Space-Charge Wave Harmonics and
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Electron Beams
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Higher-order space-charge waves on solid cylindrical electron beams
produced by shielded or nearly shielded guns have only azimuthal peri-
odicity, as in hollow beams. Because of beam rotation, they are members
of a broad class of space-charge waves which can travel faster than the
beams themselves, either forwards or backwards. The properties of such
waves for the beam in a drift tube and in a concentric sheath helix are de-
rived from a slow-wave, small-signal analysis and the appropriate boundary
equations. Experimental observations of their interaction with harmonic
Jields of a heliz, as well as of their role in noise propagation, tend to con-
Jirm the results of these computations.

[. INTRODUCTION

Interest in the ac behavior of eylindrical electron beams issuing from
magnetically shielded or partly shielded guns has been stimulated in
recent years by their increasing application in medium- and high-power
traveling-wave tubes. As yet, however, such beams have received con-
siderably less attention in the literature than have those in confined
flow. The properties of the fundamental (axial-symmetric) space-charge
mode in the former type of beam have been studied by Rigrod and
Lewis," and by Brewer. Waves of this type provide a first-order de-
seription of the beam interaction with its environment, such as a drift
tube or helix. The present paper will supplement this work by consider-
ing higher-order modes of wave propagation in such beams, in which
the fields have azimuthal, but not radial, periodicity. l'ollowing an
analysis of the waves themselves, several problems will be discussed
in which they play important roles: the excitation in a helix of spatial-
harmonic modes, the propagation of noise excitation and possible new
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applieations of these space-charge-wave ‘“harmonies.” Experimental
confirmation of their interaction with the harmonic fields of a helix,
observed by Kiryushin®* will be described, as well as some interesting
noise measurements obtained by Ashkin and White,” which illustrate
their participation in noise propagation.

II. NATURE OF HIGHER-ORDER MODES

The formation of ripple-free beams from convergent electron guns
is often facilitated by letting some magnetic flux thread the cathode.
Although this paper is primarily concerned with waves along Brillouin-
flow heams, the computations of this seetion will inelude provision for
arbitrary flux density at the eathode, for greater generality.* The ratio
a of flux encircled at the eathode to that in the drift region, is assumed
constant for any ring of electrons. The steady-state electron flow is
then laminar, and can be deseribed by the following equations:

6 = % 1 — a), (1)
20— i — 8, @)
ar
ot = @l @ (3)
i=u =0 (4)

Here (r, 8, z) are polar cylindrical coordinates; V, the de poteutiul
due to the uniform space-charge density g ; % the charge-mass ratio
for the electron (a positive quantity) and «. and w, the angular cyclotron
and plasma frequencies, respectively. A dot indicates time differentia-
tion, and MKS units are used.

The problem is to find the properties of small-signal ac waves which
propagate along the beam as

exp jlwl — nf — Bz), (5)
withn = 0, 1, 2, -+ -, subject to the slow-wave condition
wue &
. — o8 = 0. 6)
B B (

With this condition, the scalar wave equation

* The basic equations of this section were first derived by J. R. Pierce of Bell
Telephone Laboratories.
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A+ IE. = B div J + jeu . (7)

we

reduces to the following equivalent forms

AL, = B div J, (8)
we
AR = PP )
€

using the charge-conservation equation. Here A is the Laplacian opera-
tor, J the ac conveetion current density, p the ac space-charge density,
e and u the dielectric constant and permeability of free space, respee-
tively, w the angular excitation frequency, & the free-space wave number
and @ the axial propagation constant.

The terms which drop out of this wave equation due to the slow-wave
assumption are precisely those arising from curl E. That is, the slow-
wave condition is equivalent to setting curl E to zero, or to neglecting
the contribution to E made by the ac magnetic fields (provided J does
not exceed jweE by a factor approaching B°/k° in magnitude). The
electric field can therefore be derived from a scalar potential, or
_ R

\l
U <
47

n
Ey = —

3 or’ 5rE;. (10)

Another consequence of the slow-wave restriction is that the contribu-
tion of the ac magnetic field to the force on electrons ean be disregarded,
as it is negligible compared with that exerted by the electric field.

With this and the assumption of single-valued velocities at each
point in the beam, the electron dynamics equation ean be expressed
in Bulerian coordinates as follows:

d

T (vo +v) = —g[—grad 7y + E + (vy + v) X By, (1)

where

(0, 78, 1), (12)

Vo
v = (v, 05, 0:) exp jlwf — nl — Bz), (13)

and By is the axial magnetie field, the zero subseript being used wherever
necessary to distinguish the steady-state quantities. Expansion of this
equation yields the components of the ac velocity amplitude:
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P fawe) 1
Ur = w,{z [Er +J(P)Eﬂ], (14)
Vg = ani I:Eg -_— ] (awc) E,—J ’ (15)
wn? P
_ Jnk:
=Bl (16)
where
P =w— nd — Bu, (17
and
wn = P° — (aw,)’. (18)
From the charge-conservation equation,
_Jp div v _ Jew,’ ; awe o
p = iv v jeo [A.Ez + ( ) ﬁEz], (19)
and the wave equation for E. reduces to the Bessel equation
2 2 2 |
(1 — ‘LP) AE, — 2 ("“””) FE, = 0, (20)
wy? wlt \ P
whose solution has the form
Ez = Z Aer1z(7nr) exp J(mt —nf — IBllz)' (2])

Here A, is a constant, and 7, the nth order modified Bessel function
of the first kind, with transverse propagation constant v, defined by

2 2 2
Yu W, w
= 1 —_ P . 2
B, + (P) (wﬂz - wpz) (2 )

The ac space-charge density can conveniently be re-expressed in terms
of the above ratio (for any chosen n):

p= J-G%E’ = Je (g— - 1) E., (23)

showing that p becomes zero when aw, is zero.

Since, for slow waves, the electric field is irrotational both inside and
outside of the beam, it can be determined by the boundary conditions
for K. and E, at the beam surface:

(Er%f/e),_b_ - (%),:M' (24)
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where b— and b+ refer to the regions just inside and outside of the
beam surface, respectively, and & is the ac surface-charge density due
to unbalanced radial electron motions:

- _ _ (et __jew, [OE. (awc)ﬂ, :| 0
’ ( P )r=[‘. Bu,? [Br + P/r E. s (25)

The simplest boundary-value problem is that of the beam drifting
in a concentrie conducting tube of radius a. In the space between beam
and tube wall, the field is of the form

E: = B,,[I,,(,BI’)K,,(,(‘)'(I) - K,,(,BT)I,,(,BG)], (26)

where B, is a constant, and K, the nth order modified Bessel function
of the second kind. Thus, the boundary equation at the beam surface,
r = b, can be written

[(1 _ ‘;"Lz) b1, () _ cu_;,2 nawc:l
w,;E In('Yb) wliQ P
_ & [In’(ﬁb)Kn(ﬁa) - Ku'(ﬁb)fn(ﬁa)}
In(ﬁb)Kn(vBa) - Kn(lgb)‘[n(ﬁa) '

the primes denoting differentiation with respect to the total argument.
For any set of values of n, @ and b/a, this equation can be solved for
the square of the plasma-frequency reduction factor p, = P/w,. For
each frequency, there are two values of the propagation constant:

Br2 = Be — né/u + pana (28)

where 8. = w/u, B, = wy/u, and p, is a function of gb. The two travel-
ing waves in each such solution interfere with one another to form a
standing wave, with half-wavelength

2

o T~ (29)

Brewer® has solved this admittance equation (27) for the fundamental
mode, n = 0, using a flux parameter Q related to a by

oy o .
&) -wte o

His results show that, for a below about 0.5, the solution p, differs
little from its value for @ = 0, the rate of change dpo/da being less as
@b and b/a decrease.

The influence of cathode flux on the reduction factor p, for the higher-
order modes is quite different from that for the fundamental. This is
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illustrated in Fig. 1, showing how this factor varies with gb for the
n = 1 mode, fore = 0.2 and 0.4, and b/a = 0 and 0.6. For 0 < a < 1,
and small b/a, p tends to increase as b decreases, reaching some finite
value at the limit 8b = 0. Caleulations indieate, moreover, that p be-
comes infinite for & = 1 (confined flow), for all values of gb. (In con-
fined flow, there is an infinite set of solutions for p, but the one described
here is that which blends continuously into that for Brillouin flow as
a is varied from unity to zero.) In general, dp/da decreases as gb in-
creases or a decreases.

In most cases when beams are produced by shielded or nearly shielded
diodes, the flux parameter « ranges from zero to at most about 0.4.
Iixcept for very small b and b/a, the reduction factor for o = 0.2 differs
negligibly from that for @ = 0, and for @ = 0.4 it ranges mostly between
0.85 and unity. Over this range of «, then, it would appear that the

Bb

Fig. 1 — Plasma-frequency reduction factors p = wy/w, for space-charge waves
with azimuthal periodicity, n = 1, along a solid-eylindrical beam with small
amounts of lux threading the eathode; @ is the ratio of flux at the cathode to that
flooding the beam, g is the axial propagation constant, b the beam radius and @ the
radius of a concentrie drift tube.
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properties of higher-order space-charge waves do not differ markedly
from those on a Brillouin-flow beam (Figs. 2 and 3).

To obtain the equations for Brillouin flow, it is only necessary to
set e equal to zero. It should be noted that, in all of the functional
relations among ac quantities, the flux parameter a appears explicitly
only in the product aw. , proportional to the flux density at the cathode.
Because of this, all the equations determining the current and field
patterns of the higher-order modes, including the TM boundary-match-
ing equation, are the same for the Brillouin-flow beam and the beam
in zero magnetic field, both of which have zero flux at the eathode. The
only wave properties affected by the rotation of the Brillouin-flow beam
are the 6-directed surface current (which excites TE fields), and the
axial phase velocity of higher-order modes.

The reduced space-charge wavelength, however, is the same in both
types of beams. In a shielded diode with small convergence angle,
therefore, the accelerated beam throughout the univelocity region can
be regarded approximately as a chain of short sections of drifting beams,
each with its own velocity and geometry, in which the allowed mode
patterns are the same as in Brillouin flow. When the beam enters the
magnetic focusing field, these patterns rotate with the rotating beam,
sach thereby acquiring a higher axial phase velocity.
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Fig. 2. — Plasma-frequeney reduction factors p = wy/w, for the fundamental
(n = 0) and the first three higher-order modes of space-charge waves, along a
solid-eylindrical Brillouin-flow beam (a = 0), of radius b in free space.
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When aw, is zero, the wave equation for E, has two sets of solutions.
The first is

wy =P or p,=1. (31)

It has been shown in the accompanying article® that this solution is
spurious, as there is no way in which the corresponding waves can be
excited. The second solution is

AE. = 0. (32)

The transverse propagation constant is now ¥ = @, and the ac space-
charge density in the beam is zero. The boundary equation can be
reduced to an explicit expression for the space-charge reduction factor:

Knb _ Kna]
Iﬁb Ina ’

Here, and wherever else they are unambiguous, the arguments (8a)
and (8b) are replaced by the subseripts a and b, the radii of drift tube
and beam, respectively.

For very small arguments, fa < n’, and n > 0,

P’ 25 — 3(/a)", (34)

whereas, for very large arguments, gb > »*, and n = 0,

pnz = ﬁbInb’Inb |: (33)
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Tig. 3. — Plasma-frequency reduction factors p = wo/wp for the same modes
as in Fig. 2, when the Brillouin-flow beam is in a concentric drift tube of radius
a, where b/a = 0.6.
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P =3 — 3 exp [—2B(a — b)) (35)

These limiting expressions, and the curves of p, plotted in Figs. 2
and 3 for n = 1, 2 and 3, for two values of b/a, show that the smaller
b/a is and the larger n is the closer the reduction factor p. clings to
the asymptotic value 0.707. To a good approximation, then, for all
n > 1, and for n = 1 when b/a is small,

Bn = 8. — %(n + 1)Bc (36)

and

o)
I
=y

= Ac; (37)

that is, the distance between current minima equals the cyclotron wave-
length.

Since the convection current carried by the beam is chiefly due to
transport of ac surface charge, the field pattern can best be visualized
by examining the locus of maximum surface current density in each
standing wave:

Re(G, + G;) = | G| cos (wl — B.2) cosn (B - sz) cos B,z (38)

The subscripts s and f refer to the slow and fast waves, respectively,
and | G | is the amplitude of surface current density at ¢ = z = § = 0.
IFor most of the high-order modes, for which p, = 0.707,
Bz = 1} gz =2 (39)
2 u
The surface-current maxima follow spiral loci, therefore, with the
same “‘piteh” as the rotating beam itself, increasing and decreasing
along these loci with a period equal to one beam rotation. IFor the nth
order mode, there are 2n such loci, resembling the conductors of a
multifilar helix, in which the lines of force start and end on ac charges
in adjacent parts of the beam. This is why the reduction factor tends
to be independent of beam or wall geometry when n is large.

11I. MODE COUPLING BETWEEN BEAM AND HELIX

The coupling impedance, measuring the interaction between waves
on a Brillouin-Aow beam and a concentrie sheath helix, both with the
same azimuthal periodicity, will be evaluated in this section, with some
simplifying nssumptions. Somewhat weaker interaction should also be
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possible when the beam and helix waves have the same axial phase
velocities, but different azimuthal periodicities. However, this problem
will not be treated here.

The four boundary-matching equations at a sheath helix"' * involve
E., Ey, H. and Hy, as well as the helix pitch angle ¥. In addition to
matching k. and its radial derivative at the beam boundary, therefore,
it would seem necessary to introduce another two equations in terms
of H, and its radial derivative at the beam boundary:

(H. + Go) = (Hsy, (40)
oH. ~ [aH,
(? + Jﬂ)bf - ( ar )b+. (41)
I'rom the results of the previous section, it is readily found that
AH, = —curl. J = 0. (42)

Thus the radial propagation constant for f. is 8, inside as well as out-
side of the beam.

The eliminant of the eight boundary-matching equations can be com-
bined in the form of a single wave-admittance equation, similar in form
to that for the beam in a drift tube:

( . i_) Li _ La' + 6K,m', (43)
P ) I T + 6K,
where 8 stands for an expression which depends on the helix geometry
and the amplitude of /.. When the slow-wave assumption is invoked,
however, it turns out that this term differs negligibly from its value
when the beam is absent; i.e., the TIE-TM wave coupling at the helix
is negligibly small:

~s _ 1 . kacot¥ Y ...
'5 = 60 - m.‘. [Irml&nu + (lm) Inn I(-nu :| . (44)

The TIE fields excited by J, and Gj in the beam, therefore, do not
affeet the TM wave admittance presented to the beam by the helix;
the expression on the right-hand side of (43) would be the same whether
or not the beam rotated. In addition, due to the absence of ac space
charge inside of the beam, the field there has the same radial variation
as it would have in free space. These two circumstances suggest the
possibility of evaluating the normal-mode parameters’ of the Brillouin-
flow beam in terms of an “equivalent” thin hollow beam in confined
flow, by the same method employed earlier for the axial-symmetric
mode.'
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The procedure consists of reformulating (43) by replacing the elec-
tronic admittance of the Brillouin beam with that of a thin hollow
confined-flow beam of the same radius b, direct current 7, and longitudi-
nal velocity . (It is not convenient to compare these beams on the basis
of the same de voltage.) The altered circuit admittance Y5, consistent
with thig new electronic admittance and (43), is compared with the
actual eireuit admittance of a thin hollow beam, in a narrow range of
propagation constants near that of the empty helix. The normal-mode
parameters of each beam, which ean then be compared, indicate how
the different distributions of electron flow in the two beams affect their
interaction with the helix field near synchronism. ("I'he compared beams
are “equivalent’” only in their common de properties, not their rw
behavior.)

The beam admittance on the left-hand side of (43) has two com-
ponents, one due to the displacement current and another due to the
electron current, within radius b, The latter portion, the electronic
beam admittance, is ¥, in the following restatement of (43):

Ye=1. (45)

. wﬂ‘l o IL-'J’ _ Inb’ + 501(".')’ _ [Lb’ (4(,)
(w - ﬁ“‘ - ne‘)ﬂ [nh Iub + aUI(JAh Iub ' k

The expression on the right side, Y., is the net circuit admittance due
to displacement current both inside and outside of the Brillouin-flow
beam.

The boundary equation for a thin hollow beam (thickness dr) at its
outer radius b is obtained by matching the free-space values of £. inside
and outside of the beam, and equating the change in Hy , between these
surfaces, to J.dr. (Inside of this beam, the field . is tuken to be the
same as in free space.) With 6— to identify the fields just inside of this
beam, and b+ the fields outside of it, this boundary equation is

J.dr H, Hy -
o = | = — =) . 4
]'a': (E‘ )ﬁ+ (E )b ( [)

For confined flow and fields with azimuthal periodicity », this reduces to

pr:,Bdr_ _ Inb’ + 601("?)’ Iub,

W(w - 6“')2 N Inb + 6!11\';:5 ]nb
where w,y is the angular plasma frequency in the hollow beam. The
expression on the left-hand side is the electronic admittance of the
thin hollow beam, and that on the right is the net circuit admittance
due to the helix, the same as in (46) for the solid Brillouin beam.

=Y., (48)
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If the hollow beam is assigned the same direct current and longitudinal
velocity as the Brillouin-flow beam, the plasma frequencies in the two
beams are related by

(JJPH:! _ ‘Il'b? b (49)

wpr?  2xbdr  2dr’
Then the admittance equation (46) for the Brillouin-flow beam can be
rewritten as though it were a thin hollow beam whose circuit admittance

_ [80 w — Bu — nf\ L -
YB = ['2 (——7(‘” _ ﬁu ) Iﬂhl] Yﬂ. (‘)0)

The solid-eylindrieal Brillouin beam is thus equivalent to a confined-
flow hollow beam whose helix admittance is Yy . The normal-mode
parameters of this and a true hollow beam depend on the behavior of
Yy and Y, in the neighborhood of the synchronous phase velocity, i.e.,
of their common zero and pole. As the latter are very close together,
the admittance functions can be represented in this region by a Weier-
strass (algebraic) approximation. Then, just as in the case of the axial-
symmetric mode,"® the two types of beam have the same space-charge
parameter:

was

QB = QH: (51)

where B and H stand for the Brillouin-flow and hollow beam, respec-
tively. Their impedance parameters, identified similarly, are related as

follows:
{\_:f= Y. _ 2 w — fu _ ”M:’ , (52)
Ky Ya/e Bb\w — pu — n8/) La g,

where B, is the zero of ¥, , i.e., the empty-helix propagation constant.
It is found by putting dy to zero:

Li Kud _ [ﬁ”a” + npa cot \p] 53)
TwKwe | kaBacotw |- (5

This is the determinantal equation of the empty sheath helix given

by Sensiper,’” modified by the slow-wave approximation. Sensiper has

shown that, for fa > 2, and in the nondispersive region of the helix,

the cold-helix propagation constant is given to a good approximation by

2 ~
BUH g rGI] + '%na (D']:)
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where 8, is the propagation constant of the fundamental and p is the
helix pitch. Sensiper has also evaluated the impedance of the sheath
helix in the nth order mode, at a radius b < a, as follows:

. 30 Ly ) -
Ky(n, b) = m‘ﬂ [ ohms (55)
when (k/8) < 0.4 and | n | > 0. This is the same as Ky in (52) for the
thin hollow beam in confined flow at radius b.

In expression (52) for Ku/K, there is a factor dependent on the beam
veloeity components § and w, arising from the comparison of a rotating
with a nonrotating beam. When both beams have the same value of
Bu, this factor is greater than unity for positive n, indicating that the
angular component of heam motion contributes to field-wave inter-
action in the rotating beam, i.e., to interaction with I as well as E.
and F, . The remaining terms express, on the other hand, the superior
efficiency of the hollow beam due to its concentration in a region of
nonzero field.

It will be shown below that the space-charge reduction factor for the
n = 0 mode is very nearly the same in the presence of a sheath helix
as that of a drift tube at the same radius, when the slow wave is in syn-
chronism with the eold-helix propagation constant. Without proof, it
seems reasonable to assume that the same equivalence is true for a
high-order mode as well. With this assumption, and using the approxi-
mation p, = 0.707, the impedance ratio can be simplified further as
follows:

B = B — (2T) B = Bon, (56)
Ko _, w2164 -
K=y [ﬁ_b f—,;]ﬁ‘,.; (57)

This, combined with expression (55) for Ky, yields K, for the com-
parable Brillouin beam at synchronism. !

The sign of n is positive for a wave which spirals in the same sense
as the beam, since both n and 8 are referred to the same set of ¢ylindrical
coordinates. Thus, 3. is less than 8, when nf is positive. I'or the spatial
harmonies of an empty helix, the opposite convention has been estab-
lished; i.e., B, < Bo when n and the piteh p have opposite signs. Aside
from this distinetion, however, there is a close analogy between the
spatial harmonic waves on a helix and those on the Brillouin-flow or
hollow rotating beam.
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The above expression for Kz/Ky is only valid for n = 0, and for
n > 1 whenever the approximation p, = 0.707 is valid. The coupling
impedance K5, therefore, is not necessarily zero when n = 1. For nega-
tive n, the phase constant 8 is greater than for zero or positive n, and
K decreases very rapidly as §8 increases. (This might be expected, as
the larger 8 is, the more rapidly the field decays radially away from the
helix.) Thus, none of the negative-order beam harmonics have appre-
ciable coupling impedances, but those of positive order greater than
unity may have very large coupling impedances.

Evidence of interaction between a number of these beam hamonics
and those of a bifilar helix has been reported by V. P. Kiryushin." *
Operating a hackward-wave oscillator with its electron gun in a field-
free region, he found narrow-band gaps in the output spectrum of the
tube (and corresponding peaks in the starting current) at a number of
discrete values of w./w, which he attributed to loss of energy to various
harmonic modes. The values of w.,/w at which these disturbances were
noted were found by Iryushin to correspond to the ‘“‘ratios of small
integers”, and appear to show interaction between beam and helix
modes of the same as well as of different azimuthal periodicities (when
their axial phase velocities are the same). In the latter case, it seems
likely that the coupling impedance K, would lack the factor (n — 1)*
expressing interaction with the azimuthal electrie field.

IV. PLASMA FREQUENCY REDUCTION FACTOR FOR BEAM IN SHEATH HELIX

Tfor axial-symmetric waves on a solid-cylindrical beam in confined
flow, Branch" has found the space-charge reduction factor to be nearly
the same in a drift tube as in a helix of the same diameter. A similar
computation can be made for the Brillouin-flow beam.

For any beam in a concentric helix, the relation derived by Branch is

2 - (Bb)2 "I)M2 -
= (QK) “——— 58
p = (QK) 2D (58)
which reduces, when the heam is at synchronous velocity, to
2 ITG
- = (QK ; 59
p=(Q )6060 (59)

Here Q and K are Pierce’s’ normal-mode parameters, properly evalu-
ated for the finite-diameter beam in question, and V; is the de beam
potential. The @ and K values for the Brillouin beam will be identified
as before by the subseript B, and those for the thin hollow beam at the
bounding radius b by the subseript H.
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As shown in the preceding section of this paper,
Qs = Qu (60)

for space-charge modes of any order number, including zero. Fletcher®
has shown, in curves reproduced in I'ig. A6.1 of Ref. 7, that Qn differs
very little from its value in a drift tube of the same diameter (2a) as

the helix
Q" _ 6O |:I\-Ilh IXUn] , ((jl)

F¥(Ba) [ Lo B I

3 . . . e . v .
where *(8a) is given by Equation (41), p. 232, of Ref. 7. The impedance
parameter K, of the Brillouin-flow beam is related to that of the thin
beam at the axis, K, as follows:'

Ks 20wl o .
B — 62
(). = [Za=], (2

Kr = o F(ga). (63)

where

Thus, when the beam is at synchronous veloeity,

P = Bbluwla I:ﬁi — I‘:g"j| y (64)
Iuh !Uu

an expression identical with that for p° when the beam is in a drift tube

of diameter 2a."

Paschke' has questioned the results of Branch’s computations for
the solid-eylindrical confined-flow beam, on the grounds that QK was
computed in terms of an equivalent hollow beam-—an equivalence of
rather restricted validity. This objection does not apply to the present
computation. Since its ac convection eurrent is almost entirely carried
by the moving surface charge, the Brillouin-flow beam very closely
resembles the thin hollow beam on which the ealeulation is based.

V. INTERCEPTION NOISE DUE TO IMMERSED GRID

Ashkin and White’ have obtained a series of periodic noise patterns
along o drifting eylindrical beam, by means of an axial-svmmetrie
cavity trailing in the wake of a moving, immersed grid. In addition, they
were able to observe changes in beam structure with the aid of Ashkin’s
beam analyzer,” mounted behind the eavity. The beam was produced
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by a convergent, shielded gun, and focused by a uniform axial magnetic
field in the drift region. The cathode flux could be varied by an auxiliary
coil near the cathode.

Some of these observations can be explained on the basis of (a) a
general description of the nature of interception noise at microwave
frequencies, given by Beam' and (b) the nature of higher-order space-
charge waves in beams produced by partly-shielded guns, as described
in the first section of this paper. This explanation will apply to the
periodie noise patterns obtained with the pickup cavity located half a
plasma wavelength (in the fundamental mode) behind the moving
grid, which fall roughly into two groups:

i. When the fields were adjusted to obtain clear images of the cathode
region on the analyzer (22 to 36 gauss at the cathode), the beam was
rippled and the noise-current pattern had sharp dips. Within the ac-
curacy of measurement, these dips appeared to coincide with the image
planes, and were spaced a cyclotron wavelength apart.

ii. When the fields were adjusted for maximum beam transmission
through the gun anode (well below 10 gauss at the eathode), no cathode
images were observed and the noise current varied sinusoidally, with
large amplitude and the eyelotron period. The beam was comparatively
smooth; i.e., its ripple was insufficient to account for the observed noise
variations by variations in coupling to the cavity or in intercepted
current.

5.1 Sources of Interception Noise

When a filamentary electron stream in a finite magnetic field is
partially intercepted by a grid, Beam' has shown that the transmitted
filament contains four uncorrelated noise components: the incident
noise current reduced by the transmission factor, plus the incident
axial-velocity fluctuations, and, in addition, two new independent
fluctuation sources, partition velocity and current, which are due to the
uncertainty of eleetron position at the grid plane or the randomness of
interception. The first two components of interception noise, therefore,
are produced by the noise space-charge waves in the incident beam,
whereas the latter two components are due to the behavior of the par-
ticles in that beam. The latter components arise because of transverse
thermal velocities which are uncorrelated with the longitudinal ones;
they would be absent in confined flow.
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The beam of finile area is equivalent to a bundle of many filamentary
streams, whose space-charge waves are coupled to one another. Thus,
all of the propagating space-charge modes are involved in transporting
the current and velocity fluctuations. (The question of the complete-
ness of these modes, in the mathematical sense, does not enter here;"
it is only necessary that all of the propagating modes be known.) Since
the transverse distribution of each incident mode is distinet and unlike
the nearly uniform distribution of partition components due to random
interception at a grid, each incident mode contributes differently to
each of the transmitted modes.

An additional complication that usually besets beams in finite mag-
netie fields, as Robinson and Kompfner” have shown, is an inereased
spread in longitudinal velocities over the beam area, and increased
transverse eleetron excursions, due to electron-optical defects in beam
focusing. I'or a strongly rippled heam which is alternately focused and
defocused Herrmann'" has shown how the transverse thermal excursions
wax and wane along the beam. Increased transverse excursions cor-
respond to inereased current partition noise, whereas increased spread
in longitudinal velocities means increased velocity partition noise.

Despite the complexity of this deseription, some general conelusions
may be drawn relevant to the Ashkin-White observations:

i. Due to nonlinear mode conversion at an immersed grid, the noise
current in the fundamental transmitted mode will depend on all of the
propagating modes in the incident beam.

ii. The amplitude of noise current induced in the axial-symmetric
cavity, a half-plasma-wavelength behind the grid, will depend chiefly
on two factors in the incident beam: the current amplitudes of all the
space-charge modes and the transverse excursions of electrons in the
incident beam.

5.2 Noise Modes in Imperfect Brillouin-Flow Beam

Electron beams ordinarily obtained in the laboratory with incom-
pletely shielded, convergent guns are known to depart considerably
from the models assumed in space-charge-wave computations. Thermal
electron motions, gas ions and haphazard focusing usually conspire to
produce a rippled heam with more or less nonlaminar flow.'""" Never-
theless, there is experimental evidence that space-charge waves in such
beams closely resemble those predicted for the idealized model with
the same average velocity field.
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The writer, for example, has found that, in just such an imperfect
bheam, the radial distribution of ac current density corresponded closely
to that ealeulated for Brillouin flow.™ In addition, the measured space-
charge wavelength (for the fundamental mode) was found to agree
closely with the caleulated values, based on the average diameter of
the usually rippled beam, for field strengths ranging from below the
nominal “Brillouin field” to several times that value. Good agreement
between measurements and these ealculations has also been reported
by Winslow" for a gap-excited 10-kilovolt beam of microperveance one.

The reason is that the space-charge waves are not dependent on the
individual electron trajectories (which may intercept the axis regularly
or not'” " in a rippled beam) but only on the net motion of the charge
assemblage. Over a considerable range of field strengths, the average
beam diameter varies inversely with the field, so that the average plasma
frequency remains proportional to the eyclotron frequency over that
range, just as in ideal Brillouin flow. When magnetic flux threads the
cathode, the field distribution at any cross-section plane of a rippled
beam will depart from that in a smooth beam due to (a) the ripple itself,
and (b) nonlaminar flow. The former condition causes the angular
veloeity 8 of the smoothed-out charge to vary from plane to plane along
the beam, whereas the latter causes 8 to vary with radius inside of the
beam. The ensuing field distortion in both cases is periodic along the
rippled beam, however, and for relatively small cathode flux or ripple
is not likely to produce marked changes in the space-charge wavelength
(relative to that in a comparable smooth beam in laminar flow, with
the same cathode flux and average beam diameter).

In another set of relevant observations, Ashkin®™ has excited such a
beam in the n = 1 and n = 2 modes, respectively, by means of cavities
with the appropriate angular periodicities, and then traced the spiral
loci of the eurrent minima along the heam by means of similar pick-up
cavities. In each ecase, the eurrent minima were found to follow the
computed axial and rotational fluid, or average, velocities of the beam,
in agreement with the description of such waves in the first section of
this paper.

When the eathode of such a heam is shielded, the field pattern for any
mode is essentially the same in the diode and drift regions. (For small
values of the flux parameter @, the transverse field distribution is only
slightly different from that in Brillouin flow, and the space-charge wave-
length is slightly smaller.) As nearly all such mode-pairs but the funda-
mental have the same standing-wave periodicity (in both diode and drift
regions), and are initially excited at the same plane near the cathode,
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they will preserve phase coherence along the axis even after partial
energy interchange among the modes in the diode. In the Ashkin-White
experiment, therefore, nearly all of the high-order modes in the beam strik-
ing the grid have the same current-minimum planes, spaced a cyclotron
wavelength or so apart.

As primary current fluetuations can oceur in an infinitesimally small
area, the modal distribution of noise eurrents is probably nearly flat
The sum of the squared moduli of all but the fundamental mode should
then greatly outweigh that of the latter alone; and the same should be
true of their net contribution to noise eurrent in the fundamental mode,
excited at the grid. In a relatively smooth beam, therefore, in which the
electron-intereeption probability 1s independent of grid position, the
cavity-detected noise current should vary sinusoidally and with the
evelotron period, at any frequency. This was the pattern observed under
such conditions by Ashkin and White at both 400 and 4000 me.

When the fields were adjusted for sharp eathode images, the flux
parameter « ranged from } to 3, and the beam was strongly rippled.
Both factors helped to minimize the transverse thermal excursions at
the image planes, and thereby the contribution of random interception
to partition noise there. If these planes are, in addition, made to coincide
with those of noise-current minima for the high-order modes, the ob-
served noise dips should be very much sharper than in the smooth
heam, again as observed. As the variation along the beam of partition
noise due to random interception is very large in rippled beams with
periodic Imaging of the cathode, the sharp noise dips are primarily due
to such variations, rather than to current variations in the noise stand-
ing waves.

The two groups of noise patterns, therefore, illustrate the dual nature
of the sources of intereeption noise at the grid. In the smooth beam,
the variations are chiefly due to noise eurrent variations in the space-
charge waves, whereas in the rippled beam with periodic eathode images
they are chiefly due to uncorrelated transverse particle excursions of
thermal origin.'® Both processes sometimes happen to have the same
axial periodicity, but they are otherwise distinet and independent of one
another.

VI. CONCLUSTONS

The higher-order modes of slow space-charge waves on beams pro-
duced by shielded or partly shielded eathodes have azimuthal, but no
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radial, periodicity. Another feature that distinguishes these waves from
those in eylindrical confined-flow beams is that their axial phase velocities
increase rapidly with the order number, n, and angular velocity, 6, of the
rotating beam. With suitable means for exciting such modes, therefore,
it should be possible to achieve interaction between a relatively low-
voltage beam and the field of a structure with high phase velocity. This
should be equally possible for (a) hollow rotating beams, focused in any
way whatever, provided they are stable and (b) solid-cylindrical beams
produced by shielded guns, with arbitrarily strong focusing fields (since
only the net angular velocity of the beam, not the particle trajectories,
affects the wave velocity). More generally, the same type of interaction
should be possible with stable beams of any geometry, when they have a
transverse velocity component parallel to the beam surface and are ex-
cited by rr fields which are periodic in that transverse direction.

Another interesting property of harmonic waves on a Brillouin-flow
beam 1is that, because the axial and radial propagation constants are
equal, the rate of deeay of fields with distance from an enclosing rF
structure ean be smaller, the smaller this constant is. A computation in-
dicates that, consequently, the coupling of this beam to the harmonic
fields of a sheath helix can be quite large. Experimental evidence of such
interaction has been reported.’

When a Brillouin-flow beam is at synchronous velocity inside a con-
centric sheath helix, its plasma-frequency reduction factor in the funda-
mental mode has been found to be the same as if the beam were in a
drift tube of the same diameter as the helix.

The computations also show that, for nearly all of the higher-order
space-charge modes on beams from shielded or nearly-shielded guns,
the space-charge wavelength is close to twice the cyclotron wavelength.
This feature, together with a multimode description of interception noise
given by Beam," has helped explain some periodic noise patterns ob-
tained with a cavity behind an immersed grid.’
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