by D (X

given by BGX). Store Y in BGY.

Read and erase at X specified by D (Y
given by BGY). Store X in BGX.

Read miscellaneous flip-flop specified by D.

Read the scanner at address preset in S.

Match the Y bits of M with the Y bits
of the FFG specified by D. Mateh = 1;
mismatch = 0.

Mateh the X bits of M with the X bits
of the FFG specified by D. Mateh = 1;
mismatch = 0.

Match the contents of M with the con-
tents of the FFG specified by D.
Mateh = 1; mismatch = 0.

Order Modifier Suffixes

-1A

If 0 is read, take next order from address
given by T1.

If 1 is read, take next order from address
given by T1.

If 0 is read, take next order from address
given by T2,

If 1 is read, take next order from address
given by T2.

Add 1 to Y part of contents of T1. Then, if
0 is read, take next order from address
given by T1.

Add 1 to Y part of contents of T1. Then, if
1 is read, take next order from address
given by T1.

1365
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Tasre VII — Continued
Opera-
tion
No. Symbol ;HJ'; AB| C| D Description
Table
VIb)
Nondecision Orders

17 | Woy 5 | 7,3 | 0| — | Write a0 onthe BGS at the Y address spee-
ified by DD (X given by BGX).

18 | W1Y 5 | 7,3 1| — | Write a 1 onthe BGS at the Y address spee-
ified by DD (X given by BGX).

19 | WOX 5 | 7,3 | 2| — | Write 20 onthe BGS at the X address spec-
itied by D (Y given by BGY).

20 | W1X 5 7,3 3 | — | Writea 1 on the BGS at the X address spee-
ified by D (Y given by BGY).

21 | Wop 5t | 7,3 | 4| — | Write a 0 on the BGS at the address con-
tained in BG.

22 | W1P 511 7,3 5| — | Write a 1 on the BGS at the address con-
tained in BG.

23 | WOFF 6 | 7,3 6| — | Writea 0 in the miscellaneous flip-flop spec-
ified by D.

24 | WIFF 6 | 7,3 | 7| — | Writea 1 in the miscellaneous flip-flop spec-
ified by D.

25 | RYFA 7 | 3,0 | — | — | Read and regenerate the BGS at the Y
address specified by D, and transport the
bit to the access flip-flop specified by C
(X given by BGX).

26 | WFAY 8 3,1 | — | — | Transport the contents of the access flip-
flop specified by C to the BGS at the Y
address specified by D (X given by
BGX).

27 | ST1 9 | 4,- | — | — | Set up transfer register 1 to the number
specified by B, C, D

28 | SAl ] 5, - | — | — | Set up access register 1 to the number spec-
ified by B, C, D,

20 | SA2 9 |6, — | — | Set up acecess register 2 to the number spec-
ified by B, C, D.

30 | BY 9t | 7,3 | 10 | — | Set up BGY to the number specified by D.

31 | 8X 9t | 7,3 | 11 | — | Set up BGX to the number specified by D.

32| G 10 |3,3|— Gate the contents of the F‘F(I} specified by
C to the FFG specified by D.

33| T 11a | 2, - | — | — | Transfer to the address specified by B, C,
D.

34 | TFG 11b | 7,3 | 12 | — | Transfer to the address contained in the
FFG specified by D.

35 | AY 12 | 7,3 | 13 | — | Add 1 to BGY.

36 | AX 12 | 7,3 | 14| — | Add 1 to BGX.

37 | RGY 13 | 7,3 | 156 | — | Regenerate the BGS at the Y address spec-
ified by D (X given by BGX).

38 | RGX 13 7,3 | 16 | — | Regenerate the BGS at the X address spec-
ified by D (Y given by BGY).

* Modifier code.
T Size of address not same as specified in Table VI.
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A decision order must be suffixed with a modifier indicating which
sense of response should cause a transfer. There are six modifiers: (a)
“0” suffixed to a decision order (e.g., RY0) means transfer on a 0 re-
sponse to the I'SS address stored in transfer register 1; (b) the “1”
suffix causes the transfer on a 1 response; (c¢) and (d) the 02 and 12
suffixes are the same as those above, respectively, except that the
transfer address is taken from transfer register 2; (e) and (f) the 0A
and 1A modifiers are similar to 0 and 1 except that the FSS Y address
held by transfer register 1 is incremented by 1, the purpose of this to be
illustrated by a later example. Thus, by adding one of the six modifiers
to a decision order it is possible to cause a transfer on either a 0 or 1
response to the FSS address stored in either transfer register 1 or 2,
and, if transfer register 1, either changing or not changing the Y part of
the address stored there.

The 16 decision orders are derived from the first four operation types.
The RY-* order causes the BGS to be read and regenerated at the Y
address specified by the D code and the X address preset in the X half
of the barrier grid register of central control. The RX- does the same,
except that the D code is the X address and Y is preset. The EY- and
EX- orders are similar, but the BGS is read and erased instead of re-
generated. The CY- and CX- cause the BGS to be read and changed;
here, for decision purposes, the response is assumed to be the reading
before the change occurs. The RYB-, RXB-, EYB- and EXB- are the
same as RY-, RX-, EY- and EX- except that the D code is gated to the
Y or X half of the barrier grid register in central control as well as to the
BGS ag o Y or X address. This is provided for those cases where it is
useful to keep track in the barrier grid register (BG) of the BGS address
last visited. The RP- order causes the BGS to be read and regenerated
with the entire address preset in BG, the order itself containing no ad-
dress.

The MY- order causes the contents of the Y half of the register
specified by the D code to be matched against the contents of the Y
half of the mateh register. The 1 suffix is used for the “match’ response
and the 0 suffix for “mismatch’”. MX- accomplishes the same for the
X halves and MB- for both halves together, or the entire contents of
both registers.

The RFF- and RS- orders are the only ones derived from operation
types 2 and 3 and their definitions are self-explanatory.

The 22 nondecision orders are derived from operation types 5 through

* The hyphen stands for a modifier, which must be attached.
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13 of Table VI, and their descriptions in Table VII require no amplifica-
tion.

9.2 The Register Matrix

Combinations of the program orders deseribed above are used to
effect all system actions, many of which involve the central control
together with some other system unit. Because the major system com-
ponents (I'ig. 1) differ in funetion and size, a “numbering plan’ is
formed which ties them together in proper association. In central control,
the numbering plan is reflected to some extent in the relationship of
each flip-flop register to the bus. Table VIII shows the bus having 14
positions divided into X and Y coordinates. The general-purpose registers
occupy the full 14 positions, whereas the registers associated with other
system units are tailored, both with respect to size and placement on
the bus, to the numbering plan.

If a 12-bit scanner address were to be taken from the BGS and placed
in the scanner register via acecess register 1, for example, the 12 bits

TasLe VIII

Repister X Position Y Position

(Abbreviations shown in
Fig. 17)
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* BGX and BGY together comprise BG but are separately
addressable.
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would have to be placed from the BGS into access flip-flops 0, 1, 2, 3, 4,
5,7,8,9, 10, 11 and 12. Access register 1 could then be gated to the
seanner register, since these flip-flops occupy the same bus positions as
the 12 flip-flops of the scanner register.

9.3 Exvamples of the Uses of Program Orders

In this section several examples of the uses of program orders are
given. Each example contains a sequence to be programmed, any BGS
layout involved in the sequence and one or more programs fulfilling the
requirements of the sequence. In the examples the symbolic languages
for sequences and programs already presented will be employed. Fre-
quent reference to Table VII will be helpful.

Example 1 — Fig. 18

The sequence in this example requires the writing in two BGS loca-
tions having different Y addresses (A, T) and a common X address
(R1). The corresponding program contains three orders. The order
SX = Rl is used to place BGS X-address R1 in the BG register of central
control (see Table VIIT); this is necessary since orders to read or write
in the BGS contain at most an X or Y address, the other half being
preset in BGY or BGX, respectively. The orders W1Y = A and WOY =
T are used to write 1 in R1-A and 0 in RI-T, A and T being the Y
addresses specified in these two orders with X preset as a result of the
previous order. The = sign in a program order separates the operation
part of the order from the address(es) at which the operation is carried
out.

BGS
SEQUENCE PROGRAM
SX=R1
w(1)—(R1-A) WIY=A v
WOY=T I
w(0)—(RI-T
( I( )
A
¥ X
RI

Fig. 18 — Programming example 1.
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Ezample 2 — Fig. 19

The sequence here requires writing 1 at two BGS locations having a
common Y address (T) and different X addresses (V1, V2). Three
alternative programs are shown,

Program (a) is analogous to the previous example, except that X
and Y are interchanged and 1 is written at both BGS locations.

Program (b) begins with the orders SY = T and SX = VI, placing
the entire BGS address of VI-T in the BG register. The order W1P
causes a 1 to be written at this address. Then SX = V2 and WIP cause
a 1 to be written at V2-T.

Program (e) is similar to (b) except that the BGS address V1-T is
placed in the BG register by first placing it in access register 1 (A1)
and then gating the contents of Al to BG. Thus the orders SA1 = V1, T
(which places VI in the X half and T in the Y half of A1) and G = Al,
BG accomplish this. The remaining three orders are identical to those
of (b).

Program (a) requires the fewest orders (three) and would therefore
be used. Programs (b) and (e¢) are shown to introduce the use of the
WI1P, SA1 and G orders,

BGS

SEQUENCE
|
W (1) —=(VI-T) v
w (1) —=(v2-T)
|
X
vVIiv2
ALTERNATIVE PROGRAMS
(a) (b) (c)
sy=T sy=T SAI=VI,T
WIX=V1 SX=VI G=Al,BG
WIX =v2 WIP wIP
sx=v2 sx=v2
wiIP WIP

Fig. 19 — Programming example 2.
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Example 3 — Fig. 20

This sequence involves a decision based on the reading of BGS loca-
tion NR-A. If the lelldmg_., of NR-A is I, a 1 must be written in NR-RW;
if it is 0, NR-A must be changed to 1.

In program (a) the decision order RY1 = A is preceded hy ST1 =
r, which places in transfer register 1 the address » of the program to be
transferred to if the reading of NR-A is 1. In program (b) the transfer
is made instead when the reading of NR-A is 0 and the two writing
orders following it are interchanged with respect to program (a). The
choice between these two programs in this case would be to make the
transfer the lower-probability event, since it consumes more time than
advaneing to the next program order.

Program (c) is similar to (a) with X and Y interchanged. In this case,
the group of orders SY = A, ST1 = r, RX1 = NR have exactly the
same over-all effect as the corresponding orders of (a). In (¢), however,

BGS
SEQUENCE
R(NR-A)
| | W
1 0
I | |
W(1) —= (NR-RW)  W(1) — (NR-A) j
I n
A
t
NR
ALTERNATIVE PROGRAMS
a b
(a) SX =NR () SX=NR
STl=r STi=
RY1=A RYO = A
| (r) o ()
WIY =A WIY=RW WIY =RW WIY =A
() SY=A (a) SY=A
STi=r STi=r
RX1=R RXB1 = NR
o (r) | (r)
WIX =NR SX =NR WIP WI1Y =RW
WIY = RW

Fig. 20 — Programming example 3.
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an additional order (SX = NR) is necessary before a 1 can be written in
RW, since the X address NR must be placed in the X half of the BG
register before W1Y = RW will have the desired effect.

The additional order is avoided in (d), where the RXBI1 order is
used in place of RX1. The order RXB1 performs the reading function
of RX1, but also causes the address part (NR) of the order to be gated
to the X half of the BG register, making unnecessary the order SX =
NR used in (c). Also, W1X = NR in (¢) is replaced by WIP in (d),
since the combination of SY = A and RXBI = NR result in the full
address of NR-A being in the BG register.

Example 4 — Fig. 21

The sequence in this example involves a hunt among a group of BGS
registers R1, R2, - - - RN for one in which the A location reads 0. When
such is found a 1 is written in the A location and the program reaches

SEQUENCE BGS
R(R1-A)
I 1
0] 1 1 T 1
| 1]
N(1)—=A [ [
LAST
| (REGISTER) (OTHER)
(@) | |
(b} R(Rnex1—A) AA[A[A[A
| RI—=---RN
SY=A
STi=s PROGRAM
RX =RI
Bol 0 (s)
)
RXB?=R2 o
I
RXBO=R3
L 0
I
i I
s |
RXBOI—RN 0 i
| 1
WIY=A
(b) \
(a)

Fig. 21 — Programming example 4.
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point a. If none is found the program reaches point b. Frequent use of
the RXB order oceurs in this type of program.

Lrample 5 — Fig. 22

This sequence illustrates the use of the Read-and-Erase (EY and EXB}
orders. The sequence requires that a reading be made of NR-A; if the
reading is 1, NR-A should be written to 0. Programs (a) and (b) are
otherwise similar to programs already described.

Example 6 — Fig. 23

This example illustrates the use of the Read-and-Change (CY) order.
The sequence requires that a counter (PC) containing two bits (PCA,
PCB) be incremented by 1 followed by a 1 being written into ORL-TR.
The inerementing is done by first changing the value of the least sig-
nificant bit (PCA). If the value of PCA is changed from 0 to 1, the
process is finished; if PCA is changed from 1 to 0, the value of PCB is
changed and the process is finished.

Program (a) accomplishes this using types of orders already de-
seribed in previous examples. After setting the X half of the BG register
to OR1 and transfer register 1 to v, the PCA bit is read (its Y address

BGS
SEQUENCE
R (NR-A)
0 i
W(0) —= (NR-RW) W(0)—= (NR-A)
W (1) —= (NR-RW)
A
'
NR
ALTERNATIVE PROGRAMS
b
(a) SX=NR ( ) SY—A
STI=t STI=t
= E I=NR
EYl=A . XB ! )
WOY =RW WIY =RW WOY=RW WIY =RW

Fig. 22 — Programming example 5.
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BGS

SEQUENCE

|=
o
A1

A1) —= (ORI-PC)

W(l) — - :
(1 (OR1-TR) T ]» PC
= COUNTER
}p;ﬂ‘ (2 8IT)
‘ |
$
ORI
ALTERNATIVE PROGRAMS
(@) sx=o0RI (b) sx=o0Ri
STI=v STi=w
RYBO=PCA CYO=PCA
0 (v) 1 o]
| |
WOP CYO=PCB
RYBLOZPCB | 0
0 |
WIY:TRC——_(W)

WIP
T=x

wWOoP
(x) |
WIY=TR
Fig. 23 — Programming example 6.

being gated to the Y half of the BG register since RYBO is used). If
the reading is 0, a transfer is made to v and a 1 is written in PCA by the
WI1P order; since the process is then finished, a transfer is made by the
T = x order to program location x, where the sequence continues with
WI1Y = TR. If the reading of PCA were 1, on the other hand, it would
be written to 0 by the WOP order and PCB would be read with the
pattern repeating.

Whereas program (a) contains nine orders, the use of the CY order in
program (b) reduces the number of orders to five. The CYO0 order both
reads a bit and changes its value, combining the functions of RYBO,

WOP and W1P in program (a).

Example 7 — Fig. 2/
The sequence of this example calls for three successive decisions
based on the reading of three BGS loeations (NR-P, Q and R). Since
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presumably different actions take place on each possible leg of the
sequence (a, b, ¢, d), a different program location must be provided for
each.

Program (a) contains seven orders and fulfills the requirements of
the sequence in a straightforward manner. Note that a separate ST1
order must Le used preceding each RYO0 order to provide the different
program locations a, b and e.

In program (b) the repeated use of 8T1 is eliminated by using the
RYOA order (refer to Table VII-decision order modifiers). This order
performs the function of RYO0 but in addition increments the address
in transfer register 1. Thus, program location b becomes related to

_SEQUENCE
R(NR-P)
BGS
0 I
(a) R(NR-Q)
o} I
| I
(b) R(NR-R) 7|
Q]
=
o} |
| | N
(c) (d)
ALTERNATIVE PROGRAMS
@) SX=NR (b) SX=NR
STi=a sTi=a
RYO=P RYO=P
o 0
STI=b (a) RYCA=Q (!}
RY0O=Q L 0
0
RYOA=R (b)=a+1Y
sTi=¢ (b) 0
RYO =R
0 (d) (Cl=a+2Y
=b+1Y
(d) (c)

Fig. 24 — Programming example 7.
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program location a by a difference of 1 in the Y coordinate, and the two
may be used as starting points for completely different and unrelated
programs. The same applies to program location e.

Example 8 — Iig. 25

This example illustrates the programming of a simple subroutine. A
subroutine may be thought of as a program required under many and
varied circumstances but recorded only once to conserve program space.
Thus a subroutine may be transferred into from a number of sources
and must, upon completion, eause a transfer back to a place associated
with the source involved.

The sequence shown should be considered extracted from a larger
sequence and requires that a 1 be written in OR-Al of the BGS.
But there are several OR’s, and the X address of the one desired is
recorded elsewhere in the BGS, in NR-ORX1 to NR-ORXY7. These
seven bits must be extracted and transported to the X half of the BG
register to steer action to the appropriate one of the several OR’s. Since
this aection occurs repeatedly in different parts of the program, the
process of extracting the seven bits from NR is made a subroutine.

BGS
SEQUENCE
W(Q) —=T 7
6
- 7BIT E
) F(OR X ADDFEESS)NR—-CCJ‘\‘ OR X [4]
T ~ " SUBROUTINE ADDRESS %
w(1) —= (OR-Al) L
AlAAA |
IBE N 4
1234 NR
OR's
PROGRAM
WOY=T (d)
T=d EEEEEE——
— G=AI1,BGX SX=NR
WIY=A RYFA = ORXI, 7

RYFA=ORX2, 8
RYFA=0RX3,9
RYFA =ORX4, 10
RYFA=ORX5, 11
RYFA=ORX6, |2
RYFA=ORX 7,13
TFGI=RA

Fig. 25 — Programming example 8.
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The program first transfers to the subroutine located at d (T = d).
The subroutine begins with SX = NR to confine succeeding BGS
operations to the proper X address. This is followed by a series of seven
RYFA orders, each reading one of the seven bits from the BGS to a
flip-flop in access register 1; the address part of these orders contains
both the BGS Y address of the bit being read and the identity of the
access register flip-flop into which the bit is placed. Tt should be noted
from Table VIII that the bus positions of the seven flip-flops chosen
coineide with those of the X half of the BG register. The subroutine
ends with TIFG = RA, which causes a transfer back to the return address,
one address beyond that from which the transfer to the subroutine was
made, as stored in the return address register. The order G = Al, BGX
then gates the seven bits from flip-flops of access register 1 to corres-
ponding flip-flops of the BG register, and W1Y = OR-Al causes a 1
to be written in the Al location of the proper one of the OR’s.

9.4 Programming a Larger Sequence

In this section some of the techniques introduced in the foregoing
examples are brought together in the programming of the larger sequence
shown in Fig. 26*; the associated BGS layout is given in Iig. 27. A
program satisfying the requirements of the sequence is given in Fig. 28,
Program locations (flying spot store addresses) a, b, ¢, d, e, f are shown
both in the program and on the sequence chart to relate corresponding
portions of the two.

Beginning at point @ in the sequence, a reading must be made of
OR1-Al, a location in the BGS. If it is 0, OR2-A1 is read, and so forth
through all the OR’s in the BGS. If a 1 is read, on the other hand, the
sequence requires 1 to be added to AIT and then a reading to be made
of AIT. If it is 1, OR(NEXT)-A1 is read as hefore; if it is 0 (point b)
a reading is made of LL.

The program for this portion of the sequence is shown in Fig. 28 at
location a. A pattern of alternation of RXB0 = OR- and CY12 = AIT
orders is evident. The RXBO0O orders perform the function of reading
Al for each OR; each RXBO0 is preceded by ST1, so that if the reading
is 0 a transfer is made to repeat the process for the next OR. If the
reading on RXBO is 1, CY12 = AIT is performed, adding 1 to the AIT
counter. A transfer to the address in transfer register 2 (point b) will
then take place if AIT was 1 and was changed to 0; otherwise, the next
OR will be treated. The result of the process to this point is that a trans-
fer to b will oceur for each OR satisfying the conditions Al = 1, AIT=1
{before the addition of 1, making AIT = 0) as required by the sequence.

* The particular system function performed by the sequence is of no concern
in this seetion and will not be deseribed.
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The correspondence between the remainder of the program and the
requirements of the sequence is left to the reader.

0.5 A Typical Programming Problem

Previous examples have clearly shown that a number of different
programs can be written which satisfy the requirements of a given
sequence, The programming problem is therefore not primarily one of
arriving at a eorrect program as much as arriving at one which is both
correct, and optimal. In programming a real-time system like the one
described in this paper, two minimization criteria apply: program space
(number of orders) and program time (time consumed per unit of real

FROM MAIN PROGRAM

(a)
R(OR1-A1)
| |
| 0
|
A1) —=AIT
R{AIT)
(b) ]
[ |
0 1
| (I
I
[ 1
0 I
! R(bc)
—T
wi=Te (d)
W(0101)—=DS3
| (OTHER) (0000)
R(NR-A)
(e) | T{PC)—CC
| |
| 0 W (0000)—=PC
|
w(1]—=(NR-RW) W(1)—I—(NR4A] W(O)r..pspD
|
w(l)— RN — T All)—DLC
TO NETWORK I
UENCE
S5EQ R(DILC)
[ T | I | |
@O 7001 Q1o O_IIIWC\O 101 [RE IR R
TC OTHER SEQUENCE
) [
(LAST OR) (OTHER)
TO OTHER R (OR -Al
SEQUENCE ( INE"T )

Fig. 26 — A sequence chart to be programmed: Abandoned and interdigital
timing (AIT).
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time). The optimal program is the one which minimizes some elusive
funetion of these two variables.

In most programming problems the two effects are opposite; i.e.,
program space reduction is usually accompanied by an increase of pro-
gram time, and vice versa. A simple example of this is illustrated in
Fig. 29. Program (a) contains 65 orders and consumes 65 cycle times;
program (b) contains only 11 orders but consumes 259 cycle times.

In general, the programmer combines qualitative and quantitative
judgments in deciding the relative merits of alternative courses of
action in this and similar situations.

9.6 The Assembly of Programs

The writing of programs in symbolic mnemonic form has the valuable
advantage of detaching the programmer from unwieldy numerical
coding details which would tend to increase the number of errors made.
On the other hand, symbolic programs necessitate a process of con-
version to the binary form in which programs are actually recorded in
the flying spot store.

The latter process, referred to as assembly, is mechanized by the use
of a digital computer. Into the computer are placed a symbolic program,

BGS (NOT TO SCALE)

DLC{
PSPD—»

DS

RN |
TC—+
LL - |
AIT - |

1

T NR
OR's

Fig. 27 — Associated BGS layout for AIT sean program.
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a series of tables specifying the conversions from symbols to binary
numbers of the operation-parts and address-parts of program orders,
and a set of rules in the form of a computer program for applying the
conversions to the symbolic program. Out of the computer comes the
binary encoded result ready to control the exposure of the photographic
plates of the flying spot store.

9.7 Simulation

In the testing of a large stored program system, there is the serious
problem of initially distinguishing program errors from equipment
troubles. In the case of the experimental electronic switching system an
attempt was made to attain an error-free program, so that any dif-
ficulties encountered later in laboratory tests of the system could be
definitely attributed to equipment.

To accomplish this a large general-purpose digital computer was
used to simulate the physical system while the latter was still in its
final stage of design. The computer was programmed to image all the
memory of the system, accept program orders written in electronic
switching system language and interpret and carry out these orders on
the system image. In this way, “telephone calls” were processed in the
computer and information was printed to indicate the success or failure

ALTERNATIVE PROGRAMS

(a) (b)
Sy=23 SY=0
RGX =0 SX=0
RGX =1 STI=r
RGX =2 (r) RGY=23 =—
i AX
[ Cx0=0
RGX =63 0
(END)
CX0=1
o ——
23—
]
! S rwal |
Cxo=5 o 63 127
| 0 “~COUNTER
(END)
PROGRAM SPACE: (@) = 65 ORDERS, (D) = 11 ORDERS

TIME : (@) = 65 CYCLE TIMES
(b) =[3+4(s4) =259 cvcLe TiMES

Fig. 29 — Time vs. program space. Sequence: “Regenerate the 64 BGS locu-
tions in the left half of row 23. Space for a six-bit counter is available if desired.”
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of the calls; if the latter, additional information was made available
aiding the location of the part(s) of the electronic switching system
program causing the failure. After corrections were made based on this
information, the process was repeated until the computer reported
perfect operation of the program.

X, SUMMARY

This article describes the design of a stored-program electronic
switching system from a functional viewpoint. Included are: (1) a
deseription of the major functional units of the system, (2) the intro-
duction of a language and form to describe the sequence of system
actions, (3) some examples of how these sequences are created, (4) a
presentation of the inter-relationships among sequences in the form of a
general pattern of system operation, (5) the development and encoding
of an order structure for a stored program, (6) some basic considerations
in the design of circuit logic to implement this order structure, (7) a
functional description of the organization of this circuit logic, (8) several
examples of how programs are written and (9) brief discussions of the
processes of program assembly and system simulation.
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