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(Manuscript received April 16, 1958)

Statistics of a synchronous binary message pulse train applied to a re-
generative repeater are related to those of the original binary message, which
s assumed ergodic. It is shown that the ensemble of possible message pulse
lratns s a monstationary random process having a periodically varying
mean and autocovariance. A spectral density s calculated which shows line
spectral components at harmonics of the pulse rate and a continuous density
function, both with intensity proportional to the square of the absolute value
of the Fourier transform of the standard pulse at the frequency considered.
The continuous component has many properties similar to thermal noise
bul differs in that, under certain conditions described, it can exhibit regu-
larly spaced axis crossings, can be exactly predicted over finite inlervals and
is capable of producing discrele components when nonlinear operations are
performed on i, even though no line spectral terms are originally present.
The analytical results are applied to the problem of deriving a timing
wave from the message pulse train by shock-exciting a tuned circuit with
impulses occurring at the axis crossings.

I. INTRODUCTION

An ideal regenerative digital repeater is defined here as a nonlinear
time-varying device with response expressed as the product of a stair-
case output vs. input function such as shown in Fig. 1(a) and a time-
sampling function such as shown in Fig. 1(b). The first function (a)
converts a continuous range of possible input values to a discrete or quan-
tized set of output values. The second function (b) is a time-varying
response function which ideally makes the repeater sensitive only during
infinitesimally narrow time intervals with regular spacing 7' = 1/f,.
Taken together, the two functions quantize and sample the input wave
at uniformly spaced instants of time. The input wave consists of a dis-
crete-valued message component plus noise and distortion accumulated
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in transmission from the previous repeater. If the noise and distortion
are sufficiently small to confine the departure from the proper discrete
message value within one quantization interval at the sampling instants,
the regenerated wave matches the message and errorless transmission
is achieved for any number of repeater spans.

To economize bandwidth, the actual pulses transmitted are not in-
finitesimally sharp, nor even rectangular as indicated in Iig. 1(b), but
are multiples of a standard finite width pulse g(¢) which may be consid-
ered to be generated by a linear network from the sharp samples. A typi-
cal outgoing wave from the repeater is therefore expressible by:

o0

o(t) = 22 ang(t — ), (1)
n=—c0

where the sequence a, , n going from — % to @, represents the message
values. In much of our work we shall specialize our attention to the binary
case, in which there are only two possible values of a, , which we shall
usually take as zero and unity. The corresponding output vs. input func-
tion of Iig. 1{(a) then takes the form shown in Fig. 2. A typical outgoing
wave train is shown in Fig. 3 for the message sequence

-+-10010110---.

The ideal repeater requires an absolute clock to supply the timing
control exemplified by Fig. 1(b). In practical transmission systems of
considerable length, it may not be feasible to supply such absolute timing
information. An alternate procedure, for example, derives the timing
wave from the signal pulse train itself by applying a portion of the wave
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Fig. 1 — Specification of ideal regenerative repeater characteristic.
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train to a ecircuit tuned to the pulse repetition frequency. If the circuit
has a sufficiently high @ it continues to oscillate at the desired frequency
during the gaps when no message pulses are present. Design of the tuned
cireuit requires o statistical analysis of the pulse train. This is one of
many important statistical problems associated with practical, as dis-
tinguished from ideal, regenerative repeaters.
In this paper, we consider the following specific problems:
1. Properties of a digital message pulse train as a random noise source.
2. Derivation of the pulse repetition frequency from a pulse train by
shock excitation of a tuned circuit. Under this topic, the following ef-
fects are studied:
(a) message statistics
(b) message pulse shape
(e) Q
(d) mistuning
(e) noise.
3. Effect of time jitter in received pulse train on recovered analog sig-
nal.
The important problem of analyzing accumulated effects in a chain of
nonideal regenerative repeaters is discussed in a companion paper by
H. E. Rowe.' Both this paper and that of Rowe are intended to pro-
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Fig. 2 — Binary output-vs.-input response.
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Fig. 3 — Typical binary wave train.
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vide analytical background for the two preceding papers in this issue.” *
Reference is also made to a paper by E. D. Sunde’ which treats many
of the same problems in a somewhat different way and gives results for
specific repeater embodiments.

1I. A DIGITAL MESSAGE AS A RANDOM NOISE SOURCE

The digital message may be regarded as a random time series of dis-
crete numbers. In the notation of stochastic processes, consider the en-
semble of possible messages M (f), where a typical M(f) consists of the
infinite discrete time sequence: - -+ a—2, a1, @, a1, @z - -+ . The values
of the a’s belong to a specified set of discrete numbers and each possible
sequence has a probability of occurrence associated with it. We assume
that the message ensemble is ergodic; that is, averages over the ensemble
at fixed time are identical with averages over time in any member of the
ensemble, except for a set of probability zero. It follows that the en-
semble is also stationary; that is, averages over the ensemble do not de-
pend on position in the sequence. For our purposes we do not go beyond
second-order statistics and shall base our calculations on two ensemble
averages, the ordinary mean and the autocovariance.

The mean m, is defined by the ensemble average for any n:

My = av d, . (2)

The value of m; is a constant for the message ensemble. I'or example,
in the binary ecase in which zero and one occur with equal probability
my 18 equal to one half. The autocovariance R(n) is defined by the en-
semble average

R(n) = av (auay ) for fixed k. (3)

The value of E(n) depends on n but not on k. It is determined by the
dependency of successive message values. If the message consists of in-
dependent numbers, the value of R(0) is the average squared message
value and R(n) is equal to the square of the mean for n not equal to zero,
since the average of the produect of independent quantities is equal to the
product of their averages. From the ergodic property, these quantities
may also be derived from almost all members of the ensemble indi-
vidually, thus:

m= i s X, o @

R(n) = }ﬁl; SN 1 _|_ i AZ_,N Wiy n - (5)
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The actual wave sent over the line from one repeater to the next is the
funetion x(f) given by (1). We may regard z(f) as a typical member of
the pulse ensemble |x(¢)}. Unlike the message ensemble [M(¢)}, the
pulse ensemble {x(¢)} consists of continuous functions of time rather than
discrete time series. We shall now relate the statistics of the pulse en-
semble to those of the discrete message ensemble.

We first evaluate the ensemble average of {x(f)} by holding ¢ fixed
and averaging over all members. Then, since the average of a sum is
equal to the sum of individual averages, and since the standard pulse
g(t) is the same for all members of the ensemble, we find

av {z(t)} = av i a,g(t — nT)
= ;Z_ av (a,)g(t — nT) (6)
=m i gt — nT).

It thus appears that the ensemble average varies with time. This is not
really unexpected since it seems reasonable that we should find values in
the middle of a pulse interval to be distributed quite differently from
those at the beginning or end. In fact, we should expect the ensemble
average to vary periodically at the pulsing rate, and we readily demon-
strate this by noting that

av {z(t + TV} = m i gt + T — nT)
T (7)
=m 2 glt — (n— 1T] = av z(t)

by substitution of the summation index n’ = n — 1.
The periodicity of the ensemble average suggests a formal Fourier
series expansion, thus

avz(t) = 2. e. exp (2mrjfil), (8)

m==—o0

Cn = frf av a(t) exp (—2mrjfd) di
0
(9)

o0 T
mf, 2 j; g(t — nT) exp (—2m=jf,t) di.

n=—u

We now substitute { — n7T = wu in the integral. The limits then become
—nT to —(n — 1)T while the exponential becomes exp (—2mmjfiu),
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since f,7' = 1. The summation of finite integrals with adjoining limits
may then be replaced by a single infinite integral, giving

Cm = Mif; [ g(u) exp (—2mmjfu) du. (10)
If we introduce the Fourier transform of the standard unit pulse by
G = [ o) esp (2w a (1)
we observe that
Cw = muf,G(mf,), (12)
and, hence,
av {x()} = mf, > GOnJ,) exp mrjfid). (13)

The ensemble average is thus expressed as a I'ourier series in time with
the amplitude of the mth harmonic of the signaling frequency propor-
tional to the amplitude of the spectral representation of the unit pulse
at that same harmonic frequency. We note that an ensemble consisting
of precisely this set of harmonies and no other terms would exhibit just
this same result for its ensemble average. It is convenient, therefore, to
resolve our pulse ensemble into a set of such discrete nonrandom har-
monic components plus a remainder which has random properties and
zero mean. We consider therefore the ensemble

[y} = {z(O)} — av {2(t)} = i (a, — m)g(t — nT). (14)

n=—c0

Then,
av {y(0} = 0. (15)

We explore farther by evaluating the autocovariance function R,(r, )
for the ensemble {y(1)}. By definition,

Ry('r; t)
= av {y(Oy(t + )}

= uv{ i (@m — m)glt — mT) i (@, — m)glt — nT + 'r)}
m=—og n=—w0 (16)

o0 o0

= > > avl(aw — m)(a, — m)lgt = mTg(t — T + 7)

m=—o0 n=—o0

8

= i [R(m — n) — m’lgt — mT)g(t — nT + 7).

m

!
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By replacing ¢ by ¢ + T and increasing both summation indices by unity,
we see that R,(r, {) is periodic in ¢ with period 7. Hence, as in the case
of the mean,

R, 0) = i di exp (2kw jf,t), (17)

[ —

T
dy = f,j; R,(r, 1) exp (—2kxjf.1) dt

=, i i [R(m — n) — mi] (18)

m=—s0 n=—w

f gt — mT)g(t — nT + 1) exp (—2kxjf.t) di.
0

We substitute m — n = m/, t — n7T = ¢/, and find after some rearrange-
ment analogous to that used in obtaining (10):

d= 3 IR — mARG + mT, 1), (19)

m=—w

where

F(r, ) = f_ ggt + 7) exp (—j2x 1) di. (20)

By the convolution theorem,
Fo ) = [ GG+ 1) exp [—i2erh + D v @)

In the special-case of independent message values,
RO = av (a.) = ms; Rn) = avi(a,) = m’,n#0 (22)
and
di = f. var (a,) F(r, If,), (23)
where var (a,) is the varianee of the a’s defined by
var (a,) = mas — m” = av (@) — av’ a.. (24)

There is no reason, in general, for F(7, kf.) to vanish for all nonzero
values of &, and hence the autocovariance of the y-ensemble does not
reduce to an expression independent of time. It appears, therefore, that
separating out the periodic components which account for the fluctuat-
ing mean does not make the remainder a stationary process. We there-
fore cannot invoke the Fourier transform relationship between auto-
covariance and power spectrum to find a power spectrum for our pulse
ensemble, even after the periodie components have been removed.
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A procedure which has often been used in similar situations is to make
the process stationary by assuming a random phase relationship between
the members of the ensemble. We do not wish to do this here because
synchronous phase is an important property to be preserved in digital
regeneration. However, there is a meaningful definition of a power
spectrum which can be used without reference to the fluctuating auto-
covariance. We shall calculate the spectral density in this way, but, as
might be expected, the resulting function is the same as would be ob-
tained by randomizing the phases of the ensemble.

Consider first the ensemble yy(f) which includes only the pulses from
n=—Nton=N:

N
un® = 2 (@ — mg(t — nT). (25)
Then, for unit pulses which possess a Fourier transform, the Fourier
transform Sy(f) of yx(¢) exists and is given by
N
Sx(f) = EN (an — m)g(f) exp (=2nmjfT). (26)

By Parseval’s theorem,

[Cwoa= [ Isapra @)

Let the average of the ensemble yx*(f) over the interval —NT to NT' be
represented by avyyy'(£). Then,
1 NT

avy yx (f) = ( fN av yx () dt
- NT

2N + )T

= m j:: av | AgN(f) 12 df (28)

1 a0 NT o
=W[LT+£°° ]avy{(ﬂ)dt.

AWV Yoo () = lim avy yx ()

Zav | Sx(f) [
Lﬂ (2N + DT af

Also,

= lim

N-oo

= j:: w(f) df,

(29)

where

2

w(f) = lim av | Sv(/)

m BN + DT (30)
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Irom (29), w(f) as defined by (30) satisfies the requirement for a spee-
tral density. From (26),
av | Sx(f) |2
= av [Syv(f)Sx*(1)]

= i i av [(a, — mi) (@, — m)|G(G*(f) exp [2mif T (m — n)] (31)

m=—N n=—N

N N
= > X [Rm —n) — m?| GU) | exp [2nifT(m — n)].
m=—N n=—N
Let m — n = I, giving

m+N

WSO =S S RE - m

m=—N k=m—N

G | exp @rglfT). (32)

The order of summation can be interchanged by the formula:

N m+N 0 k+N
2 2 =2 Z-+E (33)
m=—N k=m—N k=—2N m=—N =1 m—k N

Since the summand does not depend on m, we perform the summation
on m by counting the terms. The result is:

av [ Sv() "= N + 1) |G [f {R(O) —m’
(34)

+2 ;Z:; ( N ]+ 1) [R(E) — mi'] cos 2k f)"l

From (30), then,
W) = 5160 (RO = mé + 2 5 (RE) — mi os 21T . (39

In the special case of independent message values, R(0) = m, = m; and
9 o - . . .
R(k) = my for k # 0, giving a result in agreement with the well-known
. b
solution” based on a random phase ensemble average, namely

w(f) = frm(l — m) | G(f) | (36)

This spectral density funection is defined for both positive and negative
frequencies. If the densities at negative frequencies are added to those of
the corresponding positive frequencies, the above result is multiplied by
two.

The spectrum of {y(f)} is thus continuous and is proportional to the
squared absolute value of the Fourier transform of the unit pulse. The
spectrum of the actual pulse ensemble has added to the above con-
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tinuous spectrum a set of line spectral components given by (13). The
line spectral terms occur at harmonics of the signaling frequency and
have amplitudes proportional to the unit pulse spectrum evaluated at
the harmonie frequencies. If the pulse spectrum vanishes at any harmonic
that harmonie does not appear in the {x(f)} ensemble spectrum. Equa-
tion (13) can also be written in the form

av {2’} = mi f.G(0)
= (37)
+ 2myf, Z | G(mf,) | cos [mwt + ph G(mf,)].
m=1
From this expression it is clear that the de component has mean square
my .7 G*(0), while the mean square value of the mth harmonic is

omi 7| Glmf,) | %

Fig. 4 gives curves of the continuous and line spectral density com-
ponents for independent binary on-off signaling with various standard
pulse shapes. For this case, if py is the probability of the value unity, it
follows that

My = P, My — m12 = p1(1 —_ pl) (38)

The continuous part of the pulse train spectrum has much in com-
mon with thermal noise. An audible band selected between adjacent
harmonics sounds to the ear like thermal noise. If the signaling rate is
placed well above the noise band a random on-off pulse train serves
adequately as a hiss source in a vocoder synthesizer. Oscillograms and
spectrograms of narrow-band telegraph noise not including a harmonie
would appear to the eye to be indistingnishable from thermal noise. The
curves of Fig. 4 provide useful quantitative data relating the amount of
noise produced in this way for specific cases.

It must not be concluded, however, that random telegraph noise is in
all respects equivalent to thermal noise with the same spectral density.
The telegraph noise remains a nonstationary process and has a phase
structure among its components which thermal noise does not possess.
The nonstationary properties of the telegraph wave ensemble are not
the most general but are of a special kind which have sometimes been
described as “periodically stationary.” We have suggested the name
“cyclostationary” for this type of process, i.e., one in which the ensemble
statistics vary periodically with time. Analogously, the name “cyclo-
ergodic” will be used for cyclostationary processes in which statisties
over the ensemble for fixed time are the same as statistics over the in-
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Fig. 4 — Continuous and line spectral density components for independent
binary on-off signaling with specific pulse shapes.

stants of time differing from the fixed instant by multiples of the period
in almost all individual members of the ensemble. A eycloergodie en-
semble is cyclostationary but the converse is not necessarily true.

An important practical difference between telegraph noise and ther-
mal noise is that the former can be generated deterministically if the
message values are known or can be found. This follows because the wave
form is completely determined by the sequence of message values and the
standard unit pulse wave form. Use of telegraph noise for masking other
waves is therefore subject to the qualification that, if the telegraph mes-
sage can be read, the noise can be removed. Reading the message becomes
more and more difficult as the ratio of bandwidth to signaling frequency
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is made smaller, and the overlapping of adjacent pulses in time becomes
correspondingly greater. From the standpoint of digital transmission,
reading the message is, of course, a paramount objective and the band-
width of the transmission medium must be made large enough and the
noise and distortion small enough to enable a correct reading to be made.

A further salient feature of the telegraph noise ensemble as contrasted
with thermal noise is the possibility of regularly spaced axis crossings or
zeros of the received wave. From (1) and (14) we see that both z()
and »(t) will have zeros at points spaced T seconds apart if the stand-
ard pulse g(¢) has such zeros. That is, if for some &

g(to + nT) = 0, n=0,=x1,+£2 -, (39)
then
z(to + nT) = y(lo + 2T) = 0, n =0 x1, £2, ---. (40)

This does not mean that there cannot be other zeros as well, and the
other zeros in general can have irregular spacings. It is possible, however,
to exclude irregular zeros in specific cases. For example, if the standard
pulse is the unit impulse response of a series-tuned circuit consisting of
resistance R, inductance L, and capacitance C, the function g(¢) becomes
go(t) defined by

wo Lgu(t) = (wo' + )" exp (—af) cos (wl + 0); ¢ >0

a = R/2L;  w’LC =1— RC/4L; tan0 = R/(2wl). )
By setting wy = 2x/T, we obtain nulls at # and ¢ in the interval
0=t=T,
where
2rte/T = ©/2 — 6,
(42)

21!"51/T = 311'/2 - 6.

These represent the only nulls in the interval from zero to 7" and they
repeat at {p + n7T and ¢ + =T for all integer values of n, as shown in
the full-line waveform of Fig. 5. Furthermore, go(f) changes in sign from
positive to negative at ¢ = & + nT and from negative to positive at
t = t, + nT. No other sign changes occur. If we consider go(t — mT)
with m any positive or negative integer, we note that the values between
to + nT and t; + nT are the same as those of gy(¢) between &, + (n — m)T
and t; + (n — m)T, and hence they are all negative. Likewise, the values
of go(t — mT) between t, + nT and &, + (n + 1)T are all positive. The
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Fig. 5 — Response of tuned circuit to synchronous impulses.

dashed curve of Fig. 5 shows the relation for m = 2. The conclusion is
that the summations from which z(f) and y(f) are formed consist of
waves having common nulls and the same sign between nulls. It follows
that both z(¢) and y({) for the case of g(f) — go(t) have nulls only at
to + nT and §;, 4 2T, the axis crossings are from plus to minus at ¢, + »7T,
and the axis crossings are from minus to plus at &, + n7.

We have thus proved that, if go(f) is the standard pulse, the continuous
noise spectrum arising from a random choice of signaling pulses has no
effect on the nulls of the composite wave. Telegraph noise therefore is
profoundly different from thermal noise in that it does not perturb axis
crossings in a situation in which thermal noise certainly would. Produc-
tion of an invariant null spacing permits the recovery of the timing or
clock wave from the pulse train and is accordingly of vital importance
in the self-timed regenerative repeater.

In general, the standard pulse will not have the invariant null property
exhibited by the special funetion ¢(¢). It may, however, be possible to
convert the actual g(f) into a new pulse which does have the required
property. We note that the Fourier transform of go(¢) is given by

2xfC
1 4+ 2xfRC — 4m2f:LC
An ensemble with standard pulse g(¢) and transform G(f) can be con-

verted into one with standard pulse go(t — 7) by inserting a linear net-
work with transmittance function

¥ = 28

provided that Y'(f) is physically realizable. Since Gy(f) is the response of

G(f) = (43)

exp (—72xfTy), (44)
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a tuned circuit to a constant spectrum, the problem reduces to the re-
alizability of the reciprocal of G(f) with an arbitrary delay factor.

Suppose, however, that the received pulse shape is such that Y ()
can not be realized. For example, (3) for the discrete or line spectrum
components shows that, if the pulse transform G(f) vanishes at the pulse
repetition frequency f, and all its harmonics, there are no discrete fre-
quency components representing the signaling frequency in the pulse
train. In (44) we would then have G(f) = 0 at f = f, and, since Fol(fy)
is not zero, the value of Y(f,) would have to be infinite. It might seem
that in this case the timing information is lost. However, we shall show
that this difficulty only exists for linear time-invariant methods of deriv-
ing the timing information.

To see how we can materialize a discrete component from a con-
tinuous spectrum, consider a specific case of an uncurbed rectangular
signaling pulse

g(l) = 1; 0<t<T. (45)
Then, from (11),
G(f) = (=)™ exp (—jmf/f,) sin (zf/f,). (46)

Tt is clear that G(nf,) vanishes for all integer values of n. If a pulse by
itself contains zero amplitude at all harmonics of f,, no succession of
pulses can have nonzero amplitude at these frequencies. However, we
note that, in a binary on-off system using these uncurbed pulses, a wave
such as that shown in Fig. 6 is obtained, in which every message digram

L

]
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I !
o 0o 1 1

o} 1 o] 1

Fig. 6 — Train of uncurbed rectangular pulses.
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Fig. 7 — Recovery of timing wave from transitions of binary pulse train.
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01 produces an upward transition, every digram 10 produces a down-
ward transition, and the wave is constant for unbroken sequences of
I’s or O’s. If this wave is applied to the circuit of Fig. 7, which includes
a differentiator, full-wave rectifier, threshold triggered pulse generator
and tuned cireuit, an output wave containing pulses of form

golt — nT 4+ T)

is obtained where n represents the integer values in the message sequence
at which 01 or 10 digrams occur. The effective message source is trans-
formed from the original sequence of zero and unity values to a new
sequence in which the unity values are associated with 01 or 10 transi-
tions and the zeros with 11 or 00 digrams. A new continuous spectrum
is thereby obtained and a discrete line spectrum absent from the original
wave is created. Nonlinear operations have been used to attain this end.
The system will still operate if either (but not both) the rectifier or the
nonlinear triggered pulse generator is omitted. If we were dealing with
thermal noise, even nonlinear operations would not suffice to construct
a diserete spectrum.

The impulse response of a tuned circuit is only one example of a stand-
ard pulse shape which yields correct timing information from a syn-
chronous telegraph pulse train. Another standard pulse having the same
essential properties is the response of the same tuned circuit to a rec-
tangular pulse of duration equal to half the signaling period. When the
exciting pulse has unit height, the response becomes g,(?), defined by

wolign(t) =

sinwl; 0 <t <T/2

exp (—at) " ) 47
sin wif — exp (aT/2) sinw(t — 7/2); > T/2.

When w,/T = 2, it may be verified that g;(f) has positive-going axis

crossings at t = 0, T, 27, - -+ ; negative going axis crossings at t = 7'/2,
37/2, 5T/2, - -+ ; and no other axis crossings. Hence the summation

of any such pulses beginning only at multiples of 7" has the same nulls
and no others.

The problem of producing regularly spaced axis crossings from a re-
ceived pulse train is studied in more detail in the next section, which
treats the problems associated with derivation of timing information.
We conclude our discussion here with some further remarks about
secondary pulse trains triggered from transitions in a primary pulse
train. Such secondary trains are of major importance in pulse frequency
derivation techniques. The example given above of a primary uncurbed
rectangular pulse train is not of much interest in digital transmission,
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since it would require excessive bandwidth to approximate the square
waveforms. A more practical type of pulse is the raised cosine of Fig. 8.
Such a waveform can be transmitted with fair accuracy over a band-
width slightly less than the signaling frequency. Closest spacing without
overlapping is obtained when one such pulse is started at the instant a
preceding one reaches its peak. A flat-topped resultant wave then oc-
curs between successive individual pulse peaks, as shown in Fig. 8. A
train of raised cosine pulses can therefore give timing information only
on the transitions 01 and 10, and the cireuit of 17ig. 7 is appropriate for
signaling frequency derivation. It may be verified from Fig. 4 that the
raised cosine pulse has null values in its Fourier transform at the signal-
ing frequency and its harmonies.

The message associated with the transition pulse train is, of course,
different from the original message and has a different set of statistics.
It is of interest to calculate the relation hetween the two for the case of
binary on-off message source with independent signal values. I'or such a

N \{’ / \(.‘\
A PANAANY
1 IJ/ \'\.I 14, y\ll/ Sl \\ J
0 1 o} 1 1 0 o] 1 1 1 0 o] 0

Fig. 8 — Train of raised cosine pulses.

source, the values of a, are selected independently, with the probability
pp that unity oceurs and 1 — gy that zero occurs in any position. Then
the mean first and second powers are given by

m = My = Py (48)
and the autocovariance by

R(0) = mi, Rn) = m, n # 0. (49)

The rule for constructing the transition message is given by the fol-
lowing table:

Original Message Transition Message
1 preceded by O.... .. ... ... . 1
1preceded by 1. ... .. .. ... ... 0
0 preceded by 0. ... .. ... ..ol 0
0preceded by 1..... ... ... ... . L. 1

The value 1 oceurs in the transition message from two events each hav-
ing probability m;(1 — m,;) and hence has probability 2m,(1 — m,). The
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mean first and second powers of the transition series are therefore given
by
1= ry = 2m(l — my). (50)

We shall represent the autocovariance of the transition message en-
semble by p(n). The value of p(0) is simply the mean square, and hence

p(()) = 2’??!-1(1 - ml) =T. (51)

To evaluate p(1) we note that the product of adjacent values in the tran-
sition message is zero except when the original values are 10 preceded by
0, or 01 preceded by 1. The probability of obtaining the first is
my(1 — my)® and of obtaining the second m,*(1 — m,). Hence the proba-
bility of a 11 sequence in the transition messages is given by the sum of
these two probabilities, and since we obtain unity for the produet in this
case and zero otherwise,

p(1) = my(1 — m)® + m°(1 — my) = m(1 — my) = rn/2. (52)

For values of n greater than one the constraint imposed by the transi-
tions effectively disappears, since we may fill in all possible 0 and 1
values between the eritical end points. Thus, in the case of n = 2 we
obtain values of unity in the transition series two intervals apart for the
following original message sequences:

1 0 01
1010
01 01
01 1 0

These have total probability

p(2) = 4m (1 — my)* = . (53)
To evaluate p(3), we merely fill in all possible 1’s and 0’s in a column
between the second and third above and obtain the same total proba-
bility because the compound event represented by the first and last
two columns is independent of that represented by the middle column.
The probability of the first compound event is r,°, as caleulated above,
and that of a second is unity. Hence the complete autocovariance is ex-
pressed by

p(o) =T,
p(1) = p(—=1) = r/2, for [n|>1. (54)

p(n) = p(—n) =’
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Thus, the transition series formed from the independent binary series
becomes a digram series; that is, one in which adjacent values are de-
pendent but nonadjacent values are independent. The discrete compo-
nents in the spectrum are the same as in the independent case except
that m, is replaced by r, . The continuous spectrum is evaluated by sub-
stituting p for R and r, for m; in (35). The result after », has been re-
placed by its value from (50) is

w(f) =
2my(1 — my) . | G(F) | * (1 = 2my + 2my° + (1 — 2my)° cos 2xfT).  (55)

In the special ease in which m, = 3, this reduces to the same spectral
density obtained for the independent message case, (306).

111, DERIVATION OF TIMING INFORMATION FROM A RANDOM TELEGRAPH
MESSAGE

The existence of standard telegraph pulses which shock-excite a tuned
circuit to produce a sustained oscillation at the signaling rate for almost
all message sequences has been demonstrated by example in Section II.

In practical timing recovery circuits the ideal of a constant-amplitude
correct-frequency output is not perfectly realizable. Factors which in-
fluence the result include the message pulse pattern, the @ of the tuned
circuit, the presence of noise and the precision to which the natural
oscillation frequency of the tuned circuit can be made to match the sig-
naling frequency.

We shall analyze the problem of timing recovery under the conditions
in which the ideal performance is almost, but not quite, obtained. The
errors in this case are relatively small in magnitude and corresponding
approximations can be made in the calculations which will show with
sufficient accuracy what the quantitative requirements must be to hold
the errors within specified small ranges.

Assume that the tuned circuit oscillates at a frequency very near to
fr, the signaling frequency, and that € is sufficiently high to make the
influence of any one pulse on the amplitude of oscillation slight. Con-
sider the ensemble of possible responses in the interval from { = 0 to
t = T, with the process having begun at { = — . Almost all the wave-
forms are approximately sinusoidal and the negative-going axis erossings
cluster about ¢ = {, , where {, is defined by

av a(l.) = 0; av a'(t.) < 0. (56)

The actual axis erossing for the typical member of the ensemble occurs
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at t. + ¢/2xf. , where e is a small angle representing the phase error and
has a distribution of values over the ensemble. We assume that the wave-
form through this axis crossing is that of a sine wave of frequency f:
and amplitude equal to the value of x(f) one-quarter period after the axis
crossing, l.e.:

() = —a(l, + ¢/w, + T/4) sin |t — ) — €, (57)
with | e | <« 1. Then, retaining only first powers of ¢, we have
a(t) = ex(t. + T/4). (58)
We further assume that 2(t. + 7'/4) can be written in the form
a(te + T/4) = (1 + ¢) avat. + T/4), (59)

where | { | << 1. By averaging both sides of this equation over the en-
semble we deduce that av { = 0.
It follows from the above assumptions that

av () = av el 4+ ¢) ava(l, + T/4)]

(60)
= aveava(l. + T/4).

Henee, av 2(f,) = 0 implies av e = 0. The principal quantity of interest
is the rms phase error, which is the square root of av ¢. By the assumed
cycloergodicity of the process, an ensemble average of € is equal to an
average of the value of € over all intervals of any member of the ensem-
ble. From (58) and (59),

av (L) = [€(1 + 2¢ 4+ &) avia(l. + T/4)]

. (61)
=ave av a(l. + T/4).
Hence, to the first order of small quantities,
o e (t.) (62)

aviz(t. + T/4)°

The mean square phase error is thus expressed in terms calculable from
the general expressions previously derived for means and covariances of
the pulse ensemble.

It is also of interest to evaluate the mean square value of ¢ to validate
the treatment of ¢ as a small quantity and to estimate the amount of
amplitude variation. From (5Y),

av 2t + T/4) = av (1 4+ 20 + &) av’ x(t. + T/4)
(1 4+ av ) av’alt, + T/4).

(63)

I
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Hence,

av ¢ = WUAT/4) _ RO L + T/4)
’ Cavie(t. + T/ avia(t. + T/4)°

It is to be noted that the above treatment evaluates only the mean
square total phase error and does not give a frequency resolution. The
spectral composition is important, particularly in the case of a chain of
repeaters and is discussed in the companion paper by Rowe.'

We next calculate the average values appearing in the equations for
mean square phase error and mean square amplitude ratio variation for
specific pulse shapes. We assume that the circuit is not tuned to the pulse
repetition frequency so that a basis for estimating the error from mis-
tuning can be established. For the case in which g(f) = go(¢), the unit
impulse response of a single tuned circuit, we write (41) in the form

(64)

go(t) = A exp (—at) cos (wil + 6); t>0, (65)
where
A = (@ + D'/2RQ a = w/20; i
Q) = wlL/R, tan 8 = 1/2(Q). (66)
From (6), the ensemble average of a(f) in the interval 0 £ ¢t < T is
av (a0} = m "im go(t — nT)
(67)

1]
mA 2. Reexp[(j — Qwlt — nT) + jo.

The series is geometric and may be summed to obtain
mAd exp [—w(t — T/2)/2Q]
2RQ* cosh? w T /4Q — cos? w7 /2)

J.- qu \ f-IJlIT s 7' »
'Ihlllh 10 cos —5— €08 | wo t — 3 + 6 (68)

av a(l) =

— cosh % sin 2 sin lan(t — T/2) + e]}.

The value of /. in the noise-free mistuned case can be obtained readily
from (68) by equating the terms inclosed in the braces to zero, giving

te = T/2 — 8/wy + wy " are tan [tanh (w7'/4Q) cot (wT/2)]. (69)



STATISTICS OF REGENERATIVE DIGITAL TRANSMISSION 1521
We note that ¢, approaches T/4 as @ approaches infinity. If we as-
sume perfeet tuning by setting « T = 2, (68) becomes
av x(t) =

lewr(-l(f + D" exp [—(wt — 7)/2Q] cos [w{t — 17/2) + 6] (70)
7 ' 4RO sinh 7/2Q '

That ig, the average waveform of the tuned circuit response hecomes a
damped sine wave of the correct frequency. When @ is large, the damp-
ing is small. The limiting form as @ approaches infinity is an undamped
sine wave:

. m
lim av x(f) = 2%r

s wt — T/2). 71
lim e cos w.( (71)

This result is perfect for frequency recovery. It is to be noted that it does
not matter whether the message values are independent or not. In the
special case in which pulses are generated by transitions only, m; would
be replaced by 1 = 2m; (1 — my), as given by (50).

To complete the estimate of rms phase error and amplitude ratio varia-
tion, we must evaluate the average value of x(f) one-quarter period away
from {, , and the average squares of x(f) at ¢ = {, and { = t. + T/4. The
value of av x(f, + T/4) is obtained by substitutingt = ¢, 4+ 1'/4 in (58).
The evaluation of average squares may be done in general from the
covarianee formula of either (16) or (17)-(21), recalling that

av 2°(t) = av’x(t) + av (), (72)

R,(0, t). (73)

av iy () =

Two binary cases of considerable importance which simplify considerably
are those of completely independent message values and the message de-
rived from transitions between independent values. These arve:

Independent Binary Message

R(0) = m; R(n) = m’; n #= 0,

R,(r, 1) = mi(l — my) Z gt — mT)g(t — mT + 1), (74)

av (1) = R,(0,0) = mi(l — my) > 4t — mT).

m=—uw
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)

Transition Message for Independent Binary Values
RO) = r, = 2mi(1 — my), R(1) = R(—1)

) (75)
r/2, R(n) = v’ | n| > 1,

R,(r,t) =m 2 gt — mT)(A — rg(t — mT + 1)
m=—0a0 (76)

+ G =rdglt —(m — DT+ 7]+ G —rdglt —=(m + 1T + 7],

av 0 = R0, = 1 3 (1 = gt — mT)

m=—o0 (77)
+ (1 — 2r)gt — mTglt — (m + 1)T].
For the independent binary message ensemble with g(f) = go(1),
0<t<T,
av (1) = R,0,8) = mi(1 —my) 2 gt — mT)
_ om(l — m) exp [—w(t — 7/2)/Q]
1 sinh w07 /2Q (cosh® wel /2Q — cost wT) (78)

feosh® woT'/2Q — cos® wT + sinh® (wT'/20) cos w,T
008 [w(2t — 1) + 26] — sinh (w?'/Q) cosh (woT/2Q)
-sin woT sin [wo(2t — T) + 26]}.

If wyT = 2, this reduces to:

av (1) =

ma(1 — my)eo, (4Q% + 1) exp [—w,(t — T/2)/Q] cos® (wt + ) (79
8R2Q* sinh 7/Q ’

In the limit as @ approaches infinity, then,

m(l — mw,”

) cos wd. (8D

av i (1) —

IV. EVALUATION OF RMS PHASE ERROR WHEN INDEPENDENT ON-OR-OFF
UNIT IMPULSES ARE APPLIED TO MISTUNED CIRCUIT

We illustrate the use of the equations derived above by carrying
through the evaluation of (62) when the message pulse source consists of
independent on-or-off unit impulses and the ratio of tuning error to the
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signaling rate is small compared with unity. We adopt the following
notation:

l’lf{wgl —_ w,)/w,

Il

fractional tuning error,

@ = qu/-lQ = (1 + .l.‘.)']'r/zQ, (81}
16l = (1 + k‘)ﬂ-:
wl(te — T/2) + 6] = 2.
From (69), then,
sin® = tanh « cot 8 (1 + tanh® & cot’ ,B)_” :
(82)

cos ® = (1 + tanh® @ cot’ B) .
Then, from (78), we may write, after noting that av x(f) = 0 implies
av 2°(t,) = av y'(t):
av () =

mi(l — m)wo(4Q° + 1) expl —wilte — T/2)/Q] , . o,
16R2Q" sinh 2a (cosh? 2a — cos? 23) {sinh” 2o (83)

+ sin® 28 + sinh® 2« cos 28 cos 2¢ — sinh 2a cosh 2a sin 24 sin 2¢).

Irom straightforward trigonometrical manipulations,
2 tanh « cot 8

1 + tanh?a cot? 8’

1 — tanh® « cot’ B8

1 + tanh? @ cot® 8~

When the values of sin 2® and cos 2& are substituted in (83) we find,
after some reduction:

sin 2¢ =

(84)
cos 20 =

av () =

(1 — mwo (4Q° + 1) sin 23 (85)
exp | —Q [0 + arc tan (tanh « cot 8)]}
16 220* sinh 2a (cosh? 2a — cos? 23) '

In the high-Q case, the value of av x(f, 4+ T'/4) will be very nearly equal
to the maximum value of av z(f) as given by (68). Making this assump-
tion and simplifying, we obtain:

av’ 2l + T/4) =

@wuﬂ(ng + 1) exp | —Q 'lwo/4f, + 8 + arc tan (tanh a cot B)]} (86)
16R2Q%cosh? & — cos® 3) S
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Then, from (62),

vz (1 — my) sin® 28 exp (—wo/4 £,Q)
ave = . .
4m; sinh 2« (cosh? « — sin? 8)

_ (1 — my) sin® 2kr exp [—(1 + k)r/2Q]
~ 4my sinh (1 + B)x/Q[cosh? (1 + k)x/2Q — sin? kx|’

In the limit for & << 1 and @ >> 1, which is the region of practical interest,
av e — (1 — m)wk> Q/my . (88)

(87)

The rms phase error is the square root of this quantity. F'or equal proba-
bility of pulses and spaces, m; = %, and

erms = (av €)' = k/7Q. (89)

Fig. 9 shows a set of curves of rms phase error vs. ) for fixed values of
tuning error. It is to be noted that this performance is attained when the
reference phase of negative axis-crossings is ¢, defined by av x(t.) = 0.
This value of time is displaced from the time & defined by (42), which
would be the correct reference if there were no mistuning. The difference
is accounted for by the steady-state phase shift of the network at the

10'1 4 4
. o olos” 14/ &%7| . _ _FREQUENCY ERROR
wZ I gl B = MIDBAND FREQUENCY
ps K 27 MoBanD rreavency
/1 ~ (3DB) BANDWIDTH
1072 —o\"""’/ < //f/
- /|
) / /, 7/ ,/ _A
3 ” 7 e -
z /7 A e
a ) ’ e
< 2 Z ) »
14
Z 1072 —00\"’1/ pid // 1
= p A 4
@ 5 yd _ 1/ /
o Vi s L7 L~
o Vd V4
5 .r’ r’ /
th 1074 —ooo\pin/ P
p A
kS ~ :’ ——— REFERENCE IS NULL POINT
N & ASSUMES USE OF OPTIMUM
2 Py / PHASE SHIFT
c ’ ofe —-—— REFERENCE IS INCOMING PULSE
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o PHASE SHIFT OF TUNED CIRCUIT
L}
10_6 5 5 5 5
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Q

Fig. 9 — Phase error in timing wave from mistuned recovery circuit.
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pulse frequency. If we were to take the axis-crossing reference time as
to, the mean square phase error would be determined by av (o) instead
of av 2°(t,) in (62). Since av x(f,) does not vanish, the expression for
av 2°(fy) must be written as

av 2'(ty) = av’ z(ty) + av i (t)- (90)
From (42),
th=T/4 — T/2r,
to—T/2=—T/4 = 8/w, = — (8 + 7/2)/wr,
cos [wolte — T/2) + 8] = cos [(1 + k)x/2 — k6]

Il

= — sin [k(=/2 — 6)],

. (91)
sin [wo(t — T/2) 4+ 6] = cos [k(x/2 — 8)],
cos 2wty — T/2) + 6] = — cos k(r — 26),
sin 2[wo(t — T/2) + 8] = — sin k(x — 26).

Substituting these values and taking the limit for & < 1, and @ > 1,
we find the rms phase error in the region of interest to be given approxi-
mately by

;L R+ 1/4Q) .

e T (92)
The dashed curves on IFig. 9 show the values of error thus obtained and
indicate the importance of a phase adjustment to optimize for the tuned
circuit in use.

It remains to evaluate the variation in peak height of the tuned cir-
euit responsge, This requires evaluating av ¢ from (64), which in turn re-
quires caleulation of av y*(t. + 7/4) from (78). As in the case of av®
y(t. + T/4) it is sufficient to take the maximum value of (78) overa period
in £. The evaluation of av ¢* is facilitated by immediate comparison of the
resulting expression for av® y(t. + T'/4) with that for av® a(t, + T/4)
given by (86). We find

B(1 — my)(cosh® @ — cosh® B)

av i (L. = av’ x(l /
wy .+ T/4) =ava(l. +T/4) iy i o (cosh® 2o — cos? 28 (93)
where
B = cosh® 2a — cos” 28
(94)

+ sinh 2afsinh? 2@ cos® 28 + cosh® 2a sin® 28"~
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Then, by some further manipulation, we find:
2
av {7 =

(1 — my)[sinh® 2« + sin® 28 + sinh 2« (sinh® 2« + sin® 28)"
4m, sinh 2« (cosh? @ — sin® ) ’

(95)

In the limit when @ >> 1 and k « 1, we obtain

2 (1 - m;)wQ 1 2 1 1 2 Lz
av & = TR ) ; | = 1k . {
w ¢ Il — k) | Q2 44+ o\ +4 (96)
With no tuning error, the ratio
(1 — m)r

2miQ (97)
can also be obtained by taking the ratio of (80) to the square of (71).
When & < L@, the limiting form is

(i___%l)i (1 + 3E°QY. (98)

2ma

av 5’2 —

av ¢ =

If k& is fixed and not equal to zero, the limit as @ is made very large is

(1 — m)xQk

nma

av ¢ = (99)

The analysis given here is valid only when av ¢ < 1.

V. EFFECT OF NOISE ON TIMING
The question of timing errors caused by noise superimposed on the

received pulse train can be resolved into two parts: (1) the shift in refer-
ence time at the input to the tuned circuit and (2) the resultant variation

Fig. 10 — Geometrical construction showing relation between noise and tim
ing error.
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in the phase of the tuned circuit response. The first question can be con-
veniently answered by a geometrieal argument based on Iig. 10. Here
an enlarged section of the message pulse wave front is approximated by
a straight line AB of slope equal to that of the pulse at the unperturbed
eritical time # . The instantaneous noise voltage v, advances the critieal
time by &, , where v,/8, = slope, and hence

80 = 0./4 (L) (100)

Statistics of 8, can be evaluated from the statisties of the noise and the
specification of the pulse waveform. In particular, if the instantaneous
noise values at corresponding instants of signaling intervals n intervals
apart are not independent but have an autocorrelation or autocovariance
function R,(n), the resulting time shifts have the corresponding function
Rs(n), where

Rs(n) = av (8idrgn) = av (Uxtin) /g (to). (101)

The average is taken over all time for one member of the ensemble to
give the autocorrelation or over the ensemble at fixed time to give the
autocovariance. We assume here that the process is ergodic and hence
that the two averages are equal. We have also assumed that the slope
of the signal pulse is constant in the neighborhood of the slicing level.

In the second part of the problem, we assume perfect tuning of the re-
covery cireuit and write for its response

o0

#D) = D awgelt — nT + 6,). (102)
n=—0w
Here go(t) represents any response function which reproduces the axis
crossings correctly and, in particular cases evaluated, it will be assumed
as the impulse response of a tuned circuit. We assume that the individual
values of 8, are sufficiently small to enable an accurate representation by
first-order terms in a power series, thus:

o0

) = 2 aldglt —nT) + 8,90t — nT)]

n=—w

. (103)
=2(0) + 2 and.go’(t — nT).

n=-—0

Without loss of generality, we may take av 8, = 0, since a constant time
shift may be compensated by a change in the reference time. Then, if the
noise and message ensembles are independent,

av z(f) = av x(t). (104)
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We next calculate the autocovariance of the perturbed tuned circuit
response as

av [z(0)z(t + )] = av [e(Dx(t + 7))

4+ 20 2 av (awa.) av (8uén)gl (t — mT)gd(t — nT + 7).

m=—c n=—00

(105)

The first term on the right represents the unperturbed autocovariance
and has already been evaluated. The effect of the noise is given by the
second term and, by use of the same technique as in obtaining (16), we
obtain its autocovariance as

Rz—z("'; t) =

« @ 106
> 2 Rim — n)Rim — n)gd'(t — mTg'(t — T + 7). (106)

Mm=—ec n=—cw
In partieular for the case of independent message values,

Roor, ) = my 2. Rimdg’(t — mT)g'(t — mT + 7), (107)

m=—00

and
av [Z(1) — 2°(1)] = R._.(0,8) = m i Rs(m)[gd'(t — mT))>. (108)

We may treat the phase error caused by noise in the same way as we
did the mistuning error in deriving (62). Since, with no tuning error,
av2’(i) = 0and t, = T/4 — 8/2+f,,

av 2'(t.)

av et = =¥ #\el (
av e, el £ T/ (109)
If the input noise values are assumed independent,
Rs(m) = av s, = av.’/[¢ (L) = & (110)
Then
av 2(L) = ms® Y, lg'(t. — mT))". (111)
If
qo(t) = Ae ** cos{wt + 9), (112)

it follows that
go'(t) = Be ™ cos(wt + 0 — &), (113)
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where

o

B=(a+e)"4, tnd=0/a (114)

Hence, the previous evaluation of (79) can be used for av 2 (t.), replacing
6 by § — ® and multiplying the result by (" + w,)8°. Then

e, 6 (4Q° + 1) exp (8 + 7)/2Q

av 2(L) = . : 115
w 2 (k) R*QP sinh 7/0Q (115)
The limit as @ approaches infinity is
4.2
2 Mw, 6 .
av 27 () = —=. 116
av z (1) 52 R0 (116)

. 2 . . e s
The expression for av ¢, is found from division by the square of the
amplitude factor of (70), giving

av e’ = my " wd exp [(3r — 26)/4Q] tanh (7/2Q)
t (117)

w ;
— T § as @Q— w
:

m

2m1Q)

The effect of noise on the recovered timing is seen to vary inversely with
() and hence may be made arbitrarily small by using a sufficiently high-Q)
circuit. The effect is opposite to that of tuning error which becomes worse
as (Q is increased. The possibility of an optimum @ taking both effects
into account thus exists.

VI. EFFECT OF TIMING VARIATIONS ON A DECODED ANALOG SIGNAL

The effects of timing errors are of two main kinds. I'irst, they increase
the difficulty of reading the message correctly because the decisions are
made at a less favorable point on the pulse wave. This is called the align-
ment error and is particularly important in a long chain of regenerative re-
peaters. It has been discussed by E. D. Sunde* and is also analyzed in the
companion paper by H. E. Rowe.' It will not be treated here. The second
effect is to impair the usefulness of the received digital message even
though the correct sequence of values is delivered. The seriousness of
this effect varies widely with the type of message. At one extreme, the
recovery of printed text from a telegraph message would hardly be
affected. An analog signal transmitted by pulse code modulation, on the
other hand, is in some danger because the decoded signal is not correctly
reproduced by irregularly spaced samples. A single-channel system would
undergo phase modulation from this cause. In the case of a time-division
multiplex system, some interchannel crosstalk may result if the jitter
varies with the signals in the channels. The most severe requirement oc-
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curs when PCM is applied to transmit a group of frequency-multiplexed
channels, since any waveform distortion can mean interchannel erosstalk
after the channels are separated.

We should point out at the beginning that we are not forced to accept
time jitter in the received digital wave as finally used. A master clock
could be inserted at any stage to force the pulse back into a proper time-
reference framework. By means of resampling combined with pulse
stretching and delay line distribution techniques, such corrections can
be made even when the extent of the tuning variations exceeds the signal-
ing interval. It would, of course, be desirable to avoid these operations
and hence it is important to determine the permissible extent of time
jitter in specific situations. We shall consider here the case of multiplex
speech channels in frequency division transmitted by pulse code modula-
tion, the FDM-PCM system.

Our procedure will be to represent the multiplex signal by an ensemble
of band-limited functions {s(#)] having a spectral density w,(f) which
vanishes for | f| = fo. Any member of the ensemble is completely de-
fined by its samples taken 1/2f; apart; in fact, by the sampling theorem,
we have the identity:

) = 3 sny2fy) S 2ht + n/2f)

n=—auwo 27rf@(t 'f' 'R/zf(]) (118)

The right-hand member is the response of an ideal low-pass filter to im-
pulses of weight proportional to the samples. The effect of time jitter is to
introduce an irregular spacing of the recovered samples which, when
applied to an ideal filter, produce the distorted wave

R S _ sin 27 fo(t + w, + n/2f,)
a(t) = nzZ_‘,m s(n/2f) T S o

(119)
The timing errors are represented by u, = u(n/2f,), where {u(f)} repre-
sents a jitter ensemble with specified statistical properties.

The evaluation of interchannel crosstalk is conveniently accomplished
by assuming signals present in all but one of the I'DM channels. The
spectral density w,(f) is set equal to zero throughout the frequencies oceu-
pied by the idle channel. Values in this frequency range of w,(f), the spec-
tral density of the recovered signals, then give the interchannel inter-
ference caused by the time jitter. This method has the advantage of
separating the interchannel interference sought from in-band distortion
which is of no consequence. We refer to a previous paper® for a deserip-
tion of some of the necessary mathematical techniques.
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We assume that s(¢) and «(f) have autocovarianee functions expressed
in terms of the spectral densities by:

o

R(7) = f w,(f) exp (j2xrf) dJ, (120)
—Jo
o

R.(7) = j;f w,(f) exp (j2x7f) dF. (121)

It is no loss of generality to assume that w(f) is band-limited to the range
—Ju to fo, since higher frequency components would produce effects in-
distinguishable from those in the band of half the sampling rate. The
spectral densities are in turn expressible in terms of the autocovariances
by

w,(f) = [nw R.(7) exp (— j2x fr) dr, (122)

u’u(.f) = 1: RII(T) exp (—_}21rfr) dr. (123)

The s- and - ensembles are assumed to be independent and ergodie.
Note also that the signal density spectrum is defined in terms of mean
squared voltage or current values, while the jitter spectrum is expressed
in terms of mean square values of time.

Our procedure is to calculate first the autocorrelation function of the
a(f)- ensemble by the definition

Ri7) = av o(t)e(t + 7) = av i i s(m/2fo)s(n/2fy)

m=—og n=—uw

(124)
Csin 27 folt + w, + m/2f0) sin 2xfolt + 1 + u, + n/2f0)

A f*(t + wm + m/2f)(t + 7 + w0 + n/2fo)

The spectral density of the distorted signal ensemble is then given by

welf) = f_m R.(r) exp (— 72m f7) dr. (125)

We assume ensemble and time averages to be interchangeable by the
ergodic assumption. The averaging over the s- and u- ensembles may be
done separately because of their independence. Furthermore, the double
series may be averaged term by term since, in any case, the average of the
sum is equal to the sum of the individual averages. We first note that, for
the s- ensemble averaging,

av [s(m/2fo)s(n/2f0)] = av [s(m/2f.)s(m + n — m)/2f,]
= Rj[(n — m)/2fi) = RJf(m — n)/2f4.

The averaging over the - ensemble is more troublesome.

(126)
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It has been found possible to obtain a reasonably simple answer only
in the case of & gaussian jitter ensemble. By an involved caleulation,
which is explained in the Appendix, we obtain for this case, sefting

TM:: l/lﬂ“

Iy o0 =/ To
Ror) = =2 2 If,(al’l'.,)f exp (—2'U,°) cos (r — nTw)zdz, (127)
0

T n=—c0
where
U} = R.0) — Ru(nT). (128)
In terms of the complex error function,
] 0 = (711 ()) (‘TI'U . T + ?ITD)
R = — I g ———— ). (129
(T) )\/W u;m ":1 { i T‘O ! 2[}Ty1 ( )

In the case of PCM transmission of an FDM group, the allowable
jitter is small. This means that the integral of the spectral density w,(f)
must be small and, hence, that R,(0), which is equal to this integral,
must be small; R,(r) assumes its largest values at - = 0 and we con-
clude a fortiori that U,” must be small. Hence, we approximate by re-
placing exp (—z°U,%) by zero and first-power terms in its power
series expansion and obtain an approximate value of the integral in
(127):

sin )rfu(r + nTy)

Ro(r) = Z R.(nTo) = (1 — 4 [°U5)

p— 27 fo(r + nT)
(130)
— oy I:(ros 2r folr + H@ _ Tosin 2xfolr + nTg)]
- (r + nTo)? x(r + nT)) ’

By a further manipulation also given in the Appendix, we find that this
approximation yields for the spectral density

wo( f) = (1 — 47" Fu . f)

o 31)
+ 47r-f-|[1ﬂg‘u(_;r) + u’s*n(z,rﬂ + f) + wa*u(2.fﬂ - J‘I)]) 1 f | < f",
where
uy = V/R,(0) is the rms time jitter and (132)

'ws‘y(.f)

j-w w(\ + Hwa(N) dr
—o (133)

convolution of signal and jitter spectrum.

We note that the first term consists of the original power spectrum of
the signal depressed by the “crowding’ effect factor (27fu)’. The crowd-
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ing effect does not introduce new frequencies not present in the original
signal and therefore does not contribute to interchannel interference. The
interference is given entirely by the second term, which consists of dif-
ferentiated convolution spectra of signal and jitter. The differentiation
is expressed by the multiplying factor (2af)°, which gives a triangular
voltage spectrum like that of thermal noise in frequency modulation.
The term w,.,(f) represents the direct convolution of signal and jitter
spectra, while w,...(2fy =& f) represents sidebands of the convolution spec-
trum on the sampling frequency.

In testing of multichannel systems by noise-band loading, as pre-
viously mentioned, the signal spectrum applied is flat except for the nar-
row band assigned to the channel under test. The power spectrum is
made equal to zero throughout the test-channel frequencies (see Figs. 11
and 12). The expression for w,(f) is then:

(K; |fl<fe and  fi+f <|f] <fo
w,(f) = | (134)
o o< |fl <fe+fe,
where f, is the test channel earrier frequency and f, is the bandwidth of

one channel. (We have assumed a single sideband system with upper
sideband transmitted.) Then (133) gives

—Si—fe fi fo
Wl f) = K UI + f_j + f+f:|wﬂ(f+)\) i (135)

It is sufficient to evaluate the interference spectrum in the test channel
range f, to f, + f. and —f, —f. to —f,. Since power spectra are even

|
|
wy (2fp-f+N) -, i

we () -
¥
f, f
—1;‘0 —‘Ft (o] 'Ft ‘FO
o Fe s | b
b P
: [ | ; 1
Py Wy (Fen)
T
1NN - .
R -, -f 0 fo-f P
?L—-*i : i
(I
b
[ 1
] I |
1 1 1

-(3fy-F) -(afy-T) —fo -(fo-F) s}

A —

Fig. 11 — Speetral relations for noise band as test signal with f, > f./2.
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ws (f) -,
N
'F o — = -(—‘F
-fa -y o fi fo
| 1 Pt f—
i [ .
| I I
I I 1
l | I I ,—WU(‘F+)\.)
T 1
I NN ; ‘-\*‘ : AR
—fo-f | £ o f fo-f
' P P A—
1 [
\ Wy (2fo-f+X) b [
H / | Pl [
| I Pl
i I [ 1]
| L1 [
-(3fg-T) —(2fp-T) -(fo-T) 0 A —>

Fig. 12 — Speetral relations for noise band as test signal with f, < fo/2.

functions, we actually need to calculate for only one of these intervals.
There are two contributions from (131) to the positive interval — one
for w,.(f) and the other from w,..(2fo — f). The term wye (20 + )
vanishes for f > 0 since w,.,(») is zero for » > 2f .

The contribution from w,..(2fs — f) to the positive interval f, to f, + /.
is defined by the interval 2fy — f = fi + f. to 2fo — [ = foor [ = 2fy —
fi — foto [ = 2fi — fi. We must therefore evaluate wyw.(f) in the
ranges f, tof, + f. and 2fy — fi — f. to 2fo — f+.

Figs. 11 and 12 show the limits of integration which apply for the
cases of f, greater than and less than fy/2, respectively. I'rom these dia-
grams, we deduce that the distortion spectrum in the range fi<r<
ft + fc ’ lb giVC]l b_Y

. j *ft’fs
wud(.f) = 47"-_[-[( l[f [Tvu(f + )\) + wu(:z.fﬂ - )r + x)] dA

fo—ft
+ f wo(f + N) d\ (136)
-5
f—fo i fD
+ ff w(2fo — F+N) d?\} for f > 5
and
) —fi—Jc it fo—7S
wed f) = 4K {[ [+ [+ }wﬂu 40 d
—/o —ft SetSo (137)

i—re . - fu
+ f w(2fo — f+ N dr for f < 75.
—fl] -
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A special case of interest is that of a flat jitter band over a low-fre-
(uency portion of the signal band. Rowe’s previously cited work' on
regenerative repeater chains indicates that the jitter spectrum peaks at
the low-frequency edge of the signal band as the number of repeaters
becomes large. Suppose the jitter spectrum is uniform from —F to F,
J < fo and consider the case of f; > fi/2 and F < f, — f, . This corre-
sponds to a test channel in the upper half of the signal band but below
the top by at least the width of the jitter band. The distortion spectrum
is given by

220 2 —fi—fe —/tF
wea( f) = i Tﬁ«{ﬂ (.[; F + ff )d}\

4’ [*Kuy' _—
A = LA F = P41 (39)
A K,
sy e Gl
= 4r' f*Ku if f, < 2F %
The mean square total interference voltage in the idle channel is
23 f£+‘rc 9 0 9
wh=2 [ el df = 8a K, (139)
It
If the mean square signal is s;°, we have
Sl)ﬂ = 2]\—.]‘.[] ) (14:0)
and
;L = 47 f ud Lo/ o. (141)
0

The dependence on the square of test-channel frequency shows that we
have a triangular voltage spectrum like that obtained in FM.

A quantity of interest defining signal quality in the typical channel of
the frequency-division multiplex system is the ratio M of mean square
value of the sine wave test tone which fully loads the channel to the mean
square interference voltage when the channel is idle and the other chan-
nels are being operated in a normal manner. The mean square full load
test tone voltage on one channel of an FDM telephone system is related

* The implications of this approximation should not be overlooked. If the band-
width of the jitter spectrum is small compared to a channel width, interchannel
interference would result only from high-order modulation neglected in the
above approximation.
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to the mean square full load test tone for the entire system by the Hol-
brook-Dixon” eurves, which we shall express in the form

M, =nP/P,, (142)
where

P, full load test tone mean square value necessary to transmit one
voice channel,
full load test tone mean square value necessary to transmit n

superimposed voice channels.

Pll

When the multlple\ system is operating normally the active chfmnel‘s
are loaded with voice signals and not by sine waves. The value of S0
the mean square total signal voltage with speech loading, may be ex-
pressed as

= P,/H*, (143)

where H is the ratio of the peak factor of a sine wave to that of a compos-
ite multichannel speech wave. This is based on the assumption that the
normal speech loading reaches system overload occasionally. The peak
factor of a sine wave is 1/2, corresponding to 3 db, while the peak factor
of superimposed speech channels approaches that of thermal noise as the
number of channels is made large. The peak factor of thermal noise de-
pends on the value of the probability of excess chosen. A value often
used is 4, corresponding to 12 db, for which the probability of observing
greater peaks is one in 10,000. This choice fixes H * at eight, corresponding
to 9 db.
We write, in accordance with the above,

M = Ijl/if-pﬂ, (14:4:)
and assume M specified. It follows that
M= MPofo . HM.f . (145)

4xtfrudnf.s® 4wt fiugnfe

« . 2 . « . . .
Solving for uy°, we obtain the minimum requirement for mean square
time jitter:

) H* foM,,

= el (146)

U

Because of the triangular distortion voltage spectrum, the requirement
is most severe at the highest channel carrier frequency.

It is convenient to express this requirement in terms of rms phase



STATISTICS OF REGENERATIVE DIGITAL TRANSMISSION 1537

jitter ® allowed at the digital pulse frequency, which is 2N/, for an N-digit
PCM system. Since ® = 2x(2Nfy)uo ,

o ANH'f['M,
o nfELM

Consider, for example, an 8-digit binary PCM system transmitting a
2000-channel single-sideband FDM telephone signal with 4-ke carrier
spacing. The top channel is at 8 me and imposes the most severe require-
ment. We ask for a 60-db ratio of full load test tone power to idle channel
interference. Assume the sampling frequency is 20 me. We evaluate M,
by extrapolating from Table T of Ref. 8: H® = 8 N = 8, f, = 10",
M, = 2000/80, n = 2000, f, = 8 X 10°, f. = 4 X 10°, M = 10°, and
we calculate ® = 0.3 radian. This result is close to estimates made by
0. E. DeLange and I£. D. Sunde by different methods.

(147)
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APPENDIX

By the definition of a time average,

. 1 - % .
Rle) = i o 2y 2, Rl = 0T

PREIn Tl (t+ mTy + w,) sin Ti t+ 7+ 0Ty + w) dt (148)
0 0

L, (;

T

)_ (t 4+ mTo+ )t + 7+ 0Ty + w,)

The integrand is an analytic function of ¢ in the finite plane and hence
the path of integration may be deformed without changing the value of
the integral. We replace the part of the path passing through the zeros
of the denominator by downward indentations. Sum and difference
formulas may then be applied to the sines to resolve the integral into the
sum of separate components without introducing singularities in the inte-
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grands. Designating the resulting path of integration by C, we then have:

N N m _
R7) =lim 2. 2 M

N=00 ni=—00 Rn=—00 —]:AI‘JI'3
dt
t 4 mTy+ )t + 7 +0T0+ un
e ( 0 )( 0 ) (149)
{cos 11, [r 4+ (0 — m)To + wn — tal
0
— cos -%.— 2t + 7+ (m + )T + w. + u,,}}‘
0
To evaluate the integral, write:
mTy + un = a
. (150)
r+nly+ u, =0

Note that a and b are real numbers. We must calculate:

cos — (b — a) cos%(Qi—I-a-’rb)
[ i
e (t+ a)(t + b) ¢ @+ o+ b )

The first integral vanishes as we let N approach infinity, as may be seen
by closing the contour in an infinite semicircle below the real t-axis. The
absolute value of the integral around the semicircle of radius r cannot
exceed the product of length of path #r and the maximum absolute value
of the integrand, which is less than 1 /¢, The integral around the semi-
circle is therefore less in absolute value than «/r and approaches zero as
r goes to infinity. The integral around the closed contour including ¢
and the semicirele must vanish because there are no singularities inside.
Hence the integral over ' also vanishes and the first integral is zero.
The second integral may be written as the sum of two terms:

i T 2w i) T, — j H6) | T — JertfT
eﬂ(aﬂ))! o eJWfTu dt e Jm(a+b) [ To e st gy

+

2 e (t+ a)(t + d) 2 e+ )+ b)) (151)

In the first term we close the contour in an infinite semicircle above the
real f-axis and obtain an integrand which vanishes exponentially as the
radius is made large. In the limit the integral along ' is then equal to the
integral around the closed contour, which in turn is equal to 2x/j times
the sum of the residues at the poles { = —a and { = —b. In the second
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term we close the contour below the real t-axis and show that the integral
vanishes. Therefore the complete result is given by:

— 2malT —2xh| T
_ -7rf ﬂr(fr+h}l'1'u ‘: o + ¢ ’
9 b —a a—b

— TI'J [(,jir(ufb) Ty __ ngﬁ'(ﬂ‘-b)lTQ] (150)
a—b

27 sin wla — b)/To
a—0b ’

Hence,
R,(7r) =
N v TR JJ(m—n)T sini[(m—n)Tu—I—um—un»-q—] (153)

lim 2 T

Ne=w n—N b;v ~ 2Nal(m — )To + up — tn — 7

IFFor purposes of calculation it is convenient to introduce the dummy
varinble z'and write the equivalent form:

w/ Ty
R.,(7) = f dz
0

(154)
z E ToR[(m — n)T) cos [(mﬁ% n)To + 1y — Uy — 7l2
m=—N n=—N QJV‘.TI' ’
Next we change the order of summation by letting m — » = m’ and
dropping the prime after eliminating m to obtain
T/ Ty
R,(7) = f dz
0
(155)

Z "i ToR.(mTy) cos (mTy + itpyn — 1 — 'r)z.

T
n=—N m=—N—n 217\ ™

The summation can be rearranged into the equivalent form

1] N 2N N—m

Y Y o+y Yy,

m=—2N n=—N—m m=1 n=—N
so that the summation may be performed with respect to n first. For
ach value of m there are 2N 4 1 values of n. When N is large, summing
over the values of the function
ToR,(mT ) .

G(nTy) = — (mTo) os {mTo + ullm + n)To] — unTy) — 7}z (156)

™
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for 2N + 1 values of n with m fixed and then dividing by 2N approaches
the procedure for calculating the average of G(nT) over the u-ensemble.

To evaluate the ensemble average of G(nTh), we invoke a theorem ex-
pressed by equation (1.14) of Ref. 6, which states that, if u(f) isa gauss-
ian ensemble,

av {cos [au(t) + bu(t + ) + gl}

= exp [a‘ T b R.(0) — abR, (r)] cos f.

(157)

We shall assume from this point on that u(f) is a gaussian ensemble.
Then the above result fits our case if we set { = n7y,a = —z, b = z,
g = (mTy — )z, r = mTo . We then find

av G(nTy) = Lokt (mTo) ¢ RO =R TO) o Ty — 1)z, (158)
™
and
Ty & .
R,(r) = =2 3 R.(mTy)
T m=—w

(159)

rt'Tu 2
f g O ROl oo T — mTy)2] de.
0

The integral is now evaluated by writing the cosine in exponential
form, completing the square in the exponent, and substituting variables
to obtain the error function. The result is given as (129) of Section VI.
We have replaced m by —n and made use of the fact that the autocorre-
lation funetion is even.

We next calculate the power spectrum w,(f) by taking the Fourier
transform of the approximate autocorrelation (130). The complete in-
tegrand has no singularities in 7 and, by indenting the path of integra-
tion below each point + = —nT', we can separate the integral into com-
ponent parts without singularities on the path. Denoting the depressed
path by €, we evaluate

¢ sin = (v + nTo)
/ o
c TI'(T + nTo)

f [ 1O bing _ enf e Tl dr
c 2mj(r + nTy)  (160)

dr

1

[0, [ f]> 57,
i2nwf Ty, L
[t’- 1< 5T,
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e cos Z (r 4+ nTy)
f Ty dr
¢ (r 4+ nTo)?
_ f 7)[’1rf (7/Tg))r+inm + ,

dr

2(r + nTy)? (161)

—j2nfim /T ]T— JFH!']

1
‘) TU

2nwfTy, 1
1”(2’”{_ T) TSI < 5

— j9 . ™
BT sin ~ (r 4 0T
T,

f(.- G+ alyy dr

_ f [ n Tl iy

L] > —

[}

__dr
2j(r + nTy)" (162)

e—j[ﬂﬂ'f +(1I'I’}‘u)]‘r—jnr]

o e
: 1

T, T\ jamrr,
TR T

Then, for | f| < 1/2T ; that is, | /| < /o :

w(f) = 2. ToR.(nTy) [1 - L Ut — 20, (2f — i)
n=—w 1 02 TO
— 92 ﬁf ( of — #)- ,f} T (163)
T
=T > RnT)(1 — 477U, ™7,

(120), we note that w,(¢) vanishes outside the range —J, to fo,

Ri(nTy) = f w ()T (164)

From

and from the analogous relation for R, (i),

R.(nTy) = f wa ()™ dy, (165)



1542 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1958
Application of the convolution theorem shows that
b P
R.nTOR.(nTy) = f Wyey (9) TV, (166)
oo
where

Woeu (V) = fm w,(Mw.(x + v) dA
- (167)

.[w wHO\ + V)?.Uu()\) d\.

We substitute the above expressions for Ry(nTy) and R,(nT)R.(nT0)
in (163) and then apply Poisson’s summation formula,

2 f o(2)e™ dz = 2x 2. o(2nm), (168)
to obtain, for | f| < fu,

WA = 0 = P RO) 3 (- 1)

+ 47 Y e (,}'D - f).

n=—c0

(169)

Since both w,(f) and w,(f) have been assumed to vanish for | f | > fo=
1/27T, , the only term of the first sum which falls in the signal band —fo to
fo is that for n = 0, while in the second sum the signal-band contributors
aren = 0, —1 and 1. The latter conelusion follows from the fact that the
convolution of two functions limited to the same low-pass band is limited
to a low-pass band twice as great. Also, noting that power spectra are
even functions, we obtain (131).
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