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The present paper studies some of the statistical properties of the random
timing deviations, or position modulation of the signal pulses, in a long chain
af regenerative binary repeaters. Random timing deviations of the outpul
signal pulses result from input noise, tuning error, random timing devia-
tions of the inpul signal pulses (introduced by preceding repeaters) and
other sources at each repeater.

T he power spectra and the total powers (mean square values) of the timing
notse, spacing noise (random deviations in spacing of two consecutive pulses
Sfrom an integral number of pulse periods) and alignment notse (random
deviations in alignment between an input signal pulse and its corresponding
liming pulse) caused by the inpul noise al each repeater are determined for
a long chain of regenerative repeaters using etther tuned circuit or locked
oscillator timing filters. The effects of tuning error are studied for a chain of
repeaters employing locked oscillator timing circuits; however, the present
analysts does not treat the effects of tuning error in a chain of repeaters using
tuned-circuit timing filters.

I. INTRODUCTION

Regenerative binary repeaters have recently been proposed for both
baseband and carrier pulse code modulation systems,”* ** in which
the signal is represented by a binary pulse train. This type of repeater
attempts to remove noise and other types of distortion from the incom-
ing pulse train and to transmit a new signal which resembles the original
as closely as possible. Noise and other system imperfections have two
unwanted effects: (1) a certain number of errors oceur at each repeater,
i.e., a received pulse is transmitted as a space, or vice versa; (2) the signal
pulses are no longer centered in equally spaced time slots but have a
random position modulation, called timing noise. The present paper is
concerned with some of the statistical properties of the random timing
deviations in a system containing a long chain of regenerative repeaters.
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A portion of a typical pulse train under ideal conditions is shown in
Iig. 1, where, for purposes of illustration, the individual signal pulses
have been made short enough so that they do not overlap; the curve
represents either the amplitude of a baseband pulse train or the envelope
of a carrier pulse train. The pulses are either “on” or “off”, denoted by
“17 and “0” respectively; all signal pulses present have a standard am-
plitude and identical shape, and are centered in equally spaced time
slots.

An ideal regenerative repeater would sample the pulse train of Fig. 1
at the instants nT (n = - -+, —1, 0,1, -+ ). If the amplitude or envelope
at each sample point is greater than the slicing level a new standard
signal pulse is transmitted; if the amplitude or envelope is less than the
slicing level no pulse is transmitted. If an additive gaussian noise is now
present at the input to the regenerator there will be a certain number of
errors, so that the output pulse train will no longer be identical to the
input pulse train. To minimize the number of errors the slicing level
should be set at one-half the peak pulse amplitude in a baseband system,
a little greater than one-half the peak pulse envelope in a carrier system.”
The error rate is then determined by the signal-to-noise ratio at the in-
put to the regenerator.” In this way the effects of noise are completely
eliminated, except in the relatively rare cases where the noise is large
enough to cause an error.

These sampling and level-selecting operations may be performed by
an idealized regenerator having the characteristics shown in Fig. 2, which
approximate those of practical regenerators. In addition to the signal
input and output, which may be either baseband or carrier pulses, the
regenerator has an additional input for the timing or sampling pulses,
which are baseband pulses. The input and output plotted in Fig. 2 repre-
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Fig. 1 — Binary pulse train.
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Fig. 2 — Ideal regenerator characteristic.

sent amplitude or envelope for the baseband and carrier cases respec-
tively. If the timing signal is absent, the regenerator output is zero for
all input signal levels; if a timing pulse is present, the regenerator operates
as an ideal slicer, with zero output for inputs less than the slicing level
and a constant output for inputs greater than the slicing level. If the
timing pulses are much shorter than the signal pulses, the regenerator
output will consist of identical short baseband or carrier pulses, which
may be transmitted through an appropriate filter to yield standard out-
put signal pulses. Thus, the system will produce a standard output pulse
each time a timing pulse occurs when the input signal has an amplitude
or envelope greater than the slicing level. The position of this output
pulse is determined only by the position of the timing pulse and not by
the position of the input signal pulse; this type of response has been called
“complete retiming”.* °

In an ideal regenerative repeater with an input signal as shown in
Fig. 1, the regenerator of Fig. 2 must be supplied with timing impulses
occurring at the pulse repetition frequency and centered exactly at the
sample points n7". However, in the self-timed repeaters studied here the
timing pulses must be derived by the repeater itself from the signal,
which will no longer be the ideal signal of Fig. 1 but will have added
noise and random position modulation introduced by the preceding re-
peaters.

In systems employing complete retiming (such as the one discussed
above), in which the timing pulse alone determines the position of the
corresponding output signal pulse, the timing pulses may be derived
only from the input signal. However, in systems employing partial re-
timing, in which the position of each output signal pulse depends on the
position of both the corresponding timing and input signal pulses, the
timing pulses may be derived from either the input or the output signal
pulses.” ® Repeaters with essentially complete retiming appear to be of
greatest interest for microwave systems and so, for the present, we con-
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Fig. 3 — Regenerative hinary repeater with timing from the input.

sider only the case of complete retiming. The analysis is easily extended
to include partial retiming, with the timing pulses derived from either
the input or the output.

The mathematical model chosen to represent a regenerative repeater
is shown in Fig. 3. The regenerator characteristics are assumed to be
those given in I'ig. 2. The input and output signals are either baseband
or carrier pulses; the timing signal is a train of baseband impulses, de-
rived from the input pulse train. The filter converts the short pulses at
the output of the regenerator into standard signal pulses for transmis-
sion to the next repeater.

The timing system in Fig. 3 contains a narrow band-pass filter tuned
as close as possible to the pulse repetition frequency. This timing circuit
is excited by baseband pulses derived from the input signal pulses. Its
output, called the timing wave, is approximately a sine wave at the pulse
repetition frequency, and may be considered to be a sine wave at this
frequency with both random amplitude and phase modulation. The
amplitude modulation results from the statistical nature of the signal
pulse pattern and from the random noise introduced at the input to the
repeater; the phase modulation is produced by the random noise at the
input, the random variations in pulse position introduced by preceding
repeatersin the chain, and the tuning error of the timing circuit. The tim-
ing cireuit is followed by an ideal limiter which removes the amplitude
modulation; the resulting waveform is then used to generate the timing
pulses applied to the regenerator, for example, by producing a timing
pulse at the instant of each negative- (or positive-) going zero crossing
of this waveform, so that the phase of the timing wave determines the
position of the timing pulses.

The baseband driving pulses for the timing circuit may be obtained
in various ways. The simplest method is to drive the timing cireuit with
the signal pulses themselves in a baseband system or with their rectified
envelope (obtained by a linear envelope detector) in a carrier system.
However, it may be advantageous to first pass the baseband signal pulses
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through a nonlinear device such as a peak amplifier or a square-law
rectifier to suppress the low-level noise in the absence of signal pulses;’
similarly, a square-law rectifier might be used for the same purpose in a
carrier gystem. Alternately, a standard baseband driving pulse for the
timing circuit might be generated whenever the amplitude or envelope
of the baseband or earrier signals passes through a critical level (approxi-
mately half the peak) in the ascending direction.” The noise at the input
of each repeater will affect the timing performance of these different
systems in different ways.

In order to simplify the analysis of the timing behavior of a long chain
of repeaters and to permit the application of the results to systems em-
ploying different types of repeaters, such as those discussed above, the
following general assumptions will be made:

1. The reception of each signal pulse is assumed to initiate an inde-
pendent transient in the timing circuit. This requirement is obviously
satisfied in any baseband or carrier system in which signal pulses in ad-
jacent time slots do not overlap. It will remain satisfied if adjacent signal
pulses do overlap only under special conditions, e.g., (a) in a baseband
system, if the received signal pulses drive the timing cireuit directly, (b)
in a carrier system with a linear envelope detector and coherent carrier
phase between adjacent signal pulses.

2. The timing filter is assumed to be a simple resonant circuit, charac-
terized by its Q. Its natural resonant frequency would ideally be made
equal to the pulse repetition frequency, but in practice there will be a
small tuning error. A related problem in which an idealized locked os-
cillator is used to generate the timing wave will also be considered.

3. The input noise at each repeater causes random timing deviations
of the output signal pulses, in addition to those present from other
sources. This real input noise may be replaced by adding an equivalent
fictitious position modulation or timing noise to the input signal pulses,
such that the random timing deviations at the output of the repeater
remain the same. This permits the effects of the input noise to be treated
in the same manner as the effects of the random position modulation
introduced by the preceding repeaters. For simplicity, we assume that
the equivalent timing deviations added to the different input signal
pulses are statistically independent, the mean square value of the added
timing noise being given. This assumption is plausible, since the real
input noise will have a bandwidth comparable to that of the signal. A
detailed analysis of a particular repeater is required, of course, to estab-
lish this equivalence rigorously; the rms value of the equivalent timing
noise may depend on the average number of pulses present as well as on
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the noise level at the repeater input. While no attempt will be made to
give detailed consideration to any of the various types of repeaters dis-
cussed above, the dependence of the equivalent added timing noise on the
pulse pattern will be discussed briefly for several cases of interest.

4. In order to permit the treatment of the timing behavior of a chain
of repeaters in a simple way, approximations are made which linearize
the analysis. It is then strictly valid only when the equivalent timing
noise added at the input of each repeater is vanishingly small. Although
the effects of these approximations are not known in detail, it seems
plausible that the analysis remains valid in the practical case where the
input noise at each repeater is small.

5. The input signal-to-noise ratio must be moderately high in a satis-
factory system so that very few errors are made in recognizing pulses
and spaces; these errors are neglected in the present timing analysis.

Consider first the case where the timing filters are simple tuned cir-
cuits. Even with the above approximations a rigorous solution for the
timing behavior of a chain of repeaters has been obtained only under
special conditions. In particular, the effects of the input noise may be
determined if the tuning error of every repeater is zero, for only the fol-
lowing signal pulse patterns: (1) all pulses present; (2) every Mth pulse
present; (3) any general periodic pulse pattern. In the first two cases the
analysis is straightforward, but in the third case the complexity increases
with the complexity of the pulse pattern and becomes somewhat pro-
hibitive for all but the simpler periodie pulse patterns. The most interest-
ing case — a random pulse pattern — has been treated in a simple way
only by making a further approximation, in which the variation of the
timing wave amplitude is neglected at an appropriate point in the
analysis.” In general, no accurate estimate is avialable for the error in-
troduced by this approximation. Tt gives accurate results in two cases
which can be solved by other methods. These are: (1) a chain of repeaters
with a periodic pulse pattern containing two pulses located in arbitrary
positions, as discussed above; (2) a single repeater with a random pulse
pattern, which has been treated by W. R. Bennett in a different way.”

Other problems concerning a chain of repeaters employing tuned cir-
cuits as timing filters, which may well be of greater practical importance
than the effects of input noise, have not heen treated in the present anal-
ysis. The first of these is the effect of random tuning errors at the differ-
ent repeaters. This problem has been treated for a single repeater by W.
R. Bennett.” The second problem is the effect of the finite width of the
pulses used to drive the timing eireuit, which will be shown to add an
identical timing noise at the output of each repeater and to be quite
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similar to the effects of amplitude-to-phase conversion in the limiter in
the timing systcm.”'s Since the added timing noise is identical at each
repeater, this type of disturbance must be treated differently from in-
dependent random disturbances added at the different repeaters, and is
potentially more serious.

As stated above, in order to obtain an approximate analysis for a
chain of repeaters with zero tuning error and a random pulse pattern
we modify the timing response of each repeater by neglecting the varia-
tion in timing wave amplitude. Alternately, we may ask what kind of
system is exactly deseribed by the modified equations. It turns out that a
somewhat idealized locked oscillator, synchronized by the signal pulses
or their envelope, corresponds exactly to this analysis, within the other
approximations described above. For a chain of repeaters using locked
oscillators as timing circuits, both the effects of input noise and the ef-
fects of tuning error can be treated for arbitrary or random pulse pat-
terns without further approximations. Also, finite pulse width introduces
no additional timing noise in this case. Thus, the analysis for locked
oscillators is considerably more tractable than is that for tuned circuits.

The statistical properties of three different quantities are of interest
in studying the timing behavior of a repeater chain. These are:

1. Timing noise, or random deviations of the signal pulses from equally
spaced time slots, will cause a random delay modulation of the original
signal, unless special precautions are taken in the final decoding of the
PCM signal. This random delay modulation will, for example, produce
crosstalk in a frequency-division multiplex signal,®” and will degrade
other types of signals in different ways.”

2. Spacing noise, or the random deviations in the spacing of two con-
secutive signal pulses (which do not necessarily occupy adjacent time
slots) from an integral number of pulse periods could cause pulses oc-
cupying adjacent time slots to interfere with each other. This would
degrade the performance of the regenerator and cause an increased num-
ber of errors, i.e., a received pulse transmitted as a space, or vice versa,
If too large, it could also cause some received pulses to be assigned to
incorrect time slots, with resulting errors in the decoding of the PCM
signal.

3. Alignment noise, or the random deviations in alignment between
an input signal pulse and the corresponding timing pulse, can also de-
grade the performance of the regenerator and increase the number of
errors, since for optimum margin against noise the timing or sampling
pulse should fall exactly at the center of the corresponding signal pulse.
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These three quantities are defined in Fig. 4, which will be discussed in
greater detail below.

The present analysis determines the power spectra and the total
powers (mean square values) for these three types of deviations for a
long chain of repeaters, under the conditions discussed above. The way
in which these disturbances vary along a repeater chain is obviously of
great importance. It is found that, while the low-frequency timing noise
does grow along the chain, the spacing and alignment noise spectra ap-
proach limiting values rather quickly, as might be expected on physical
grounds. Sinee the timing, spacing and alignment deviations are discrete
functions, i.e., defined only for integral values of their agrument, their
power spectra are defined somewhat differently than in the usual case of
continuous functions; a brief description of the Fourier analysis of such
discrete funetions is included.

Related studies of the timing deviations in a repeater chain have been
given by DeLange’ and Sunde,” using different methods than those
employed here. The present analysis follows closely the approach first
used by J. R. Pierce in determining the timing deviations in a single
repeater,’ extending the analysis to a chain of repeaters and to include
the spacing and alignment deviations.

II. THE TIMING RESPONSE OF A SINGLE REPEATER

In this section we relate the timing deviations of the output pulses to
the timing deviations of the input pulses and to the pulse pattern for a
single repeater. As discussed above, we consider both tuned-circuit and
locked-oscillator timing circuits. In order to study the response of a re-
peater to the timing deviations of the input pulses it is necessary to
consider only the simplest case of impulse excitation of the timing cir-
cuit. Finite pulse width may introduce additional output timing devia-
tions for tuned circuit timing filters but not for idealized locked oscil-
lators; excitation of a tuned circuit by raised cosine pulses is therefore
also considered.

2.1 Tuned Circuit Excited by Impulses®

Assume the timing circuit to be a parallel resonant inductance L,
capacitance C and resistance R. The impulse response of this circuit is
given by the real part of the complex impulse response H(¢):

= .1 L —(7/Q) fot_+i127fpt,
26) 0(1 + 2Q) ¢ e 7 >0, (1)
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In (1) and in all subsequent complex expressions the real part is implied.
The natural resonant frequency fo (as distinguished from the steady-
state resonant frequency f, = 1/2x+/LC) will be made as close as possible
to the pulse repetition frequency ¥. Therefore we set

fo=F +8f = F( af), (3)

where

(2)

where

F

pulse repetition frequency,

8f = tuning error of the timing circuit,

F = =, T heing the pulse period (Fig. 1),

5f << 1.

Substituting into (1), the response to a unit impulse at the time f is
equal to the real part of

— (L6 1/ F) (t— 72 146 t—t
(L — 1) = _( + '7Q) (/@) F(LH1F) U=t , 2P U DY (1=t

t—t> 0.

(4)

The pulse train driving the tuned circuit is given by

o)

g() = 22 a8t — t), (5)

where 8(¢f — ¢.) is a unit impulse occurring at ¢, , the time of arrival of
the signal pulse corresponding to the nth time slot. If the nth time slot
contains a pulse a, = 1;if this time slot is vacant a, = 0. In the absence
of timing noise the signal pulses would be centered in their corresponding
time slots, so that for the pulse corresponding to the nth time slot

t, = nT. (6)

If the deviation in the position of this pulse is 8t, , then the time of ar-
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rival becomes
Lo = nT + 8, . (7)

It is convenient to normalize the timing deviation with respect to the
pulse period T. Thus, let

i (un

e(n) = T (8)
where €'(n) is the normalized timing deviation of the signal pulse in the
nth time slot at the input to the repeater, referred to simply as the tim-
ing deviation when no confusion will arise. Then the time of arrival of
this pulse in (7) becomes

e = nT + )T,
Fl, = n+ €n).
From (4), (5) and (9) the response of the timing circuit to all of the

signal pulses up to and including the pulse in the mth time slot is equal
to the real part of

1 ARy —(X1Q) (43I PY [ Ft=n—¢¥(a)
G =5 (1 t P_) Z,
=\ T eg) A 1o

. 6j‘.'1r(1+ﬂffF) [Ft—n—et(n)]

(9)

This expression gives the output of the timing circuit for values of ¢
lying between the arrival times of the pulse in the mth time slot and the
next pulse that is present in the signal. Formally,

e <t <l,
m 4 em) < Ft <k + €k,

1; n=mk
{]’ll =
0; m < n < k.

(11

The response of the timing eircuit given in (10) may be written in the
form of a earrier at the pulse repetition frequency ¥ with both amplitude
and phase modulation:

Q) = é(] + gi@) AWM AQ) = a0, (12)

In this equation, A(¢#) is a complex function of time whose magnitude
A() | = all) equals the normalized amplitude of the timing wave and
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whose angle ZA{#) = ¢(t) equals the phase deviation of the timing wave.
I'or convenience, we have chosen to remove the constant factor
(1/€) (14 j/2¢) in defining A(¢). From (10),

o0
— 148/ Tt—n—et j2 -5 —n—et(n)]—F :
A(i) — Z e (r/Q) (148 f/F)[Ft—n ﬁ(.g]eg T {146/ F) [Ft—n—et(n)] ft]’ (15)

n=—w

keeping in mind the restrictions of (11).

Equation (13) shows the way in which the amplitude and phase of the
timing wave vary with time when timing noise is present. The amplitude
decreases exponentially between signal pulses, increasing abruptly at
the instant a pulse is received. In the absence of tuning error the phase
is constant between signal pulses, changing abruptly when a pulse is
received. If the tuning error is not zero, the phase has, in addition, a
small constant linear variation between signal pulses. If the tuning error
8f and the input timing deviations ¢'(n) are both equal to zero, we have
from (13)

LA = o) = 0. (14)

It is convenient to assume that under these conditions the delays in the
repeater of Fig. 3 have been adjusted so that the timing pulses supplied
to the regenerator are properly aligned with the input signal pulses, i.e.,
occur at the instants nT in Fig. 1. The quantity ¢(f) then gives a true
measure of the timing deviations of the timing pulses.

We now assume that the phase of the timing wave at the instant im-
mediately following the reception of a signal pulse determines the timing
deviation of the corresponding timing pulse. This, of course, may not be
strictly true. For example, the timing pulse might be generated at the
next negative-going zero crossing of the timing wave, as discussed in the
introduction. This will occur approximately 7'/4 seconds after the arrival
of the signal pulse because, as shown in the subsequent analysis, in any
satisfactory system the alignment error (defined in the introduction)
remains small, and consequently the maxima of the timing wave occur
close to the driving pulses for the timing circuit. However, for zero tuning
error the timing wave phase ¢(f) is constant between signal pulses and
consequently may be evaluated equally well at any time during the pulse
period T following the arrival of a signal pulse. Even if the tuning error
is not zero ¢(f) changes very slowly during the interval 7', so that a small
error in the time at which it is evaluated becomes unimportant; evaluat-
ing the phase just after the arrival of a signal pulse rather than 7/4
seconds later will cause a very small error in the de value of the output
timing deviation, but will have no other effect on the analysis.
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Consequently, evaluating (13) at the time
Ft = Fi,, = m + €(m) (15)
we obtain

m
— et _ 1 » ; .
A‘(im) = ¢ j2wet (m) Z At (w/QY(A+8f F)[(m—n)+e*(m)—e¥(n))

e (16)
. ej?r[e"(m)—e"(n)-ﬁ-(ﬁfl F) [(m—n)+e¥ (m)—et(n)] ]

Denoting the normalized output timing deviation of the repeater hy
¢’ (m), defined as in (8), we have for the case of complete retiming, where
the timing deviation of each output signal pulse is identical to the timing
deviation of the corresponding timing pulse,

eo(m) = _Pétm); ‘P(tm) = ZA-(tm): (17)
m
where A(t,) is given by (16). The minus sign in (17) occurs because the
timing pulse will occur too soon for ¢(f) positive, corresponding to a
negative timing deviation according to (7) and (8).

Equations (16) and (17) determine the general relation between the
input and output timing deviations for a single repeater. The output
timing deviation is seen to be a rather complicated function of the past
input timing deviations. In order to make possible a reasonably simple
analysis that can readily be extended to a chain of repeaters, certain
restrictions will be imposed that linearize the relations between input
and output timing deviations.

Equation (16) gives A(f,) as the sum of an infinite number of vectors,
each associated with one of the past input signal pulses. The amplitudes
of these vectors become exponentially smaller the farther back in time
the corresponding signal pulse occurred. If the angles between those
vectors which give the essential contribution to the sum are small enough
so that the sine of an angle is approximately equal to the angle, then the
vector summation is quite easily aceomplished. Taking the vector corre-
sponding to the present input pulse (n = m) as a reference, the in-phase
component is approximately the sum of the magnitudes of all of the vec-
tors, the quadrature component is the sum of the magnitudes times the
relative angles. In order for these approximations to be valid we must
have

'%f(m—n) &1

for all significant n. (18)
le(m) — e'(n) | <1
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The significant terms in the summation are for values of n bounded by
ng < n <m,

where
(m — o) > %. (19)

The first condition of (18) thus hecomes

af T
i 1 < a (20)

There are two different ways in which the second condition of (18) may
be satisfied. Either the input timing deviation must be small compared
to one or it must change so slowly that the difference in the deviations
of pulses separated by @/ pulse periods will be small compared to one.
Thus,

| e(n) | < 1

or

| Aé'(n) | = | €'(n + 1) — €(n) | <<%, (21)
where Ae'(n) represents the first forward difference of e'(n).
Subject to (20) and one of the conditions of (21) we have, from (16)
and (17), the normalized timing wave amplitude A ,, and the normalized
output timing deviation €’(m) (with complete retiming):

Ap = [ AW | = 22 ae OO (22)
Z anc—(wm)(m—m I:ei(n) _ %(m _ .”):| (23)
e€(m) = = 1 .

Alternately, with the summations rewritten, (22) and (23) become

Ap = 2 tuse TV (24)
k=0
s —wk | i a0
o ,g, Ay [e (n k) 7 k (25)
A, ’

For zero tuning error, (22) and (23) or (24) and (25) give the output tim-
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ing deviation as a linear function of past input timing deviations for a re-
peater with complete retiming, subject to the restriction of (20) and (21).
It is usually implied that a,, = 1 in (23) or a, = 1 in (25), since the out-
put timing deviation has meaning only for values of its argument corre-
sponding to time slots that contain signal pulses. The timing wave phase
corresponding to vacant time slots will not normally be of interest (ex-
cept insofar as there may be a preferred time to examine a vacant time
slot to determine that no signal pulse is present).

These equations show that, for §f = 0, each repeater may be considered
a linear transducer to the timing deviations. In general, the equivalent
transducer will be time-varying, since the timing wave amplitude 4,
will vary from pulse to pulse; the pulse pattern enters explicitly into the
analysis, both in determining A, and through the a’s in the numerator of
(23) or (25). However, if all pulses are present or if the pulse pattern is
periodic with every Mth pulse present (all pulses present correspond to
the special case M = 1), 4, is constant at every signal pulse. This is the
only case in which the repeater acts as a strictly invariant linear trans-
ducer, permitting a simple analysis of a chain of repeaters.

In dealing with general pulse patterns it is convenient to define a new
“primed” independent variable that numbers the signal pulses consecu-
tively, rather than the time slots. Fig. 4(a) shows a portion of a typical
pulse train; consecutive time slots are denoted by the variable n, consecu-
tive pulses by n’. A quantity regarded as a function of »” or any other
primed independent variable will be distinguished by the symbol ~;
functions of n or any other unprimed independent variable will be written
as before. For any given pulse pattern n is a function of »’, which of
course differs for each different pulse pattern, and vice versa. As shown in
Fig. 4, the number of vacant time slots between the (n” — 1)th and the
n’th (consecutive) pulses is defined as b, . Referring to Fig. 4, the fol-
lowing examples illustrate this notation:

e(n) = timing deviation of pulse corresponding to the nth time slot,

é(n’) = timing deviation of the n'th pulse,

A, = timing wave amplitude corresponding to the nth time slot,

A, = timing wave amplitude corresponding to the n’th pulse,

én — 1) = e(n — b)), en') = e(n),
Apy=Awsy, Adpw=A4..
Thus, for the particular pulse pattern of Fig. 4(a) we have, for example:

€0) = €(0);  &2) = e(6); Ay = Ay

(26)
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{NUMBER OF TIME SLOT

TIME SLOTS BETWEEN
CONSECUTIVE PULSES

QUTPUT SIGNAL COR
RETIMING PULSES

L g0 R ——
€9(n )~ eo(n+bry )1 - ’I €%) TIMING DEVIATION AT
Led(n'] fc?'s(n'ﬂ)-»‘ £8] OUTPUT OF REPEATER

t___bnaﬂ+3“(n')___ﬁ,,,,,,l L?—iPAC\NE DEVIATION

| a(n"t=ed(n't+1)-€3(n")
| | H(N+1)-— = |

1L _a i~ ALIGNMENT DEVIATION
T " *| T " ak(n")=#%(n")-€4(n")

i | ¢
L—m' € (”*bn'ﬂ) o €“] TIMING DEVIATION AT
FLn FUn+1) ‘] ¥/ INPUT OF REPEATER

| ******** INPUT SIGNAL PULSES

(b)

Tig. 4 — Definition of timing, spacing and alignment deviations for a repeater
with complete retiming: (a) general pulse pattern, in absence of timing noise;
(b) timing, spacing and alignment deviations.

For all pulses present #’ = n and b, = 1, and the two notations coin-
cide.

The timing, spacing and alignment deviations defined in Section I are
illustrated in Tig. 4(b). The timing deviation of the input and the tim-
ing and output pulses have been defined above. The spacing deviation is
given by
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) =& + 1) — €@ = A€W, 27

where A indicates the first forward difference, and the alignment devia-
tion for a repeater with complete retiming is given by

an’) = €’) — @), (28)

recalling that, with complete retiming, the timing deviations of the tim-
ing and the output signal pulses are equal.

The choice of n’ as the independent variable in the analysis rather than
the original independent variable n is more natural in several ways. As
mentioned above, we are usually interested in the timing wave phase
only for time slots that contain pulses. The definition of spacing devia-
tion in (27) is much easier to work with than it would be if it were in
terms of the original variable n. As will appear below, this change of in-
dependent variable facilitates the approximate treatment of a chain of
repeaters with random or general periodic pulse patterns. While it would
present some complications in dealing with quantities that must be ex-
pressed in real time, no such difficulties arise in the present treatment of
a repeater chain.

Returning to the special case of a periodic pulse pattern with every
Mth pulse present, the results of (21) to (25) may be written very con-
veniently in terms of the new independent variable n’. We have

1; n = Mn'
a, = (29)
0; otherwise
and
n = Mn', k= MK, (30)

The timing wave amplitude takes on the constant value A at every signal
pulse; from (24),

B 1
A=Ay =Zp = 2 A= (B

E=0 1

The output timing deviation in (25) becomes

en)=01—- e—aerQ) [ i é‘(n’ _ k;)e-(wmmk' — a_fﬂ/[ ik.’e(nﬂq)k':l
' F

E=0 E=0

of Me ™M (82)

o0
_ _ TMQ —ic 1 gy, (TMIQK
= (1 —e )k;_ﬂe(n ke T
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For the high-Q) case we may set

= (1 — ™ ~ "%i; Q> =M (33)

B | =

in (31) and (32), so that (32) becomes

e = M 3 E(n — ke MR ‘S_f(g; Q> =M. (34)
Q = Fx

The second term of (32) and (34) represents a constant timing deviation

introduced by the tuning error; the first term shows that the repeater is

a strictly invariant linear transducer to the input timing deviations for

this special case.

In a chain of repeaters the timing wave amplitude A4, is identical at
each repeater, since the pulse pattern is the same at each repeater. Thus,
for random or general periodic pulse patterns we must treat the repeaters
as identical linear time-varying transducers to the timing deviations.
Now, if Q is large, the variation in A, will be small;” we can make use of
this fact to treat the repeaters as approximately invariant transducers.
Equations (23) and (25) may be written in an alternate form, with »’
as the independent variable, that has a simple physical interpretation and
proves useful in making the further approximation that permits the anal-
ysis of a chain of repeaters with random or general periodic pulse
patterns, for zero tuning error.

We now examine the change in the output timing deviation that oc-
curs during the interval between two consecutive signal pulses. Making
use of (26), we have, from (24) and (23), the first backward difference of
the output timing deviation as a function of »n’:

) — @' — 1) = zl;[éi(n’) — &n' —1) +‘;1_fbn’:|— %;fb,.r. (35)
The timing wave amplitude is given by (24), as before. Referring to Fig.
5, we may interpret this relation as follows: Immediately after the re-
ception of the (' — 1)th pulse the timing wave amplitude is A,._; and
the output timing deviation is &€(n’ — 1), with corresponding timing
wave phase —27x&(n’ — 1). During the interval of b, pulse periods from
the arrival of the (n’ — 1)th pulse until just before the arrival of the
n’th pulse the timing wave amplitude will decay exponentially to the
value ¢ ™" 1,._, and the timing wave phase will advance linearly by
an angle 27(8f/F)b, , so that the resultant phase is

—2x[&"(n’ — 1) — (&f/F)bar],
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as illustrated by the top vector coming from the origin in Fig. 5. The
n/th pulse, with timing deviation ¢(n'), initiates a corresponding unit
vector of phase —2ré (n'), which adds to the vector representing the
previous value of the timing wave to give a resultant timing wave vector
of amplitude A,. , phase —2#x&(n’). Since the relevant angles are small,
the result given in (35) may be readily obtained.

Equations (35) and (25) are completely equivalent statements deserib-
ing the timing response of a single repeater using a resonant circuit to
generate the timing wave. They are derivable from each other without
any approximation and are both subject to the restrictions given in (20)
and (21). They provide somewhat different representations of the re-
peater as a linear time-varying transducer to the timing deviation. For
the special case of a periodic pulse pattern with every Mth pulse present
and A, constant, given by (31), in which the repeater becomes a linear
invariant transducer, (35) is equivalent to (32). We shall show in Sec-
tion 2.2 that (35) is in the appropriate form for the approximate treat-
ment of a chain of repeaters with zero tuning error for random and gen-
eral periodic pulse patterns, by neglecting the variation of the timing
wave amplitude.

-2m7 [E.D (ﬂ’-‘l) - _{_i bnl]
} ;

J —271'{?6 (n7)
A

|
|
I
—2m[&e

&0 (v-1)+-25 bn]

Fig. 5 — Change in output timing deviation during the interval between two
consecutive signal pulses.
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2.2 Approvimate Timing Response for Random and General Periodic
Pulse Patterns — Tuned Cireuit Timing Filter, Zero Tuning Error.

W. R. Bennett has pointed out that, for a high enough @, the variation
of timing wave amplitude in a tuned cireuit will be very small, and has
used this fact in his treatment of a single repeater.” Making use of this
fact, we show how a repeater using a tuned circuit timing filter with zero
tuning error may be treated as an approximately invariant linear trans-
ducer to the timing deviations.

We might first think that we could set A, equal to its average value in
(25), but this does not yield a satisfactory approximation to the behavior
of a repeater. As pointed out in the discussion following (17), the numera-
tor of (25) is simply the quadrature component and the denominator is
the in-phase component of the timing wave, referred to the transient
started by the present input pulse. For zero tuning error, both numerator
and denominator decay exponentially between signal pulses, so that the
timing wave phase remains constant; this is apparent either on physical
grounds or on examination of (24) and (25). If we arbitrarily set A,
constant in (25), we should obtain an exponentially decreasing phase
deviation between signal pulses, rather than a constant deviation. Fur-
ther, for zero tuning error a constant de input timing deviation produces
an equal constant output timing deviation for any arbitrary pulse pat-
tern. If, however, we set A, constant in (25) the output timing deviation
fluctuates about its average value, so that it would now contain false
ac components. Since it turns out that the timing deviation in a repeater
chain consists principally of low-frequency components, an approximate
treatment of a single repeater should yield accurate results for de and
slowly varying input timing deviations.

The correct approach to this problem has been indicated by J. L.
Kelly, Jr. If the tuning error is zero, a useful approximation to the be-
havior of a repeater is obtained by setting the timing wave amplitude
equal to its average value in (35). Thus, setting §f = 0, we have

| —

En') — &' — 1) = - Ew) — &n — 1), A= (4,.), (36)

—

where the brackets { ) indicate an ensemble average for a random pulse
pattern, and A, is given by (24). Referring to Fig. 5 and to the discus-
sion following (35), in this approximation the phase deviation of the
timing wave remains constant between signal pulses, as it should. A de
input timing deviation produces an equal de output timing deviation,
with no false ac components; the error in this approximation should be
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small for the low-frequency components that form the major part of the
timing deviation.

Equation (36) describes a repeater with a tuned cireuit timing filter
with zero tuning error as a linear invariant transducer to the timing
deviation, greatly simplifying the analysis of a chain of repeaters. For
random and general periodic pulse patterns the variation in the timing
wave amplitude will modify the timing behavior somewhat; for periodic
pulse patterns with every Mth pulse present (including all pulses present)
(36) is exact. The average timing wave amplitude 4 and its standard
deviation are determined in Seection 2.4; 4 is proportional to the average
number of pulses present and to the tuned-circuit Q. We shall show in
Section 2.3 that (36) gives an exact deseription of a locked oscillator with
zero tuning error for any arbitrary pulse pattern.

2.3 Locked Oscillator Timing Circuil

In the preceding section the approximate timing response of a repeater
with zero tuning error was found by setting A, equal to its average value
in (35). It is natural to ask what kind of system is described exactly by
(35) with A, equal to a constant A (8f is now not necessarily equal to
Zero).

Such a system may be regarded as an idealized locked oscillator. The
discussion of Fig. 5 immediately following (35) remains applicable except
that the amplitude of the timing wave no longer decays between signal
pulses but has a constant length (4 — 1). The unit vector initiated by
the n'th pulse adds to the vector representing the previous value of the
timing wave, causing an abrupt change in its phase as before and in-
creasing its length momentarily to A. However, we now assume that the
timing wave amplitude returns to its constant value (4 — 1) before the
next signal pulse arrives. In a practical locked oscillator with a weak
synchronizing signal, the transients started by the signal pulses will be
so much smaller than the steady-state oscillator wave that the timing
wave amplitude will be essentially constant, independent of the pulse
pattern.

Setting A,» = A4 in (35), we have an exact expression for the timing
behavior of a locked oscillator with tuning error (subject of course to the
usual small angle restrictions) for any arbitrary pulse pattern:

—of 1\ __ =0 _ _]-~ir__-u.ﬁ_ éf 6f p

&(n') — &(n' 1)—E[e(n) &(n 1)+I7bnn —?bnr.(&?)
The parameter A is now determined by the ratio of the amplitudes of
the oscillator wave and the synchronizing signal. Equation (37) shows that
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a locked oscillator timing circuit with tuning error may be treated rigor-
ously as a linear transducer to the timing deviation for any arbitrary
pulse pattern; the equivalent linear transducer has two inputs, é(n’) and
by .

Comparison with the results of the preceding section shows that for
zero tuning error (37) also deseribes the approximate timing response
of a tuned circuit timing filter, where A is now the average timing wave
amplitude, as in (36). Unfortunately, (37) does not provide a valid ap-
proximation to the behavior of a tuned ecircuit when tuning error is
present. This is best shown by comparing a tuned cireuit and the corre-
sponding locked oscillator in a simple case.

Consider a random pulse pattern where the probability that any time
slot contains a pulse is very close to one, independently for each time
slot. Only rarely will vacant time slots lie close together in this pulse
pattern, and so it suffices to study the effect of a single missing pulse,
as shown in Fig. 6(a). For n’ = 0 both the output timing deviation and
the timing wave amplitude are constant for both the locked oscillator
and the tuned circuit. Making A for the locked oscillator equal to the

nr
-3 -2 -1 o] 1 2 3 4
1 | ] 1 | ] | |
-4 - - =1 o] 1 4
n
b 2,n'=1
r=
n 1, N1
(a)
+1
TUNED CIRCUIT
€8 (n') : — A n — T
af 3 4 Q
F
LOCKED OSCILLATOR

(b)

Fig. 6 — Output timing deviation for locked oscillator and tuned-eireuit timing
flltEI'-, with tuning error, for single missing pulse: (a) pulse pattern; (b) output
timing deviations.
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steady-state timing wave amplitude for the tuned circuit, we have for
hoth cases, from (24) and (35) to (37):

1

g“r = A = E Tk — —7a n' <0, (38)
k=0 1—e
En) = & = —gA 1 — N_ ¥ c____'m ; n' 0. (39)
o r A Il — e’ -

The transient or ac component of the output timing deviation, &.’(n’),
is of principal interest, where

&n) = @e + & (n). (40)
Then, from (35), we have

f’ () — Ee'(n” — 1)

= — ~1 Ec(n' — 1) + i—fﬁ, n' >1,
A Fo A (41)
- IA ; locked oscillator
Ari’ = —(r/Q)n’ . .
(4 —e ; tuned cireuit.

The initial condition for the difference equation (41) is givelil by
sy 0o 1
Ene (1) - F [_, f‘i’] (‘4 + ]) . (42)

For the locked oscillator, the second term on the right-hand side of (41)
vanishes and, subject to (42), we find

Eu'(n) = —%fe*‘”‘”"’; locked oscillator. (43)

For the tuned circuit, the second term of (41) no longer vanishes, but
adds an inhomogeneous term to the solution. I'rom (41), 4 — Ay =
¢~ ™9 and, approximating the A, occurring in the denominators of
(41) and (42) by A4, we find

eo(n) = = o — Ty — (1 — O,
F (44)

tuned circuit.

I'or the high-Q case, this may be further simplified:

(0 = —%e“”“’"’ I:l - 511’]; tuned cireuit, Q >> 1. (45)
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These results may alternately be obtained by inspection from the vector
diagram of IFig. 5.

Equations (43) and (45) are plotted in Fig. 6(b). For the tuned circuit,
& (n) initially approaches zero twice as fast as for the locked oseillator.
Consequently, a tuned circuit and the corresponding locked oscillator
are approximately equivalent only for zero tuning error; when tuning
error is present their behavior is no longer similar. In the present paper
we are able to treat the effect of tuning error in a chain of repeaters only
for locked-oscillator timing circuits.

2.4 Average Value and Fluctuation of the Timing Wave Amplitude

We now determine the average value and standard deviation of the
timing wave amplitude A, , denoted by A = (4,.) and o4 respectively,
for a tuned circuit. The average value is needed in (36), which gives the
approximate timing response for a tuned cireuit timing filter with zero
tuning error. The standard deviation indicates the magnitude of the de-
parture of A, from its average value 4, which is neglected in this ap-
proximate analysis.

Consider a random pulse pattern with the probability p that any time
slot contains a pulse, independently for each time slot. Equation (24)
gives A, ; for the a,_'s we have

Prla,—. = 1] =
12, P k> 1. (46)
Pria,r =0 =1—1p

The different a’s are independent. Then, from (24), we have

—7/Q

A=) =2 (@)™ =14 P (47)
k=0 1 — e 7@
(‘Zfﬂ,ﬁ) — Z E (a,,_;..a,,_,)ﬂff'm”k“’
k=0 1=0
e_xm pcﬂrlo 2 6_2,;0 (-18)
=14+ 2p =T + (1—(3”‘1) + p(1 — p) =t
—2r/Q
2 2 T2 [
e L s
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TFor the high-@Q case

2
A= ?, as’ = p(l — p) % (%) = 1Tp§%; Q>1. (50)
This agrees with the results of a similar caleulation made by W. R. Ben-
nett.”’

The timing-wave amplitude will be close to its average value with high
probability if

o4 1—19p

I(( 1, Q))T. (51)
The smaller the probability that a time slot contains a pulse, the larger
 must be in order for the variation in the timing wave amplitude to be
small.

For any periodic pulse pattern, A, is easily determined as a periodic
function of n’ from (24). For a high enough @ the average timing wave
amplitude A is again given by (50), where p is now the average number
of time slots containing pulses. In the special case of a periodic pattern
with every Mth pulse present, A, is of course constant, given by (31)
or (33).

0.5 Tuned Circuit Excited by Raised Cosine Pulses

Up to now we have considered only the case of a timing filter excited
by impulses. However, in the simplest repeaters the signal pulses them-
selves or their rectified envelopes (in baseband or carrier systems, re-
spectively) would be used to drive the timing circuit. The finite width of
these driving pulses may add an additional component of timing noise
at the output of each repeater. We now consider the behavior of a tuned
circuit excited by raised cosine pulses, which approximate the pulse
shape that might be used in a practical system.

A driving pulse centered at ¢ = 0 is given by

1

5 (52)

p(sFt) = % (1 + cos 2wsFt); |Ft] <

where F is the pulse repetition frequency and s is a parameter determin-
ing the pulse width. For s = 1 adjacent pulses are just resolved; for
s = 2 adjacent pulses overlap such that the amplitude half way between
sample points is equal to one-half the peak pulse amplitude. These two
cases are illustrated in Fig. 7. The complex response P(t) of a tuned cir-
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p(Ft)=1/2[1+cos 27 Ft] p(25Ft)=1/2 [1+cos2/3 2mFt]

1.0

Fig. 7 — Driving pulses for timing circuit: (a) pulses resolved; (b) pulses over-
lapping.

cuit to this pulse is
t
P() = [ p(sPRH( — ) dr, (53)

where H(f), given in (1) and (4), is the complex impulse response of the
tuned circuit. Thus,

1
PU) = 5 LFOH(D), (54)
where
1
0; Ft < — 5
Ft
[ (1 + cos 2#81){,4—(7!0)(l+6ﬁP)re—j2r(l+6f,'p)f d?“
1Fy =" 1 )
1 1
Ix (28)) + ﬁ < Ft

The pulse train applied to the tuned circuit now becomes [from (5)
through (9)]:

g(t) = 25 a.plslFt —n — )} (56)

n=—00

The tuned-cireuit response G(f) to all pulses up to and including the
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pulse in the mth time slot is given by

m

G() = X a.Plt — nT — €T, (57)
corresponding to (10), and G(f) may again be written in a form similar
to (12) and (13):

(3,
T \2s J qrwre
G() = =777 (1+ﬂ) A)e™, (58)
A1) = a(t)e™"”,
where, as before, |A({)| = a({) is the normalized amplitude and

ZA() = (1) is the phase deviation of the timing wave. Corresponding
to (13), we now have for A(f)

m
A(t) — Z auc—(rf‘?](l-l-ﬁﬂl")[Fl_n—e‘-{riﬂ_le!r{(l-'-if,!l‘)[Ff—ri—e"(n)]r-F't]
n=—ow
i
LIFt —m — €m)] _ | | —wioasnnpemron

I, (217;) (59)

. szwl(1+sﬂm [Ft—m—e¥ (m)]—F1},
b

+ a'ﬂl

)

|~

(m — 1) + e(m — 1) +%§ <Ft<(m+1)+em+1)—

where  is restricted such that only the pulse in the mth time slot differs
from 0.

We now assume that the phase of the timing wave ¢(¢) at the negative-
going zero crossing following the peak of each received pulse determines
the timing deviation of the corresponding timing pulse. In the analysis
for impulse excitation in Section 2.1 the timing wave phase was evaluated
just after the reception of a driving impulse, since a different choice would
introduce only a small de error in the output timing deviation. In con-
trast, with driving pulses of finite width the choice of time at which
#(t) is evaluated has an appreciable effect on the last term of (59), which
gives the additional output timing deviation due to finite pulse width.
Thus, evaluating (59) at

Ft="F (t,,. + %’) =m + €(m) + i, (60)
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where £, is given in (9), we obtain

T - ; 2
A (tm + 1) = [ @ UHIIPNM, JGII Pl

m
. c—j‘.‘m"(m} J Z a“{.—(w!w(l+5}'!m[[m—n)-ﬂ"(m)fe"(u)]
1n=m (G].)

1
I. |-
_ﬂj‘.!a‘]z"(m)ﬁ:i(u)'f-(ﬁf.'f")[(mfn)+s"(m)7(“(n\]} +a, J]r ]
I\
25

corresponding to (16). In order for the restriction of (59) to be satisfied
s must be greater than . The terms in the first bracket arise from the
fact that we have determined the phase one-quarter of a pulse period
after the peak of the received pulse, rather than just after the peak as in
Seetion 2.1; they represent a small deerease in amplitude and a small de
phase shift, and may be neglected. Then, making use of the discussion in
Section 2.1 and assuming as before that the alignment deviation a(n) =
€(n) — €'(n) remains small, we obtain from (17) and (61) the normalized
timing wave amplitude and output timing deviation (with complete
retiming):

’

k- -]
A, = Z a,l_kr:_('“‘”k, (62)
k=0

- —(7/Q)k i ) — 5f .
D it |:f (n— k) — 5k a,  (63)

En{”) _ k=0

w
A.n ! "1 n '

where w, depends on the pulse width and is given by

1
1“ (_)
A (64)

These results are again subject to the restrictions of (20) and (21). The
following approximate results for the high-Q case may be obtained from
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(55):
2
8 = 1, 8§ = g,
w = 00253 + 20320 way = 0.1038 4+ 2249
Q Q
1 0185 N 0.235
iy [0.0795 . &98], +j [0.166 - ‘E?],
Q Q
! 075 3 ‘ 23

Except for the last term, (63) is identical to (25) for impulse excita-
tion; the last term represents the additional output timing deviation
caused by the finite pulse width. This timing deviation is inversely pro-
portional to the instantaneous timing wave amplitude, and is thus quite
similar to the effect of amplitude-to-phase conversion in the limiter of
the timing system.” ¥ In both cases an identical timing deviation will be
added at the output of every repeater of the chain, since the pulse pat-
tern is the same for every repeater. This additional timing deviation is
caused by the fact that the driving pulse is not zero when the timing
wave goes through zero. However, the zero crossings corresponding to
vacant time slots are not disturbed; W. M. Goodall has pointed out that
inverting the pulse pattern in each repeater will therefore eliminate this
source of timing noise. If the driving pulse is short enough so that it falls
to zero before the zero crossing of the timing wave occurs, no additional
timing deviation will be produced; in particular, the driving pulses may
be impulses as above or square pulses of length 7'/ 2.7 Finally, a weakly
coupled locked oscillator will not be affected by the finite width of the
synchronizing pulses.

1II. FOURIER ANALYSIS OF DISCRETE FUNCTIONS

3.1 Transforms of Discrete Functions

The timing deviation e(n) or &n’) and the various other quantities
discussed above may be called discrete real functions, since they are
defined only for integral values of their argument. The Fourier analysis
of discrete functions is quite similar to that for continuous functions
and is summarized below.
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The transform X(f) of a discrete function x(n) is defined by"

)

X(f) = 22 alm)e ™™ (65)
The inverse transform is then
+1/2
w) = [ X() gy, (66)
—1/2

This transformation is closely related to the z-transform' " or generat-
ing function. Equations (65) and (66) may be regarded as a statement
of the Fourier series theorem, in which the usual roles of function and
transform have been reversed.

The following table [Equation (67)] summarizes some of the properties
of discrete transforms that will be of use; 2,(n) and zs(n) are any two
different discrete functions with corresponding transforms X.(f) and

Xe(f):

Function Transform
a1(n) X)) (67a)
xa(n) Xo(f) (67b)
wln + k) e EXN(F) (67¢)
Ari(n) = mln + 1) — a(n) (™ — 1) X, (f)
= 2j¢™ sin ofX1(f) (67d)

B @) = 3 wln— Balk) X )XF)

= 1-2 n(B)as(n — k) (67e)
2(n)as(n) Xi(f)@X:(S)

+1/2

= e Xo(f — 7)Xo(7) dr

+1/2

L 1o Xl(T)Xg(f - 1') dT (67{)

o0

k) = 220 m(n)a(n + k) E(f)

n=-—w

Il

Xu(NXX(f)
| X%t (67g)

Il

The * denotes the complex conjugate.
p
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In (67g) the autocorrelation function ¢(k) and the energy spectrum
E(f) of a discrete function x(n) have been defined; the fact that they
are transforms of each other follows from the convolution theorem
(67e) and the fact that xz(n) is real. The total energy E of a discrete
function a(n) is defined by

o0

E = _E 2 (n). (68)
Then, from (67g),
1/2 /2
E=o0) = [ Epdr= [ IX(Far (69)
—1/2 —1/2

The results of the present section apply only to discrete functions
having a finite energy E as defined in (68), so that their transforms exist.
Discrete random functions, which have infinite energy but a finite aver-
age power, will be discussed in Section 3.3.

3.2 Discrete Transducers

A discrete linear invariant transducer may be characterized by its
impulse response. A discrete unit impulse at n = ny is defined by
1; n = M
é(n — no) = (70)
0; n # ng,
corresponding to the delta function in the continuous case. Let h(n)
be the output of a discrete linear invariant transducer for a unit impulse
input at the origin; for stable systems

h(n) = 0; n < 0. (71)

Then the output 2°(n) for an arbitrary input z'(n) is given by the eon-
volution of the input and the impulse response h(n) of the transducer:

n

2(n) = 2, 2'(khin — k)

k=—c0

(72)

o0

> ' (n — khk).

k=0

Let the transforms according to (65) and (66) of h(n), 2'(n) and 2°(n)
be H(f), X'(f) and X°(f) respectively; H(f) is the frequency response or
transfer function of the transducer. Then, from (67e), we have

X(f) = HHX'(f). (73)
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If the input consists of a single exponential of frequency f,

a'(n) = A, (74)
then the output is an exponential of the same frequency,
1_1J(n) — ‘4093'2:'_("’
(75)

A, = H(NA;,

as in the continuous case.

Finally, consider two cascaded discrete transducers with individual
impulse responses hy(n) and he(n) and corresponding transfer functions
H\(f) and Hy(f). The over-all impulse response h(n) is equal to the con-
volution of hy(n) and ha(n), and the over-all transfer function H (f) is
equal to the product of H,(f) and H(f), as in the continuous ecase:

hn) = ;’Zo h(n — k)hao(k), (76)
H(f) = H\(f)H([). (77)

3.3 Discrete Random Functions
A diserete stationary random function z(n) will have infinite energy
but a finite average power P given by
1 N

R R 2
P = lljl; SN 1 "Z_:N x (n). (78)

The covariance p(k) is defined as
p(k) = (@m)x(n + k)), (79)
where () denotes an average over the ensemble. For a stationary ergodic

ensemble the power spectrum P(f) and the covariance p(k) are trans-
forms of each other, according to (65) and (66):

o0

P(f) = 2 plk)e™™™, (80)
12 i .
o) = [ P(petE g (81)

The average power P is the integral of the power spectrum

1/2

P = ., P(f) df. (82)

—1
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A white noise of power Ny has a covariance

oy = Ny = |0 E 0 (83)
0; k # 0.
Thus the power spectrum is
P(f) = No. (84)

This process is called a white noise because the power spectrum is con-
stant with frequency. The values of this noise for different values of
the independent variable n are uncorrelated; this random process is
used to describe the equivalent timing noise added at the input of each
repeater, as discussed in Section I.

IV. TIMING IN A CHAIN OF REPEATERS WITH ZERO TUNING ERROR AND
COMPLETE RETIMING

4.1 Introduction

In this section we determine the timing, spacing and alignment noise
power spectra and total powers (mean square values) caused by the
input noise at each repeater for a chain of repeaters with zero tuning
error and complete retiming. The repeaters may employ either tuned-
cireuit or locked-oscillator timing circuits.

From (36) or (37) the response of each repeater is given by

o) — e’ — 1) = ,171 [#n) — e’ — 1)),
(85)
A= (A,).

For locked oscillators, (85) is exact. The normalized timing wave am-
plitude A is equal to the ratio of the amplitude of the oscillator wave
to the amplitude of the transient started by a single signal pulse.

For tuned circuits we assume that the driving pulses for the timing
circuit are short enough so that no additional output timing noise results
from the finite pulse width, as discussed in Section 2.5, and we study
only the effects of input noise. Equation (85) will be exact only for
periodic pulse patterns with every Mth pulse present (including all
pulses present); for random or general periodic pulse patterns it gives
a good approximation for the response of a repeater. The normalized
timing wave amplitude A, is given by (24); 4 is given by (31) or (50).

Let the discrete transforms of the input and output timing deviations
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£(n') and €(n’) be CJ) and C°(f) respectively, where the symbol ~
indicates that the transforms have been taken with respect to the inde-
pendent variable n’ [Fig. 4(a)]. Then, transforming (85) by the use of
(67), we obtain for the transfer function F(f) of a single repeater

Co(f) _ 1/4
() T T = = /A
It is convenient to define @ as the effective “Q” of the timing circuit

to the timing deviations, as a function of the average timing wave ampli-
tude A4:

o) = (86)

1

S pp—r (87)
—_— e—W

A

In the high-Q case,
Q=rd4, (J>1. (88)

For tuned-circuit timing filters ¢ may be conveniently expressed in
terms of the tuned cireuit Q. Tor a periodic pulse pattern with every
Mth pulse present, from (31),

~_Q

Q= I (89)
Tor all pulses present, M = 1 and J = Q. For random or general periodic
pulse patterns (50) yields, for the high-@ case,

Q=pQ (G>1, (90)

where p is either the probability that a time slot contains a pulse or the
average number of time slots containing pulses.

In terms of @, the frequency response of a repeater becomes
1 — ¢ me

o) = (91)

1 — e ™ldg—inf’
Taking the inverse transform of H(J), the impulse response A(n’) of a
single repeater is

h(n') = (1 — ¢ ™) @n", 2 > 0. (92)

Finally, the square of the absolute magnitude of the frequency response
of a single repeater may be written

A = :

1 + esch® = sin® wf (93)
2¢
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Equation (93) is plotted in IFig. 8(a) for the high-@ case. The low-
frequency components of the timing deviation are transmitted with
little loss in amplitude, and the high-frequency components are sub-
stantially suppressed in a single repeater. The 3-db bandwidth is given
by

faab = é%); Jg> 1. (94)

4.2 Impulse and Frequency Response of a Chain of Eepeaters

The transfer function of K repeaters in ecascade, H«(f), is equal to
the Kth power of the transfer function of a single repeater. From (77)

[H? =

71 (F)
No

(b)

Fig. 8 — Transfer function for repeaters with zero tuning error and complete
retiming, with @ 3> 1: (a) single repeater; (b) k cascaded repeaters, k > 1.
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and (91),

_ - 1 — e—r,’ﬁ K
fin(f) = A5(f) = [_ﬁ] . (95)

[ — ¢ riag i

From (93),
1 K

| He(f) P = | H()) | =
1 + csch® = sin® «f (96)
2Q

Equation (96) is plotted in Fig. 8(b); the 3-db bandwidth for the high-@
case is

1 S ~
faan = 20 AVOUE T, 0> 1. 97)

For a long chain of repeaters (97) becomes

10834,
2@' K!,’ﬂ !

Jaay = g>»1, K>L (98)
The bandwidth of a chain of repeaters to the timing deviation varies
inversely as the square root of the number of repeaters.

The impulse response for K cascaded repeaters, ix(n’), may be found
either by taking the inverse transform of the frequency response, given
in (95), or by finding the (K — 1)-fold convolution of the impulse
response for a single repeater, given in (92). Using the latter method,

P - n’ Mg _1 ng nag
he(n') = (1 — ™SO 5 37 o 3 3L (99)
ng_1=0 ng_o=0 no=0 n =0

K — 1 summations

This expression is easily evaluated using functions occurring in the
theory of difference equations.” The function & is defined as follows:

F(k + 1)

Aml g 9y (] — -
l\, _— ]L(ll- 1)([\ 2) (i\ m + 1} I.,(k —m + 1)

. (100)

The brackets around the superseript m indicate that it is not to be re-
garded as an exponent. Note that

EY =1, (101)

This function behaves with respect to difference and summation
operators in a similar manner to the power function 2™ with respect to
differential and integral operators. In particular,
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A].‘.["'I — (k + 1)[ml _ k{m] — mk[mfl],
N1 (102)

N ] ]_[m+1]
o= =
k;l [m + I]M

Substituting these relations into (99), we obtain

efrfﬁ)Ke—(n‘ﬁ)n‘ P(ﬂ + K) (103)

e = 1 = PTG+ 1

for the impulse response of K repeaters in cascade. For K = 1 this ex-
pression becomes identical to (92). For a single repeater the impulse
response decreases exponentially to zero; for a chain of repeaters the
impulse response starts from zero, increases to a maximum value, and

decreases again to zero.

4.3 Timing, Spacing and Alignment Noise

Consider a chain of N repeaters with an independent white timing
noise of average power Ny [(83) and (84)] added at the input of every
repeater. The output timing noise power spectrum is equal to the sum
of the power spectra produced by the individual noise sources, since the
system is linear and the various noise sources are independent.

Let 7x(f) be the power spectrum of the timing noise at the output of
a chain of K repeaters with a white timing noise of power No introduced
at the input of only the first repeater. Then, from (73) and (96),

Fx(f) = No| HE) [*~. (104)

This noise spectrum has the same shape as the transfer function of (93)
or (96), shown on TFig. 8, so these curves also show 7x(f). The timing
noise power spectrum Tw(f) at the output of a chain of N repeaters with
an independent white timing noise of power No added at the input of
each repeater is now

- _N_ _ l_lﬁ(f)rw .
Tv(f) = :‘:‘1 7=(f) No ﬁ' O I (105)

where | A(f) | is given in (93).
Fig. 9(a) shows Tx(f) for a high Q and a fairly long chain of repeaters.
At zero frequency

Ty(0) = NoN. (106)

The low-frequency noise components from each noise source are unat-
tenuated, and their powers add at the output of the repeater chain. The
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high-frequency components are strongly attenuated in each repeater.
The 3-db bandwidth in the high-Q case is

1 1.265

55 N @>»>1, N>»1 (107)

fxdb =

As the length of the repeater chain approaches infinity, the timing-noise
power spectrum approaches a limiting form

™
sinh® —=
N— s1n- 7rf

as indicated in Fig. 9(a). In this limiting ease, for each narrow band the
decrease in noise power in passing through each repeater is equal to the
noise power added at the input of the next repeater.

The total timing noise power is given simply by the integral of the
power spectrum, according to (82). Thus,

1/2
te= [ a0 df,

—1/2
- (109
Tw= [ Tu0) s,

where 7x is the total timing noise power at the output of a chain of re-
peaters with noise added at the input of only the first repeater, Ty is
the total timing noise power at the output of a chain of repeaters with
noise added at the input of every repeater and the power spectra 7x(f)
and Ty(f) are given by (104) and (105). While exact expressions for
7 and Ty can be found, they are so complicated as to be of little use
except for short repeater chains, and are not suitable for considering
the high-Q case. An asymptotic expression for Tx has been found by
S. 0. Rice and is derived in the Appendix; a similar analysis has been
performed for 7y , but only the final result is given here. I'or the high-Q
case:

. ') (K — 3% . ~

Tk = Nn;_smh% —(Z)I,((Ri,)z); Kz 2 Q>1, (110)
: 1 1 -

Ty = Nn%ﬁsinhl.r(g) TN + 3) Q> 1. (111)

S5 TN )

For a long chain of repeaters Stirling’s approximation yields:

— 1 LI ~ . 5
ranﬁz‘/K_l, Q> 1, K>1, (112)
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7y = No ‘/’5\'; g>»1, N>L (113)

Finally, for a short repeater chain the exact results are reasonably sim-
ple:

_ ) T
T, = #1 = Ny tanh —,

= (114)
72 = N, tanh® T ctnh L
20) ()
For the high-Q case
T,=#=N 2% g>1,
(115)

f2=N0f; Q> 1.

The spacing and alignment noise are easily found in terms of the
above results. Let Sy(f) and Ay(f) be the power spectra of the spacing
and alignment noise and Sy and Ay be the total spacing and alignment
noise powers at the output of a chain of N repeaters with an independent
white timing noise of power N, added at the input of each repeater.
I'vom (27) and (67d),

Sy(f) = 4 sin® of Tu(f). (116)
Substituting (105) and (93),

Sy(f) = Ny {4 sinh® % (1 — | A |2N1}. (117)

&

From (112),

Sy:Nu(’L)g(l—LV o~ ); g>1, N>1. (118
Q 20V N -1

The second term of (118) is negligible.
From (28),

A = H(f) =1 I (Ty-1 ()4 Nol. (119)
From (91) and (93),
I ) Tl
RefI(f) = " A P (120)
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so that
A — 1= ™ — [ A [ (121)
Substituting (121) and (105) into (119),
Au(f) = N ™1 — | H(H) [™], (122)

and from (112)

Ay = Nue“’5[| — 2% 1/N T 1 :l; g>1, N>1. (123)

The second term of (123) is again negligible.

Figs. 9(b) and 9(c) show Sy(f) and Ax(f). They have the same general
shape, but the alignment noise has considerably greater magnitude.
For high @ they have an essentially white spectrum, except for very low
frequencies; their spectra and total power change very little along the
repeater chain, The main contribution to the spacing and alignment
deviations comes from the high-frequency components of the input tim-
ing deviation, so only the input noise at the Nth repeater gives a signifi-
cant contribution to these quantities.

The small angle restrictions of (21) were assumed to hold throughout
the analysis. Equation (118) shows that if ¥, is small enough so that
the first equation of (21) is satisfied for a single repeater, then the second
equation of (21) will remain satisfied for the entire chain of repeaters.

4.4 Discussion

Itach repeater acts as a discrete low-pass filter to the timing deviation,
transmitting the low frequencies with little loss and attenuating the
high-frequency components. The resulting timing noise at the output
of a repeater chain, with noise added at every repeater, contains pri-
marily low frequencies; the total timing noise power grows as the square
root of the number of repeaters. The timing deviations of consecutive
pulses are strongly correlated. Although the total timing deviation may
become large, it changes so slowly that the spacing and alignment devia-
tions remain small. The spacing and alignment noise have an almost
white spectrum and remain almost constant along the repeater chain;
successive spacing and alignment deviations are almost uncorrelated.

The results of this section are exact for locked-oscillator timing cir-
cuits and for tuned circuits with periodic pulse patterns containing every
Mth pulse; for tuned circuits with random or general periodic pulse



TIMING IN LONG CHAIN OF REGENERATIVE REPEATERS 1583

patterns they are only approximate. The exact analysis for a repeater
chain with a general periodic pulse pattern is discussed briefly in the
following section; the approximate results of the present section are in
good agreement with the exact results for this case. The present results
also agree with those given by W. R. Bennett for the total output tim-
ing noise of a single repeater with a random pulse pattern.’

In order to apply these results to specific cases, a detailed analysis
of the particular type of repeater is necessary to determine the power
Ny of the equivalent timing noise at the input of each repeater as a
funetion of the real input noise, the pulse pattern, and other parameters
of the system. Of course, No will be proportional to the input noise power;
its general dependence on the pulse pattern can be deseribed in a quali-
tative way without a detailed analysis.”

Consider first tuned-circuit timing filters. From (115) and (90), the
total output timing noise in a single repeater with an input white tim-
ing noise of power N, is approximately

= No— pQ > 1, (124)

2 Q’
where Q is the tuned-circuit “@Q" and p is the average number of time
slots containing pulses. We consider four cases, discussed in the first
section; in all of them from (50) the power of the timing wave is propor-
tional to p".

1. Baseband repeater, signal pulses drive tuned circuit directly. The
real output noise power remains constant for different pulse patterns;
since 7, is proportional to the output noise to signal ratio, 71 1 /p°, and,
from (124), No=1/p.

2. Baseband repeater, signal pulses passed through square-law or
similar nonlinear device before driving tuned circuit. The real noise in
the vacant time slots is now substantially suppressed; the real noise
power at the output might be expected to vary approximately as p.
Consequently 7, = 1/p, and N, is approximately independent of p.

3. Carrier frequency repeater, linear envelope detector. This case is
somewhat different from case 1 above. During a time slot containing a
pulse, only the in-phase component of the real input noise contributes to
the random component of the envelope of the input wave. In the absence
of a signal pulse, both the in-phase and quadrature components of the
real input noise contribute equally to the output random phase modula-
tion of the tuned circuit. Consequently, as p decreases, 7; will increase
somewhat faster than 1/p°, and N, will increase somewhat faster than

1/p.
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4. Carrier frequency repeater, square-law or similar nonlinear detec-
tor. This type of repeater behaves essentially the same as a baseband
repeater with a square-law device, case 2 above; N, is approximately
independent of p. This has been verified in detail for the special case in
which the timing cireuit is an ideal flat filter, rather than a tuned cirecuit.

For locked oscillator timing cireuits, (115) gives

Fo= Noé%; 0>1, (125)

with @, given by (87) or (88), now independent of the pulse pattern; the
timing-wave amplitude is also constant. A similar discussion to the one
above shows that N, for a locked oscillator has approximately the same
funetional dependence on p as it would for a tuned circuit for the corre-
sponding type of repeater (i.e., baseband or carrier, linear or square-law
detector). Since @ is now independent of p, the variation of the output
timing noise power 7, for a locked oscillator is p times that for a tuned
circuit, with the same type of repeater.

Improved performance is thus attained by using a square-law or simi-
lar nonlinear detector in both baseband and carrier-frequency repeaters,
using either tuned circuit or locked oscillator timing cireuits, as pointed
out by De Lange.” In this case the equivalent input timing noise power
Ng will be approximately independent of the pulse pattern, and may be
treated as a constant in the analysis. Qualitatively, the principal effect
of the input noise is simply to add a random displacement to the input
signal pulses, as assumed in the analysis.

The above calculation of the alignment deviation must be modified
for linear baseband repeaters (without a square-law or other nonlinear
element) and for earrier frequency repeaters using a linear envelope
detector. Here for p < 1 the equivalent position modulation required
in the analysis will exceed the actual effective position modulation of
the input signal pulses by the real input noise. Instead of (122) and
(123) we would have approximately for the linear baseband repeater:

An(f) = Nofpe " — [ H) I+ (0= p) | H [, (126)

Ay = No *”‘3’(1—#,‘/ T )+1— L};
{pc 20 N -1 ( p)2Q (127)

O>1, N>1,

with a similar result for the carrier repeater with a linear envelope detec-
tor. Since in this case Ny « 1/p, the net effect as p decreases is an in-
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crease in the low frequency portion of the alighment noise power spec-
trum, with only a small increase in the total alignment noise power. The
over-ull behavior of the alignment noise is thus very similar both for
linear repeaters and for repeaters using a square-law or similar nonlinear
element, for which (122) and (123) apply with N, a constant independ-
ent of p. The above results for timing and spacing noise, of course, re-
main valid for all cases.

V. EXACT ANALYSIS FOR A CHAIN OF REPEATERS USING TUNED-CIRCUIT
TIMING FILTERS, FOR PERIODIC PULSE PATTERNS — ZERO TUNING
ERROR, COMPLETE RETIMING

The results of Section IV are exact only in those cases where the tim-
ing wave amplitude A, is strictly constant, i.e., for tuned circuits with
a periodic pulse pattern with every 3/th pulse present (including all
pulses present), and for locked oscillators with any arbitrary pulse pat-
tern. IFor tuned cireuits with random or general periodic pulse patterns
these results are only approximate. In this section the exact solution for
a chain of repeaters using tuned ecircuit timing filters is discussed for a
simple periodic pulse pattern; in this case the analysis of Section IV
provides a very satisfactory approximation. As above, the repeaters are
assumed to have zero tuning error and complete retiming, and the driv-
ing pulses for the tuned circuits are assumed to be short enough so that
no additional timing noise results from the finite pulse width (Section
2.5). The response of a chain of repeaters to a single frequency input
™" first is determined and then used to determine the noise response
of the system. Since the pulse pattern is the same, the variation of A,
is identical at every repeater; the repeaters will consequently be identical
time-varying transducers to the timing deviation.

Setting 8f = 0 in (35), which gives the exact response of a single re-
peater with a tuned-circuit timing filter, yields

e —em' - 1) = [é(n") — &' — 1) (128)

1
fln’
The timing wave amplitude A, is given by (24). I'or a general periodic
pulse pattern A, will be a periodie funetion of n’. The simplest case of
interest is a periodic pulse pattern of period A/ containing only two
pulses, located in arbitrary time slots; A, then takes on only two values
and may be written as

A, = AQ + 8™, (129)
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where A is the average timing wave amplitude and § is the normalized
deviation of A, from its average value,

Tquation (129) is the Fourier series for A, 3 A and 6 are determined
by (24). From (50),

wM

2Q
A= =" 4
a4
8 will depend on the particular pulse pattern. The pattern giving the
greatest variation in timing wave amplitude, and hence the largest 8,
will consist of two adjacent pulses followed by M — 2 vacant time slots,
as shown in Fig. 10. In this case,

5 = —% (M -2); @ >>1;E. (131)

For other patterns containing two pulses, § will vary between zero and
the value given in (131). For periodic pulse patterns containing more
pulses, the Fourier series for A, corresponding to (129) will contain
more terms.

We now seek the response of a repeater chain to the input e
From (128) and (129) the input and output are related by a modulation
process involving the term

a2vin’

e.l"lrn' — eﬂﬂ”ﬂ)n' (132)

?

2rn’
= ]_,

of frequency 3. Since e

e:‘rn'ejzrfn' — ejzr(.f*lf'l) n' ,
(133)

cirn’ ejzr(f—uz)n‘ _ e.r‘z:rfﬂ' .

Therefore, for f > 0, if the input timing error to a repeater contains a
sinusoidal component at the frequency f the output will contain com-

Fig. 10 — Periodic pulse pattern containing two pulses giving maximum varia-
tion in timing wave amplitude.
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ponents at frequencies f and f — %; an input at the frequency f — 3
will give rise to output components at frequencies f — § and f. (If f < 0,
an input at f yields outputs at f and f 4+ 3; an input at f 4+ } yields
outputs at f + 3 and f.) Assuming that f > 0, the timing error at the
output of the (K — 1)th and the Kth repeaters may be written as fol-
lows:
() = Axa(DE 4 Bao(f)e ", (134)
#’(n) = Ax(Ne™™™ + Br(f)e™™ P, (135)

Substituting (134) and (135) for &(n’) and &(n’) respectively in (128),
and substituting (129) for A, , equating the coefficients of each of the
two frequencies on each side of the resulting equation, we obtain

aAx(f) + bBx(f) = Axa(f), (136)
cAx(f) + dBk(f) = Bra(f), (137)

where the parameters a, b, ¢, and d are constants which depend on the
input frequency fin a simple way. Since the input to the repeater chain
is ™™ the initial conditions for the linear difference equations (136)
and (137) are

Il

Il

."l|) = 1, Bg = O. (138)

These difference equations are easily solved by the usual methods,
vielding the response of the system to a single input frequency; the
results may then be used to determine the timing, spacing and alighment
noise along the repeater chain with an independent white timing noise
added at the input of every repeater. Although the solution is straight-
forward the analysis is lengthy, and the problem does not seem to be
of sufficiently general interest to warrant the inclusion of the detailed
results. Examination of these results shows that for quite moderate
values of @ the variation in the timing wave amplitude may be safely
neglected in considering the timing behavior of a chain of repeaters.
The approximate analysis of Section IV, which neglects the additional
modulation products eaused by the variation of the timing wave ampli-
tude, is reliable for a long chain of repeaters with tuned-circuit timing
filters for this particular pulse pattern.

This analysis may be generalized to more complicated periodic pulse
patterns. However, as the number of pulses in one period increases, so
does the number of simultaneous difference equations corresponding to
(136) and (137), increasing the complexity of the analysis.
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V1. THE EFFECT OF TUNING ERROR ON THE TIMING OF A CHAIN OF RE-
PEATERS USING LOCKED-OSCILLATOR TIMING CIRCUITS WITH COMPLETE
RETIMING

We next consider the timing deviations introduced by random tuning
errors of the different repeaters, in a chain of repeaters using locked-
oscillator timing circuits with complete retiming. I'rom (37) the timing
response of such a repeater is given by

) — &n' — 1) = %[e"(n') — 2w = 1)

of 1
F‘ (1 - E) bn' y

where A is the ratio of the amplitude of the oscillator wave to the ampli-
tude of the transient started by a single signal pulse. As pointed out in
Section 2.3, this relation does nol approximate the behavior of a tuned
circuit with tuning error. Since no equivalent analysis has been devised
for tuned circuits, the present treatment of the effects of tuning error
on a repeater chain is confined exclusively to repeaters employing locked
oscillators.

The output timing deviation of a repeater using a locked-oscillator
timing ecircuit is linearly related to the input timing deviation, but has
an additional equivalent input timing deviation related to the pulse
pattern through the b, and proportional to the tuning error. In the
present section we consider only the timing noise caused by the tuning
errors of the different repeaters, since the effects of input noise for this
case have been discussed in Section IV.

We will consider only random pulse patterns with a probability p
that any time slot contains a pulse, independently for each time slot.
For such a pulse pattern the quantities b, are independent random
variables and consequently have a white spectrum, in addition to a de
component. The quantity (b, — 1) has a geometric distribution,” so
that the mean and variance of b,. are

(139)

<bu’> = %r
(140)

a 2 9 1 — p
oy = bu‘ - b.u' = Y .
v = (bw) — (bur) p

Separating b, into de and ac components,

b, = B + Bu': B = <bn'> = l) (1'1'1)

=
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By =0, (B.*) = 1;—-_,1)- (142)

It is now convenient to separate (139) into de and ac components, as
in (40) to (45). Writing

E("'I) = & + énc(n’): (I"l.i)
we have, from (139):
fa’ — @ = ‘;—{(A ~ DB, (144)

Eano(”-’) - gncn(n’ - 1) = %Tanci(n’) - Enoo(n" - 1)]

o, 1
F (1 ‘I) BH’ .

Equation (144) represents a constant delay through the repeater due
to tuning error. There will be a corresponding de alignment deviation
between the input signal and the retiming pulses, but otherwise the de
component is of no further interest in the analysis of the chain of re-
peaters. The ac timing deviation is governed by (145); for simplicity,
the subscripts .. will be dropped in the remainder of this section.

We now let ¢'(f), C°(f) and B(f) be the transforms of &.'(n’), & (n’)
and B, respectively. Taking the transform of (145),

(145)

(—«'"(.f) = ﬁ(f) [C'(f) "L“"]—IE(‘”:I’ (HG)
where
_ i
ﬁ(f) = La~— ) (147)
1 — e 7lQe—2%/
A= 1 . g=s4, (> (148)
1 — e ™0

H(f) and @ are the same transfer function and effective “Q" previ-
ously defined for the repeater in (01) and (87) and (88), and B, is a
white noise of power (1 — p)/p

In Section IV the effects of mdependent white timing noise added at
the input of every repeater were determined. The present analysis is
somewhat different in that the added timing noises at the different
repeater inputs are no longer independent, since the pulse pattern and
hence B, and B(f) are identical at each repeater. In general, we no longer
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may simply add the output power spectra caused by the various noise
inputs, but must keep track of the phase angles of the different com-
ponents. Thus the timing noise power speetrum Tx(f) at the output of
the Nth repeater, in terms of the tuning errors (8f)x of the various re-
peaters, becomes

Tw(f) =
1 1 1l —pe v s~y (149)
ﬁ[wf: - 1] o 2 2, v @wsalIDET).

Next assume that the tuning errors (§f)x themselves are independent
random variables with zero mean. Thus,

((6f)x(ef) ) = 0; K #= L,

(6Nx") = (@NY; K = L.
The tuning errors at the different repeaters are uncorrelated. The
equivalent input timing noises at the different repeaters are thus also
uncorrelated, although not independent; in this special case, the output

power spectra of the different components may be added directly. Sub-
stituting (150) into (149),

_((6f)> 1 Ti—pt—HNH™
Tl LW—J P HH -

(150)

b

\ . (151)
(@fY)y, K=1L
Comparing with (105), the timing noise power spectrum caused by
uncorrelated tuning errors has the same shape as that caused by inde-
pendent white timing noise at every repeater input. Thus, the total
output timing noise power in the present case is given by (111) or by
(113) to (115), where No must be replaced by
((61’)2)[ 1 ‘1 —p
F* |etria — 1 p:

0 : KL
(@ )x(8f ) = {

For the high-Q case:

5 _ (@NH01 ~
Tl'* F2 ;_ ng } Q>>1a

- (152)
T <(5f) el 21’4/5‘?; d»1 N>L

T P T _
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The spacing and alignment noise power spectra and total powers are
found in the same way from the results of Section 4.3.

The results of (151) and (152) are no longer valid if the tuning errors at
the different repeaters are correlated. For example, if all tuning errors
are identical, making use of (121), (149) becomes

- B 6f)2 1 —plt = AN
TN —\ 7 = 2 2= —2 ’

(/) (l* (etm@ — 12 P* |H(f)|” =1 (153)
(8N)x = of.

In this case, all repeaters are tuned correctly but the pulse repetition
frequency is incorrect. The last factor of (153) approaches N* as f
approaches zero [the corresponding factor of (151) or (105) approaches
N, as illustrated in Fig. 9(a)]. The low-frequency noise is much greater
in this case, since an identical timing noise has been added at every
repeater and the corresponding noise amplitudes, rather than powers,
add at the output.

For a single repeater using a locked oscillator, the output timing noise
power given in (152) is just twice as large as the corresponding quantity
computed by W. R. Bennett for a tuned circuit.” This is in accord with
the diseussion of the two cases given in (38) to (45) and illustrated in IMig.
6 for p close to 1. A similar analysis for the timing noise produced by
tuning error in a chain of repeaters using tuned circuit timing filters
has not been found.

VII. TIMING IN A CHAIN OF REPEATERS WITH PARTIAL RETIMING

The preceding analysis has been confined to the case of complete
retiming, in which the timing deviation of each output signal pulse is
equal to the timing deviation of the corresponding timing pulse. All of
these results are easily extended to the case of partial retiming, in which
the timing deviation of each output pulse depends linearly on the
timing deviations of both timing and input signal pulses.

As stated in Section I, in systems employing complete retiming the
timing pulses may be derived only from the input signal pulses. If such
a system with timing from the output signal pulses could somehow be
started, its subsequent timing behavior would be completely independ-
ent of the input pulse pattern. Thus, the repeater would have no way
of determining when the timing pulses were properly centered on the
input signal pulses. However, in systems employing partial retiming,
the timing pulses may be derived from either the input or the output
signal pulses.
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Let &(n/) and &€(n') be the normalized timing deviations of the n'th
input and output signal pulses with transforms C'(f) and C°(f), as before,
and let &(n’) be the timing deviation of the n'th timing pulse with
transform C'(f). Then, following Pierce,” we assume that

e’) = ad'(n’) + (1 — a)é(n),
C(f) = «C'(f) + (1 — a)C'(f).

Tor complete retiming assumed up to now, @ = 0; for no retiming, & = 1.

Consider first a repeater with the timing wave derived from the input
signal pulses. All of the previous analysis for a single repeater (Section
II, Section 4.1 and the first part of Section VI) remains valid if we
replace &(n’) and C°(f) by &(n’) and C'(f) respectively. Thus, from
(86) to (91), for a repeater with zero tuning error

(154)

') _ g L=
Sl () = ——— : 155
¢ 9 1 — ¢ ™% (155)

where A(f) and @ remain the same as before. Defining H..f) as the
transfer function of a single repeater with partial retiming with timing
derived from the input, from (154) and (155)

H.() = a+ (1 — a)H({). (156)

For a = 0, H..(f) = H(f). Making use of (120),
| )=+ 0 =NTHDI,

_ _ mle —/ 3 (157)
v =a[l —e + ac Y],

where | H(f) |* is given in (93). Substituting | H.(f) |*
(104) and (105), the timing noise power spectrum at the output of a
chain of repeaters with an independent white timing noise added at the
input to each repeater is determined as in Section 4.3. For moderate
values of a the timing noise spectrum will be slightly larger at high
frequencies than for complete retiming, « = 0. Thus, the total output
timing noise power will be slightly larger than for complete retiming,
given in (110} to (115). The spacing and alignment noise power spectra,
may also be easily determined.

Next consider a repeater with the timing wave derived from the out-
put signal pulses. For zero tuning error we now have

c'(f
(s

1 — ¢ e

=H(f) = —r—r. (158)

— ™ EG—J‘MI

[en]]
—

|
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Substituting into (154), the transfer function H,(f) of a single repeater
with partial retiming with timing derived from the output is

~ o

H.m(f) = 1 — (1 — a)ﬁ(f)

(159)

The 3-db bandwidth of a single repeater for small « and high @ is ap-
proximately

oy = ‘%; a1, O0>1. (160)

The bandwidth is « times the bandwidth of the corresponding repeater
with the timing wave derived from the input [which for small « will
be only slightly larger than the value for complete retiming, given in
(94)]. The output timing deviations are thus much smaller with timing
from the output than with timing from the input (for zero tuning error).
However, in the limit as @ — 0 the behavior of the repeater becomes
independent of the input pulses, and the effects of any noise sources in
the regenerator itself hecome correspondingly more important.

The analysis of Section VI for a locked oscillator with tuning error
is readily extended in a similar manner to a repeater with partial retim-
ing. With timing from the input there is again little change in behavior
for small «. However, with timing from the output the de alignment
deviation &. — &. it proportional to 1/a. The bandwidth of the
repeater decreases as above, while the equivalent input timing noise
due to tuning error increases.

Both tuning error and additional noise sources in the regenerator will
determine whether for a given small value of @ any advantage can be
obtained by deriving the timing wave from the output rather than the
input. For complete retiming, @ = 0, the timing wave must be derived
from the input.

VIII. DISCUSSION

To illustrate the above results we consider a chain of repeaters using
resonant-circuit timing filters with zero tuning error, complete retiming
(the timing wave must of course be derived from the input), driving
pulses short enough so that no additional timing deviations are intro-
duced by the finite pulse width and a random pulse pattern. We further
assume that the equivalent normalized timing deviations added to the
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input pulses are distributed uniformly between —0.1 and +0.1; the
equivalent input timing noise power is then

N, = 0.0033, /N, = 0.0578.

Take

N = 100 repeaters,

Q = 100, tuned circuit “@Q”,

p = 1, probability that a time slot contains a pulse.
From (90)

Q = 50.

The rms values of the timing, spacing, and alignment noise at the
output of the repeater chain, from (113), (118) and (123), are:

V' Ty = 0.0344,
V'y = 0.00363,
V Ay = 0.056.

All of these normalized quantities are of course measured in units of a
pulse period.

Next consider the effect of finite pulse width. An extreme case may
give some indication of the importance of this effect. Consider the change
in output timing deviation caused by changing the pulse pattern from
all pulses present to every Mth pulse present, with raised cosine driving
pulses as illustrated in Fig. 7. I'rom (63) and (33), the change in output
timing deviation will be w,(w/Q)(M — 1). For overlapping pulses [Fig.
7(b)) and for @ = 100 as in the above example, from (64) and the table
following it, w, = 0.1073, and the change in output timing deviation
will be 0.00337 (M — 1). Thus, for @ = 100 and overlapping pulses as
shown in Fig. 7(b), changing the pulse pattern from all pulses present
to every 10th pulse present causes a phase shift of 10.9° in each repeater.

The analysis for the effect of finite pulse width (or amplitude-to-phase
conversion in the limiter of the timing system) in a chain of repeaters
for a random pulse pattern is complicated by the fact that the timing
deviation added at each repeater is directly related to the timing wave
amplitude. It is not obvious that the variations in timing wave amplitude
can be neglected in this case, as was done in studying the effects of input
noise (which will be independent of the pulse pattern).

Finally, consider a chain of repeaters using locked-oscillator timing
circuits with random tuning errors, complete retiming (with the timing
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wave derived from the input), and a random pulse pattern. Assume
Q = 100,
P =
Then, from (151), the equivalent rms input timing noise per repeater is

15 V@

b3

The effects of tuning error will be the same as the effects of an input
timing noise uniformly distributed between —0.1 and +0.1 (correspond-
ing to v/N, = 0.0578, as in the first example) for an rms fractional
tuning error of

As discussed above, similar results are not available for the effects of
tuning error in a chain of repeaters using tuned circuit timing filters.
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APPENDIX

Approximate Solution for Ty

In this appendix we present the approximate solution obtained by
S. 0. Rice for Ty, the normalized timing noise power at the output of
a chain of N repeaters with an independent white timing noise of power
Ny introduced at the input to each repeater. This solution is most useful
when the timing circuits have a high @. From (109), (105) and (93),

L= [H@ ™

TN =N =~ 0] ’
V=N m e -
~ 1
LA P = ,
1 + csch® 2—12—2-sin2 f (161)

1/2

T, = | T df.
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Substituting
6 = 2xf (162)

into (161), we obtain

_ Ny 71 =46

Ty = =2 T dh
v T Jo y7M(B) — ld ’
1 (163)
y) = ——,
1 4+ a sin® 5

where we have replaced esch® #/(2Q) by @ to simplify the analysis. Mak-
ing the following change of variable,
2 0 X 2 dux

7} . \
x = tan 5 smeo =9 F 22’ de = el (164)

Equation (163) becomes

= _ No2 [“dx 142" .
TN#—;E 0 .1:_3{1_[14-(&-}-1).1'2]}' (165)

Integrating (165) by parts, we find

. 4N f" da 1+ 2 N
T = N, =2
v= N 1+ .1:2)2[1 ¥ (a + 1).1‘2] : (166)
Making another change of variable
1+ (a4 1 _ 2ardr 2 u—1
t=—gr e WeEgrap YT oxiow U6

Fquation (165) becomes

~ CoN M du [(@+ 1) — W
Ty = _ .
v = No ma Ji  uNtt [ uw — 1 (168)
Making one last change of variable,
r=u—1, (169)

Equation (168) becomes

P 2N [“ dv a— »\"
Tu = Nooo | (1+v)~+1( . ) . (170)

The principal contribution to the integral of (170) comes from the
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0. We split off this portion of the integral and use

singularity at » =
the remaining terms to get bounds on the error. Thus

ZN f dv 1/2
¢ dv . )
- f T e — (a — v)”“l]
Ul,"_‘(l + U)N+l
2N ® d D "= d a7
v v
= Mo {[ 01+ o)V j 01 + p)¥H
" dv a” — (a — )"
ju V(1 + ) al’?
_ o 2N [TrW + ) ]
- ”Em[ I'(N+1) By =1 |,
w dv
Ry = _/; V(1 4 )V
a 12 12 (172)
P f v I:a — (a — v) :|
2 o D1 + p)vH al? :
We next find bounds on Ry and R
For R, , we have
°° dv " dv 1
0<hi= -[a VAL A p)N < -/ R T gV 1)
: (173)
For R., we first state the inequality
1/2 vz _ v ) -
a'? — (@ — )" = —”. T =" <o 0<v<a (174)
Thus,
dv a” — (a — )"
al;‘?

0 < R2 = j(; Ull?(l + t').\'+1
<] o' dy 1 o' dy
< s <il o
_ITErW — )
a I'(N+1)

1 (3TN —
0<R<, L NTD

13
~—

(175)
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Replacing @ by esch® =/2@ in (172), (173) and (175), we obtain as
the final result

LN R [TATW 4D,
TN = N[] T Slﬂh sz I:W Rl Rg f
.y oN 1 .
0 < R, < sinh ‘“%[N T %], (176)

r@)r(N — 3 }

. 2 T
0<R2<Slﬂh __:I:W

2¢Q
The bounds are quite close for a moderately high @, and improve with
increasing @ or N.
If § > 1, N > 1, the sinh may be replaced by its argument and the
gamma functions by Stirling’s approximation, yielding the result given
in (113):

Ty = No ; 0>1, N> (177)

' VxN
Q
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