Attenuation of the TE,, Wave Within the
Curved Helix Waveguide”
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The change in the field paltern of the TEy mode in the helix waveguide
with constant curtature is caleulated by means of a perturbation method.
The helix wavequide has a coating of a lossy dielectric and is shielded by a
metallic pipe. By bending this waveguide, the original field pattern of the
TEy wave is slightly perturbed. The perturbation produces additional field
components which give rise to an electromagnetic field in the lossy dielectric.
This field causes energy dissipation and gives rise to an additional allenua-
tion. In this paper formulae for the curvature atlenuation caused by the dielec-
tric losses are given. It is shown that the attenuation due to curvature can
be remarkably reduced by proper choice of the thickness of the dielectric
layer between heliv and metallic shield.

1. INTRODUCTION

If the system of cylindrical coordinates, in which the cylindrical wave-
guide ordinarily is described, is bent in the same way as the axis of the
curved waveguide, Maxwell’s equations change. Jouguet' has shown an
approximate solution of Maxwell’s equations written in a system of
toroidal coordinates. This solution may be applied to calculate the field
pattern of a TEy wave in the curved helix waveguide.” The waveguide’
consists of a helix made of very thin wire and a coating of a lossy dielec-
tric which may be shielded by a metallic pipe. The lossy dielectric serves
to suppress unwanted modes which may be excited in the helix wave-
guide. Although the lossy dielectric does not affect the T, wave in a
perfectly straight guide, it does give rise to an additional attenuation if
the waveguide is bent. It is the purpose of the present paper to show
how a helix waveguide should be designed in order to keep this additional
attenuation as low as possible. On the other hand, the attenuation of
the TEy wave in bends is not the only effect which is to be considered
" % The author used the same method of analysis to calculate the attenuation

and field structure of the TEq wave in a curved spaced-ring type waveguide while
he was working with the Siemens and Halske Company in Germany.
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in designing the waveguide. In practice, a compromise should be made
between the desire to keep the attenuation of the Ty wave in a curved
waveguide low and the desire to suppress spurious modes." For a short
part of the guide with a wanted high curvature, a helix waveguide which
is designed for minimum curvature attenuation of the TIN,; wave might

be useful.

The mathematical model used for calculating the helix waveguide
neglects the pitch angle of the helix wire.” It is assumed that the closely
wound helix may be idealized as an infinitely thin sheet with anisotropic
conductivity, condueting only in the direction perpendicular to the axis
of the waveguide.

II. SOLUTION OF THE BOUNDARY VALUE PROBLEM

In the following calculation it is assumed that the helix and the pipe
which serves as a shield around the helix waveguide are of perfect conduc-
tivity. The toroidal coordinates have the variables r, ¢ and z. These are
the same variables as for an ordinary system of cylindrical coordinates.
The only difference is that the z axis is curved in the same way as the
axis of the helix waveguide. The line element is given as

2
ds* = (1 + 1% sin ga) A2 + di* + 1 dg,

where R is the radius of curvature which is assumed to be constant.
Maxwell’s equations are then given by:

9 1 -I- sm r,a) Hjl — y(rH,) = jwer (1 + L sin tp) E,,
e R
vH, — : I:(l + - sin qo) H:I = jwe (1 + )%sin qo) E,,
P p) -
64-'1‘" (THrp) - c_.)’q;Hr = JDJETJLZ,
[(1 + = sinqc) Ez:| — vrili,
de

4 a ro. . ro.
vE, — ar |:(1 + RSIH sa) Ez] = —Jou (1 + 7 sin :,a) H,,

d a .
E" (TEnp) - 5‘; Er = —jwm‘H,,

(1)

I

— Jeour (1 + I%Sin rp) H,,

if the z and ¢ dependence of all field components are of the form

ejwt+'yz. (2)
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If R tends to « the equations (1) reduce to the ordinary Maxwell’s
equations in eylindrical coordinates. Since r/R < 1 in all practical appli-
cations, the solutions of (1) will be nearly the same as the solutions for
the system with straight z axis; they will differ only by additional per-
turbation terms. Therefore, the following statement is made:

H = Hu + h,

= En + €,
where H, and E; are the solutions of (1) for £ — «. Since we are con-
cerned with the special solutions which give the TEq wave in the curved
helix waveguide, the field of zero-order approximation will be the ordi-
nary TEy wave:

(3)

Ifz(] = A.Ju()(g?")ﬁjm:‘}“rz,

Hpo = — L Ady(xor)e™ 7,
Xo

B = =3 AT (e, @
Xo

Xl32 = 502 + 72:
302 = wgfo,uo.
Tquations (4) and (3) are now substituted into (1). Since h and e must
he of the same order of magnitude as r/R, products of these terms with
r/R are omitted. We therefore get only the first-order approximation.
If we consider that Ho and E are solutions of the unperturbed system,
(1) becomecs

(rh.,,) —h, — jwere. = 0,
de

ihz — yrh, — jJuwere, = — 2 cos eAJ(xar),
deo R
a " ')/2
e — L h = juee, = — S in AT
vh o h. — jwee, R sin eAJ 1 (xor)
+ & sin oA i), (5)

a d .
3 (re,) — P + jourh. = 0,

ie — yre, + jourhr = 'yr ﬁJT 1{xo0r),

dg ° e R Xo

d .
ver = 5 e + jouh, = 0
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For B — <, these equations are the ordinary unperturbed Maxwell
equations for e and h. The terms with 1/R make the system of equa-
tions (5) inhomogeneous. Its solution is therefore given as the general
solution of the homogeneous system and a particular solution of the
inhomogeneous system. The solution of the inhomogeneous equations is
found by the statement:

e. = X cos g, h, = U sin ¢,

e = Y cos o, he = V sin ¢, (6)
Z . W

e, = - sin ¢, ho = - cos e.

If we substitute this into (5) we get a system of ordinary differential
equations with the only variable ». This system is solved by a statement
of the form

X = PJo(xar) + QJ1(xur),

where P and @ are polynomials of » only. After determining the coeffi-
cients of the polynomials we finally get the solution of (5), after adding
the solution of the homogeneous equation:

2 2
xo + 2y A
h. = |:BJ1(XUT) - UTXHQ*— ?‘E JD(XUT)

* ] 4’1 2 .
+ ‘,LU Jl(Xo?"):| e’ sin g,

x R
hy = I:B Y 7 Gor) — jC 22 Ly 1(xr)
Xo Xo™ 7
+ T 'y — 1) 4 Jo(xor)
2Xo2 R

) A . .
52 686 + 2 .mxﬂr)] ¢ sin g,

Ly

B X Jo(xor)

=l e

he = [Blz L 1Gar) — G040 1 ) —
Xo™ T X0

| | (7

+ 5 Xlua (Bs + x)r E Jl(xur)] e"" cos ¢,

e = [CJ xor) — Jou Xlug r%, J D(XUT)] e cos ¢,
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, | ' A
€r = [_JB w—%, - Jilxor) + C r I (xor) — ‘;U# Jo(xor)
Xo© T Xo

[5)] ] { -
+ J K Ty I Jl()(o?‘)] ¢" cos @,
0 /

) ’ 1
= [JB‘;—:‘.L (xo) = C 15- Ji(xor)

. 2 2
+ % L ﬁ—o (1 ) Jo(xar) -’r Jw.u '8— A (xnr)] e? sin @
wep Xo~ ]l)

The validity of these solutions can be proven by substituting into (5).
The solution of the homogeneous equations is chosen so as to have the
same ¢ dependence and the same propagation constant as the solution
of the inhomogeneous equation.

Up to this point the theory has followed the solution given in Jouguet’s
paper and is not restricted to the application to the helix waveguide.

Equations (7) and (4) give the field pattern of a normal mode in the
curved helix waveguide, and ¢ = ¢ is taken for a guide filled with air.
The field in the dielectric outside of the helix should also be a solution
of (1). But since the TEy wave in a straight guide has no field outside
of the helix, the field in the dielectric layer is excited only by the addi-
tional field components (7) and is therefore of the same order of magni-
tude. If we again neglect terms of the order (r/R)* we get Maxwell’s
equations for the straight waveguide for the small field within the
dielectric layer. This field should have the same ¢ dependence as (7).
We therefore state:

b = FWi(x'r) sin g™,

we 1

b = Flur (CORE -mxr)]siwe“,

he = [ # %; Wilx'r) — J'Di—f Vu'(x'r)] cos e,

e

e’ = DVi(x'r) cos ¢,

o =| —if :_t‘g% Wilx'r) + D% V1'(x'?‘)] cos ge™”, (8)

e,) = | jF w?‘u,o Wi(x'r) = D )—:% } VI(X’T)] sin e’

2 /2 2
x =8 + Y
’2
8" = u'emn,

€ ’ .o
— =& — Je,
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with ¢ = dielectric constant, ¢’ = ¢ tan 8, where tan é is the loss fac-
tor of the dielectric material. The funetions V and W are abbreviations
for

2)r 1
Vi) = H® () — ) oy,
HiM(x'b)
e ©
i Y — @ 0y 1 X (gt
Wixr) = Hi ' (x'r) mlfl (X"‘);

where H,"" and H,"” are Hankel’s functions of the first and second kind
respectively. The prime on the V, W and Hankel function denotes dif-
ferentiation with respect to the argument. The functions V and W are
made such that e; and e, vanish at the shield » = b. The boundary con-
ditions on the shield are thus satisfied by the statements (8) and (9).
The field of zero-order approximation has to be matched to the bound-
ary independent of the additional field components because of their
different dependence on the variable ¢. It must be Ky, = 0 at r = a.
That means Jy(xz) = 0, xoo = 3.83, which is exactly the same eigen-
value as that for the straight helix waveguide or even the ordinary
circular solid-wall waveguide. To first order of approximation there is
no change in eigenvalue. The field components (7) and (8) must be
matched at the helix » = @ by means of four boundary conditions
which determine the four constants B, C, D and F.

We have at » = a the following boundary conditions:

(1) e, = 0

(2) ey’ = 0;

(3) € = eao;

4) h, = h,’.
These conditions regard the special features of the helix waveguide:
e, = 0 at r = a refers to the assumed perfect conductivity of the helix;
h, continuous at » = @, means that the current in the helix runs strictly
in the ¢ direction. But there is no condition for A, because the change in
h. on both sides of the helix takes into consideration the connection
between the magnetic field and the electric current. But this connection
does not determine the relation between the field components on both
sides of the helix but gives only the dependence of the excitation constant
A of the TEy wave on the wall current. However, this connection is of
no interest to the problem we are concerned with. The solution of these
four equations is:

1
2

1 .
— v A
XDR(1+GT) ,



ATTENUATION OF TEq WAVE IN CURVED HELIX WAVEGUIDE 1655

Il

(r . Y [ 72 ”fl(xra') € .60_2_0' T"1"(X’ﬂt) _ ]-] .(1
! X’“[L ”fll(xlﬂ,) € x' Vl(xlﬂ,) 2 ’

- wEﬂXDR

D = . Y a JU(Xﬂa)i )

— Jwio ;(;2 1—{ Vl(x,a) y

9

I =._1 _] 7 Jo(xo0a)
xo* x'R ”’1’()(’0‘) o

III. SOME CONCLUSIONS

The equations (4), (7), (8) and (10) give the complete solution to the
first order of approximation of the field perturbation of the TIy wave
due to curvature of the helix waveguide.

The additional field components (7) and (8) are of the same order of
magnitude as a/R and are therefore very small for gentle curvature.
This means that the helix waveguide preserves the TEy wave in its
general shape even within its curved parts. But the magnitude of the
additional field components depends obviously on the construction of
the waveguide, the values of e and the distance (b — a) between helix
and shield.
~ If b tends toward a; that is, if the helix waveguide is converted into
an ordinary copper pipe with perfectly conducting walls, the TEy wave
becomes seriously perturbed. This is shown by the behavior of the con-
stant C. If b tends toward a, W, (x'a) tends to zero according to (9);
this means that €' becomes infinitely large. Of course, the perturbation
theory has no meaning for infinitely large perturbation terms, but the
tendency shows that something is wrong with the TEy wave if the
curved helix waveguide tends towards a perfectly conducting ordinary
waveguide. The limit of the perturbation method is shown by using the
asymptotic approximations for the Hankel functions. This is possible as
long as ¢ > 1 and the TEy wave is far from cutoff:

Wi(x'a)
WY (x'a)

orif [ x'(b —a)| K1,

~ cot [x'(b — a)],

Wilx'a) 1
WY (x'a) ™ x'(b—a)’

The perturbation method is therefore applicable as long as

a

- . < 1.
RIx(—a)]
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It is interesting to look at the meaning of €' in the field pattern. Accord-
ing to (7), C is the excitation constant of the e, component or, better,
of that part of the e. component which refers to the solution of the
homogeneous Maxwell equations and therefore represents a wave of the
TMy, type. The fact that €' tends to infinity with b tending toward a
means that the coupling between TEy and TM;; waves becomes very
strong, as is well known. The coefficient B is not affected by this limit
process. That means that, since B is the excitation coefficient of A, in
(7) and therefore represents a TE,, wave, the coupling between TEy
waves and TIE,;, waves is not affected by the conversion of the helix
waveguide into an ordinary solid-pipe waveguide. I'or a real helix wave-
guide, however, the perturbation terms & and e are small and our first
order approximation is valid. It may be expected that there exists an
optimum design for the helix waveguide with regard to mode conversion
in bend parts, because the constant ' is also affected by the choice of e.
For instance, for ¢ — «, (' tends to = too, because of the second term
in parenthesis which tends to « like v/¢”.

It should be mentioned that the additional field components (7) are
not simply a superposition of TEy; and TM;; modes. Though they have
the same angular distribution, their radial dependence is different from
those of normal modes of the helix waveguide. In order to match these
modes to normal modes of the straight guide an infinite series of TE,,
and TM;, modes would be needed.

IV. THE ATTENUATION CAUSED BY CURVATURE

According to our assumption of perfectly conducting helix, the TEy,
wave in the straight waveguide would have no attenuation. But the
curvature gives rise to a field in the lossy dielectric between helix and
shield. The power dissipation due to this perturbation field causes an
attenuation of the whole wave. The power dissipation in the lossy dielec-
tric may be found by ecalculating the radial power flow through the
surface of the helix into that space.

The power dissipation P, per unit length of the waveguide divided by
twice the power P flowing through the cross section of the waveguide in
the axial direction gives the attenuation o, = P4/2P (the index e refers
to attenuation due to losses in the dielectric). The average power flowing
into the dielectric at r = a is:

2r
Re f (e, 'h." — e.°h,)a do atr = a.

0

Pd =

LD =
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The dash over & means the transition to the conjugate complex value.
In this way we get
1 1 j FWi(xa ¢ 20 Vi(Xa

= ‘Lﬂ 21{0{%[% —-v%l - iﬁo"fl'-,;(js—) . (1)

2xal ¥Lx" Wikxa) e Vilx'a)

For TEy far from cutoff and for ¢ > 1, we have k’a 3> 1 and may
therefore substitute for the Hankel functions their approximations for
large arguments. If we do this we get the much simpler formula:

_ vl JflvE & . ! 9
Ae — 2 ax"? RE Re [ir i!-_- + e o ﬂu cot ¥ (h — (1') . (]-)

The transition to the real part gives finally:

Qg

-sin % cos u | sin & (L il cos 26 + E’,Buzﬂ.?>

1

K
—I— cos 6 (% sin 26 — E”GQ‘QO?")] (13)
+ sinh » cosh v [cus b ( K,J cos 26 + e'd»gﬂo"')

— sin (I ;\,2 sin 26 — 6”32.302)]

[(sin u cosh v)* + (cos w sinh »)?]

’

where
K* = B 1/[(&' - 1) + xl-,]_ + (") 26 = arctan _'e_—g’
Bv’* ¢ — 14X

Bl).-]
w = K(b — a) cos §, v = K(b — a) sin 4.

Equation (13) gives the attenuation of the TEy wave in the curved
helix waveguide due to losses in the dielectric between helix and shield.
If ¢” tends to zero, 8 and v tend to zero and therefore e, vanishes. In the
shielded helix waveguide the additional losses of TEy wave due to curva-
ture may be very small if the losses in the dielectric could be kept small.

Equation (13) may be simplified for two special cases:

i. If b tends to =, that is, for the unshielded helix waveguide, the
attenuation due to curvature becomes:

o, = Lly] 1 l:('os 8 (i v [ cos 26 + E’ﬂ-gﬁﬂz)

2 ax,® KR? K?
+ sin & (e”a2302 _ | :i sin 25)] .
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Now we get an additional attenuation, even for € = 0 due to radiation
losses into the outer space.
ii. If ¢ <1 weget,aslongas 0 < K(b — a) < =

o = Lalvlss
T AR Ky (15)
K(b — a)é — sin K(b —a)cos K(b —a)( —2) ¢
[sin K(b — )] € —1

Finally, there is some additional curvature attenuation due to the wall
currents on the shield and on the helix caused by the additional field
components. This attenuation can be neglected when compared with
the attenuation caused by losses in all realizable dielectries.

It may be of interest to mention that the attenuation due to curvature
of the helix waveguide is always proportional to 1/R*. That is, for the
first order of approximation, which considers only terms proportional
to 1/R, there is no attenuation due to curvature. Therefore, the eigen-
value xpe is unchanged. Instead of calculating the second-order approxi-
mation which would also give the attenuation of the TE, wave due to
curvature, we have calculated this attenuation by calculating the energy
dissipation

V. SOME NUMERICAL EXAMPLES

The following figures show the behavior of the attenuation of TEgy
mode caused by bends as a function of different parameters:

I'ig. 1 gives the attenuation of the TEy mode for fixed frequency and
several values of ¢ as a function of ¢”. The shield is assumed to be at an

400 ]

200 —11
L -
£'=1.05 =12 |

100

R2
?af oo — —
—
40— — 1 111,105

20

10 1 I
0.01 0.02 004 0.1 0.2 0406 1 2 4 6 810 20 40 60 100

e

Fig. 1 — Attenuation of the Ty mode due to the curvature of the helix
waveguide, with ag, = 29.5.
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Fig. 2 — Curvature attenuation of the TEy mode, with ¢ = €”.
infinite distance b — w=. The curves were calculated with the help of
(14). The attenuation « is multiplied by R*/a in order to make it dimen-
sionless. The value of agy = 2n(a/N) = 29.5 corresponds toa = 1 in.
and f = 55.5 kme.

It is interesting that, for greater values of ¢, the attenuation is nearly
constant and depends on ¢” only for very large values. Diminishing the
value of ¢ gives a decrease in «. The attenuation has inereasing values
for decreasing ¢” only for values of ¢ very close to one. The best choice
is ¢ = €. It is advisable to make ¢ = ¢” as close to one as possible, if
low values of attenuation are wanted.

Fig. 2 shows the dependence of attenuation on ¢ = €”. Let us consider
a practical example. If a = 1in., f = 556 kmeand ¢ = ¢/ = 2:

433

a = R2

if B is measured in feet. The attenuation of the straight waveguide with

copper helix is about @ = 2.92 X 107" db/ft. The attenuation due to

curvature has the same value for a radius of curvature of B = 385 ft. =
117 meters.

Iig. 3 shows the frequency dependence of curvature attenuation for
¢ =2, =2.Ifa=1in, abs = 2r(a/N) = 18.6 for f = 35 kme
and afy, = 40 for f = 75 kme. In this range, the curvature attenuation
at the upper frequency limit is five times the attenuation at the lower
frequency limit.

dby/tt
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Fig. 3 — Curvature attenuation of the TEy mode, with ¢ = ¢ = 2.
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Fig. 4 — Curvature attenuation of the TEy mode, with ¢ = 4, ¢ = 2,

The attenuation due to curvature may very effectively be reduced by
proper choice of the distance between helix and shield.

Iig. 4 shows the dependence of attenuation on the relative distance
between shield and helix (b — a)/a; ¢ = 4, ¢ = 2, aBy = 29.5 in this
example. The attenuation first oscillates with increasing (b — a)/a and
reaches then a fixed value equal to the value for b = « in Fig. 1. But
the lowest value is only % of the value for b = . This favorable effect
of the shield ean still be improved with decreases in ¢”. Iig. 5 shows the
dependence of (R*/a)a on (b — a)/a for fixed ¢”/¢ = 0.01 for different
values of ¢'.
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Fig. 5 — Curvature attenuation of the TEy mode, with ¢ /¢ = 0.01.
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Fig. 6 — Curvature attenuation of the TEy mode, with ¢ = 3, & = 0.03;
(b — a)/a = 0.025.
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It is surprising that the values of the minima are reduced by increase
of ¢. This is just the opposite behavior as for the unshielded waveguide
of Fig. 1. According to (15), @ is proportional to €’ for small values. The
attenuation may therefore be simply calculated for other values of €”
by means of I'ig. 5.

If we again consider @ = 1 in., f = 55.5 kme and allow « due to cur-
vature to equal the attenuation of TEy mode in straight waveguide,
the radius of curvature may be B = 32.1 ft. = 9.8 meters if ¢ = 6,
¢’ = 0.06 and (b — a)/a = 0.01.

Proper choice of (b — a)/a allows, therefore, a 10 times larger curva-
ture than in the previous example. That the frequency dependence is
not worse for the shielded than for the unshielded guide is shown in Iig.
6. The ratio between the attenuation for a8y = 40 and afy = 18.5 is
again about 5.

If we are only concerned with the attenuation of the TEy mode due
to curvature, the shielded waveguide is very much better than the
unshielded guide.

VI. SUMMARY

The additional attenuation of a TEy mode due to curvature of the
helix waveguide was calculated by means of a perturbation theory. The
effects of dielectric constant and of a shield around the helix waveguide
were discussed. It was shown that it is advisable to make ¢ = ¢ as
small as possible if low attenuation for a guide without shield and a
very thick dielectric coating is wanted. But very much lower attenuation
can be obtained if a shield is placed at a proper distance from the helix.
To get low attenuation by aid of a shield, the real part of the dielectric
constant ¢ should be as large as possible but its imaginary part as low
as possible.

The attenuation due to wall currents in the shield and additional
currents due to curvature in the helix may be neglected when it is com-
pared with the losses in the dielectric jacket for all real dielectric mate-

rials.
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