Logic Synthesis of Some High-Speed
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Logical schemes for realizing high-speed digital comparalers are derived
by Boolean algebra methods. Requirements for speed and precision place seri-
ous restrictions on the switching circuits. In particular, the precision require-
ment makes direct subtraction by the use of analog devices undesirable; the
speed requirement diclates that any carry structure should propagate from the
most significant digit toward the least significant digits. Such schemes have
obvious advantages when only an approximate magnitude is desired. Chang-
ing numbers in binary code introduces the common transition problem due lo
multiple digit changes; this problem is avoided by use of the Gray code.

Cirewits satisfying the synthesis requirements and giving the sign and
exact magnitude of the difference are derived first. These schemes are then
maodified and simplified to give the sign and approximate magnitude. Ctr-
cuits giving only the sign of the difference are also derived.

I. INTRODUCTION

1.1 Applications

A digital comparator compares two numbers presented in digital form
and obtains a measure of the difference between them. Comparison may
consist of detecting only the sign of the difference or the direction of mis-
match of the two numbers, or the result of the comparison may be both
magnitude and sign of the difference. The comparator is essentially a
subtracter suitably modified to fulfill requirements of the intended
applieation.

An immediate need for a dependable, high-speed digital comparator is
in the feedback control loop for the flying spot store of an experimental
clectronic switching system." R. W. Ketchledge has derived several
methods of implementing such comparators.” In this application the
comparator functions as an error detector, giving an output depending
on the difference between the desired input address position and the fed-
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back present position. By servo action, this difference then acts to elim-
inate the positional error. The input address is presented in parallel
digital form and the present position is digitally encoded in parallel. For
proper holding action of the servo the comparator output should be a
linear error signal when close to a zero difference. A similar technique
could be used in applications requiring fast and accurate positioning
through a precise digital servo action.

The use of reliable, high-speed comparators in a digital computer al-
lows greater flexibility of operation. Comparison of numbers, in the
sequence of a computation, can be used to determine the choice of
further operations. Since the programmer cannot always know the results
of a certain operation in advance, a built-in comparison scheme can
initiate judgement to proceed automatically with subsequent routines,
Comparison of numbers is frequently employed in sorting and determin-
ing square roots and dividends.’

In a broad sense, all measurements can be considered comparisons. If
the quantity to be measured appears in digital form the types of com-
parators to be considered here could be used, especially for rapidly vary-
ing quantities. Unlike an analog device, where precision is determined
largely by the components and accuracy of driving potentials, the pre-
cision of a digital device 1s limited only by the number of digits used.

1.2 Synthesis Requirements

Intended applications of the comparators discussed here place serious
restrictions on the logical form of the switching circuits. I'or example,
the extremely high access precision necessary in the flying spot store
prohibits the use of analog open-loop positioning and requires the use of
digital closed-loop control. This precision requirement also eliminates the
possibility of direct, complete analog subtraction of the digital signals
in the error detector of the servo loop. High-speed operation of the servo
system implies the use of electronic combinational switching circuits
with simultaneous operation on all of the digits.

In a servo operating on the magnitude of the difference between the
input address and the feedback signal, the value of the feedback signal
fed into the comparator may be rapidly changing for large differences.
For example, in the flying spot store servo presently operating only on
the sign of the error or difference, the beam position moves at a velocity
of three spots per microsecond. Each spot, corresponding to an ad-
dress point on the cathode ray tube face, is designated by a digital
number. With the feedback signal appearing in a binary code, one cycle of
the least significant digit corresponds to two spots. The frequency or rate
of change of this least significant digit is therefore 1.5 me. If the feedback
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signal appears in a Gray code (discussed in Section 2.2) one cycle of the
least significant digit corresponds to four spots and the rate of change of
this digit is then half of that for the binary code. For a servo controlled
by the magnitude of the difference, the velocity of the change of beam
position is proportional to the difference. As a specific example, consider
such a proportional servo operating with a Gray code and with an error
of about 200 spots. The bandwidth required for the least significant digit
would then be about 200 X 2 me = 150 me.

It is apparent that in such applications the digits of lower significance
can be changing at such a rate that their use in the comparison or sub-
traction scheme becomes impractical. The digits of higher weight will
he better defined and those of lower weight will be blurred, due to band
limitations. Logical operations, whenever possible, should therefore be
performed on the more significant digits, and any carries necessary
should propagate from digits of higher significance to digits of lower
significance. This synthesis requirement prohibits the use of conven-
tional parallel subtracters with a borrow propagating from the least
significant digits.

In many applications only an approximate, or order of magnitude,
difference may be required. For such applications it is also advantageous
to have the carry or carries in the subtraction operation propagate from
digits of higher significance to digits of lesser significance. Since the
magnitude of the mismateh between digital numbers is usually deter-
mined by digits of higher significance, an approximate difference can
often be obtained without the necessity of the carries propagating
through all of the digits. This is not possible in a conventional subtracter.
In either case, however, it is necessary to examine all digits to obtain
an exact difference.

There is little loss of generality in assuming that the input address
number, designated by A, appears in two-rail parallel form, as, for
example, from a flip-flop register, and that the second number, which
can be rapidly changing, appears in a parallel binary or Gray-code form,
designated by B or . For speed of operation, it is desirable to perform
as much of the logic as possible on the digits of the fixed number A
and to have the digits of the changing number B or G travel through
2 minimum number of series gates. This does not mean that minimal
switching circuits will always be used, however, since there may be
advantages to either combining or sharing functions in a slightly ex-
panded circuit. Only functional forms of the switching circuits contain-
ing AND, OR and EXCLUSIVE-OR gates plus inverters will be derived
here. For economy, flexibility and ease of replacement, an iterated logic
structure is desirable. The actual electronie circuits used to realize the
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various funetions will not be discussed. It should be mentioned that the
comparators giving both magnitude and sign of the difference are in-
tended to drive digital-to-analog converters giving an analog output.
In all cases when the difference is within 1 a linear indication of the
difference is required if the comparator is to perform properly in a feed-
back control loop.

1I. NOMENCLATURE

2.1 Algebraic Operations

Synthesis of the logic circuits to be used in the comparators is fre-
quently simplified by the use of algebraic expressions. Boolean or
switching algebra® has proved to be a convenient notation permitting
manipulation of series-parallel two-terminal networks into a variety of
equivalent circuits, often resulting in simplified or more appropriate
forms. The quantities involved in Boolean algebra can be represented
by letters or symbols. These symbols represent signals having discrete
on-or-off values, represented by 1 or 0 respectively. This convention
differs from that sometimes used (as, for example, in Ref. 4). Logical
operations employed here will be briefly defined.

The AND operation is a logical conjunction or intersection resulting
in 1 only when both variables are 1. The OR operation is the logical
disjunetion or union, indicated by -+, resulting in 1 when either or both
of the variables are 1. Truth tables and circuit symbols of these opera-
tions are shown in I'ig. 1. As a consequence of these rules, both the OR
and AND funections are commutative, associative and distributive. I'or
example:

(a+b) +c=(0+c)+ a
alb + ¢) = ab + ac,
(a + b)la+¢) = a+ ab + ac + be,

a + be.

I

Il
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An additional concept is the NOT, complement, or negation indicated
by a prime. The truth table and circuit symbol for this operation is
also shown in Tig. 1. Since effectively the NOT function is an inversion
of the signal, the symbol represents an inverting amplifier. Several im-
portant relations follow:

a+a =1,
aa’ = 0,
(a,)’ = @,

(ab) = a' + V.

The validity of such equations ean always be verified by the method of
perfect induction, or substituting for the variables the two possible
values, 0 and 1, in all combinations.

A Boolean algebra is closed under the operations of negation and
cither the OR or AND operations; however, for convenience, we will
allow both the AND and OR operations. In addition, we will find it
convenient to use a fourth operation called the EXCLUSIVE-OR or
“ring-sum”’ defined as

a®b=ab + a'b. (1)

This ring sum is 1 if either a or b, but not both, are 1; it is 0 if both a
and b are either 1 or 0. The ring-sum therefore detects a mismatch
between the two digits and is the algebraic expression for the common
half-adder used in conventional digital adders and subtracters (Ref. 3,
Ch. 4). Iig. 1 also shows the truth table and circuit symbol for this
operation. Note in particular that

a®0=a and a® 1 = a’ (2)
2.2 (odes and Translalions

The type of synthesis used in developing the comparators is depend-
ent upon the types of codes used to represent the numbers. For this
reason a hrief discussion of codes employed and the translations be-
tween them is included.

One of the most convenient number systems for logical operations is
the binary system. Since the number B = b,b, 1 - -+ biby is represented
to the base 2, and therefore each digit b; takes on the value 0 or 1, the
Boolean algebra deseribed in the previous section can be conveniently
applied to the digits. The magnitude of the integral number B is repre-
sented in this binary eode by

™"

B = Z b,'gi,
i=0
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TapLE I
Binary Gray
Decimal

b2 b bo I n £o
0 0 0 0 0 0 0
1 0 0 1 0 0 1
2 0 1 0 0 1 1
3 0 1 1 0 1 0
4 1 0 0 1 1 0
5 1 0 1 1 1 1
6 1 1 0 1 0 1
7 1 1 1 1 0 0

where m is the most significant place. In this conventional binary system
multiple digit changes oceur for every increase by two, and half-way
through the code all of the digits change. Table I shows the three-
digit binary code.

Such multiple digit changes cause difficulties whenever all of the chang-
ing digits do not change simultaneously. Nonsimultaneous changes of
the digits may be due to variations of hias, gain, delay or operating
levels of the individual stages or to misalignment of the coding devices.
This is the familiar problem encountered, for example, in digitally en-
coding shaft positions or other analog-to-digital conversions, in digital
positional servomechanisms,” and in pulse code communication.” To
avoid the difficulty of incorrectly reading a rapidly changing number,
a Gray’ or reflected binary code® may be introduced, in which only one
digit changes between successive numbers of the code.

In our algebraic synthesis of various comparators it is convenient first
to consider both numbers in the conventional binary code and then to
translate to Gray code the input number, which may be rapidly vary-
ing. The eyclic reflected binary code, which we will call simply Gray,
has the convenient property of simple translation to and from the con-
ventional binary equivalent. Table T also shows the three-digit Gray
code.

The method for finding the magnitude of 2 number ¢ written in the
Gray code is more involved than is evaluating a number written in the
binary code. Ench digit g, again has the value 0 or 1, but the weight of
the 7th digit is now (2°7" — 1) and the sign of each digit not a zero is
now alternated, starting with 4+ for the most significant digit g,. (where
gm # 0) and alternating in sign for each digit which is not zero. This
could be termed the decimal translation, and can be written

m

G = Zgi(zi-l-l _ I)(_1)(”7r|+”|n7[+‘..+v‘.+1)-
=0
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The usual rule for translating the digits of a number in binary code
to the digits of a number in Gray code is the following: If the binary
digit b, is preceded by a 1 (b, = 1), change the ith digit (g; = b/); if
it is preceded by a 0 (b;;; = 0), use the same digit (g; = b;). This can
be written in the shorthand notation of the ring-sum operation:

gi=b; @ by . (3)

To convert a Gray digit to its equivalent binary form the rule is to
reverse those Gray digits which are preceded by an odd number of 1’s
in the Gray digits of higher significance. This ean be expressed in terms
of repeated ring-sums which, in effect, counts the number of preceding
1’s:

bi:ﬂi®gi+l®gi+2®

Repeated ring-sum operations effectively performs the same function as
the modulo 2 notation in determining whether a set of digits is odd or
even. An equivalent Gray-to-binary translation can be obtained from
the previous binary-to-Gray translation by ring-summing both sides of
(3) with b;, :

Gi@bip1=b, @bt @by =0 @0 = by, 4)
III. EXACT PROPORTIONAL COMPARATORS

3.1 Analog Precision Problem

Two main requirements imposed on these comparator syntheses are
speed of operation and precision. Perhaps the fastest method of com-
parison of digital numbers is simple and direct analog subtraction. A
typical analog subtracter for obtaining the difference between two binary
numbers A and B is shown in Fig. 2. An output voltage (or current)
corresponding to the difference is obtained by shunting suitably weighted
currents into the summing resistance Rs (or the load). Currents of proper
magnitude and polarity are obtained from the AND gates controlled by
the individual digits.

Although it is possible to build fast analog subtracters, it may be
difficult to meet stringent precision requirements. Difficulties may arise
when subtracting large numbers having a small difference. An error as
small as one half of one part in the maximum value of the numbers can
possibly even result in an incorrect sign for the difference. Analog meth-
ods of avoiding these difficulties are not entirely satisfactory. For ac-
curate results, precision components and well-regulated supplies are
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necessiary. I'urther complications may result when one of the numbers
is in Gray code.

Application of comparators as the error-detecting element in a digital
feedback control loop usually implies an analog difference output in
order to drive the control elements. What is desired is o method of
avoiding direct analog subtraction of two numbers of nearly the same
size. This problem is illustrated by the examples:

A 1000 A 0111
B 0111 B 1000
Diff. 40001 Diff. —0001

We call such a grouping of digits, where a mismatch in one direction
is followed immediately by consecutive mismatches in the opposite
direction, a run. Such a run ends when it is followed by a match of the
digits or a mismatch in the original direction. If the two original input
numbers can be operated on digitally to eliminate such runs then the
precision problem can be avoided and analog subtraction can be re-
tained.

3.2 A One-Clarry Binary-Binary Comparalor

Sinee runs of consecutive digits of the type deseribed in the previous
section lead to difficulties in analog subtraction, it is desirable to trans-
form the two binary input numbers A and B into an equivalent set W
and V, in which these runs are eliminated. The equivalence implied

am am- ai dop
./ _/

+V [
R < R R %
o | e 2t R
\‘j _ s OUTPUT

L Se, O
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Fig. 2 — Typical analog subtracter.
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TapLE II — Trur TasLE For CArrY FuNcTION OF
ONE-CArRRY Binary-Binary Locic

| i
ag bi @iy bia
Ifgin =10 ! If ginn = 1
|
0 1 0 0 0 0
0 1 0 1 0 1
0 1 1 0 1 0
0 1 1 1 0 0
1 0 0 0 0 0
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 1 0 0

|
|

here is that of A — B = " — V" (see example on p. 31). I'urthermore,
it is also undesirable to perform analog subtraction of equal-weight
digits, sinee a similar precision problem is likely. In this section a simple
logic scheme for eliminating these runs and avoiding subtraction of
equal digits is illustrated. Resulting cireuits are not the most practical
for this purpose but will serve to demonstrate the method. The logic will
be derived in detail to further illustrate the method.

Ifor reasons outlined in Section 1.2, comparison of the two numbers
A and B should start from the most significant digit and proceed toward
the lower significant digits. Whenever a run starts, i.e., 1 mismatch
followed by a mismateh of the opposite kind, the outputs should be
prohibited. To do this, we can start a earry, or inhibit, function, with
the 7th digit represented by ¢; . This earry should then propagate through
the run and stop at the last digit, so that an output can be permitted.
In other words, if there is a carry coming in from the next more signifi-
cant digit, i.e., ;.1 = 1, then the carry should continue only if any
mismatch of the following digits a;,—; and b, is of the same sign. Or, if
there is no carry coming in, i.e., ¢;z1 = 0, then a earry should start only
if o mismatceh of the 7th digits is followed by an opposite mismatch in
the @, and b, digits. A carry is possible only when there is o mis-
mateh in the digits a; and b; . Table IT is a modified truth table giving
the earry digit for the two conditions ¢,y = 0 and ¢;4, = 1. The dis-
junctive eanonieal form for this truth table is obtained from the OR of
the minimal polynomials for each row. The ecarry function ean then be
written:

qi = qa'+1'(ﬂi’b.ﬂ;_1b;_1' + abla;'biy)

+ g:‘+l(ﬂi’bfﬂi—1'b:'—1 + ab/abiy).
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TasLE III — TrurH TaBLE For OuTpuT FUNCTIONS OF
O~nE-Carry BiNnary-Binary Locic

qis1 ai by wi %
0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 0 0
*1 0 0 1 0
1 0 1 1 0
1 1 0 0 1
*1 1 1 0 1

* From (5) or the truth table shown in Table TI, these conditions cannot oc-
cur and the outputs have been chosen to simplify the final expressions.

Using the ring-sum or BEXCLUSIVIE-OR operation introduced in Sec-
tion 2.1, this carry can be rewritten as

g = {a: @ b)(aim ® bi){gipn ® a; @ ai). (5)

Outputs are permitted only when there is no earry or inhibit function;
therefore, a condition for any output is ¢; = 0. The output digits w.
carry positive weight and the digits »; carry negative weight. If we are
at the end of a run, with ¢;; = 1, then a positive output is required
if a; = 0 and a negative output if @; = 1. These conditions are apparent
from the examples given in Section 3.1. If we are not in a run, ie.,
gis1 = 0, then an output is allowed only if there is a mismateh: a posi-
tive output for a; = 1 and b; = 0, and a negative output for a; = 0
and b; = 1. Conditions for the outputs are summarized in Table III.
Recalling the condition g; = 0, the outputs can be obtained from the
truth table in disjunective ecanonieal forms:

Il

w; Q'i,(g_'{-{—l’a-ib[’ + qf+lai’b:" + q{+1a‘ilb€)1

Il

g/ (gia'a’b; + qiaad! + qinad;).

vy
Again, using the ring-sum notation, these outputs can be manipulated
to the equivalent expressions:
w; = ¢/(a’ + b/)(gin @ ai),
vi = g'(ai + b)(gin @ @),

(6)

This form is convenient because forming the ring-sum of the ith digits
by the combination a; ® b; = (a; + b.)(e/ + b) allows some of the
operations in the earries and outputs to be shared.
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Tig. 3 shows the 7th digit of a one-carry comparator utilizing the logic
of (5) and (6). Since all runs have been eliminated, it is not possible to
have adjacent output digits of opposite polarity. Nor is it possible in
have scheme to have both polarity outputs occurring together. These
properties follow from the equations because the logical products w;
w1 and w;_w; vanish identically. Under these conditions, subtraction
of the w; and »; digits ean be performed in an analog subtracter such as
shown in I'ig. 2 without encountering the precision problem discussed
previously.

3.3 A Two-Carry Binary-Binary Comparalor

It should be apparent, after eareful examination of the subtraction
process for two binary numbers and paying particular attention to the
runs described in Section 3.1, that many schemes are possible for trans-
lating the input numbers 4 and B into an equivalent set W and V meet-
ing the requirement demanded by analog subtraction. In the previous
section we derived a comparator logic using a single carry operating as
an inhibit funection. In this section we will outline the synthesis of o
comparator using two carries which perform the function of permitting

r

ap

a @by a
-1
ai-1® b~
| \ ai
% ® ) I

Qi+

—(I/

CITJL

L

Fig. 3 — One-carry binary-binary comparator.
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the outputs under proper conditions. This scheme has a somewhat sim-
pler circuit and has the advantage that the logic can be modified to
operate with one of the input numbers in the Gray code. Also, if the
difference is required to be only approximately proportional to the exact
difference, while still meeting the precision requirements of analog sub-
traction, then the logic can be further simplified.

Since an output should be permitted at the sth digit only when there
is a mismatech between the digits a; and b;, a necessary condition for
any carry which permits an output should be the ring-sum a; @ b, = 1.
As deseribed in Section 2.1, this logical operation detects a mismatch
of either polarity. Let the 7th digit of the earry which permits a positive
output w; be designated n; and the ith digit of the carry permitting a
negative output v; be designated m; .

If there are no carries coming into the zth digit from the next more
signifieant digit, i.e., n;1'm. " = 1, and if the mismatech is of the type
ab = 1, then the positive carry should be started. Similarly, if there
are no carries coming in and the mismatch is of the type a/b; = 1, then
the negative carry should be started. Also, if there is a mismatch in the
¢th digit, i.e., a; @ b; = 1, with a carry coming in from the next more
significant digit, then it should be propagated through this sth digit in
order to permit detection of the runs discussed in Section 3.1.

These rules could again be summarized in a truth table from which
the required functions could be derived. However, it should be apparent
from the previous deseription that the carries satisfy the following fune-
tions:

Positive carry:

{a; @ b)Y (i mipab! + noy),

n
Negative carry:
(a; @ b)) (g Mmip'ai’b; + miy).
These funetions ean be simplified by algebraic manipulations. In particu-
lar, using the identities ¥ + 2’y = @ 4+ y and 2y’(x @ y) = 2y, the
carries can be rewritten as

ny = (e ® b)) + migab,

m;

@

m; = mipla; @ b)) + nig'adb; .

Note from the development of the carry strueture that both carries
cannot exist together. We can show this by noting from (7) that

my = ?l-ﬁ-+1??!A-+l((Tl: @® bk)
= oMot @ b)) (@ ® biyy)
= nm'?nm(ak @ blc) ot (am#} @ bmfl)-
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One more substitution gives a factor nm4iMu Which is always zero,
since the subscript m denotes the most significant digit. Therefore
memy = 0, for all £,

Outputs of a particular polarity are possible only when the carry per-
mitting that polarity is present. Thus, a necessary condition for a posi-
tive output w; is n;, = 1 and a condition for a negative output »; is
m; = 1. Whenever we are in a run, no output should oceur until the
run is terminated. A positive run is terminated at the 7th digit when
ni_y = 0 or a;; = 1 and a negative run is terminated at the zth digit
when m;—; = 0 or a;-; = 0. If we are not in a run but a carry is present,
then there must also be a mismatch. When n; = 1 and a;; = 1 a posi-
tive output w; is needed, and when m; = 1 and a,_; = 0 a negative
output #; is needed. Foreing as much logic as possible on one of the input
numbers will be to our advantage when this comparator is modified to
operate with one of the input numbers changing rapidly. The output
functions satisfying the previous description are

w; = ninia" + ai),
, , (8)
vi = mi(mia" + aiy).
The following example illustrates the formation of the carries N and
M and the outputs IV and V:

A 1 00 1 1
B 01101

il =]

M 00 000

[a—

W 0 0 r o0 0 1 1
V 000001000

I"ig. 4 shows a typieal digit of o two-carry comparator using the logic
of (7) and (8).* This circuit, with carries propagating from the more
significant. digits, is suitable for driving an analog subtracter, since all
runs have been eliminated and outputs of equal weight and opposite
polarity are not possible. The cireuit also has the advantage that much
of the logie is performed on only one of the input numbers.

3.4 A Two-Carry Binary-Gray Comparator

I'or those applications in which one of the input numbers can be chang-
ing rapidly the multiple digit changes of the binary code lead to the

* Equations (7) and (8) can be manipulated to an equivalent scheme obtained
by Ketehledge? from other considerations.
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apg ag by
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Fig. 4 — Two-carry binary-binary comparator.

difficulties discussed in Section 2.2. In this case, it is desirable to use the
Gray code for the changing number and, since the eyclic reflected-
binary type Gray code has the simple translation property given by
(3) and (4), a translation of the logic of Section 3.3 ean be easily carried
out. If we make the proper translation of the binary input number B
into a Gray number @, then the outputs W and V' remain unaltered.

Equation (3) gives the translation from binary code to the Gray code
used here. Trom the logic of Section 3.3, if there is a earry coming into
the <th digit, i.e., niyy = 1 or m;;; = 1, then there must have been a
mismateh of the previous digits, ie., a;;1 @ 041 = 1. Using the ring-
sum properties given by (2), the 7th Gray digit under these conditions
can be expressed as

I

g’ = b ®@ bisy @ i1 @ biga
=b; ® aiq1.-
Rearranging terms gives
b; = (.(If O] ﬂa‘+1)' if ipn @ b.‘+1 = 1.

Similarly, if there is & matech of the preceding digits, or a;p1 @ by = 0,
then the carries coming in must also be zero, i.e., 7,41 = 0 and m;.; = 0.
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Fig. 5 — Binary-Gray comparator.

Under these conditions, the ith Gray digit can be expressed as
gi=bi ®a,
or
b = g; @ ain if aiy1 @ bipa = 0.

These translations can then be substituted in the carries of (7) under
the proper conditions determined by the incoming carries. The resulting
logic scheme for the binary-Gray comparator is given by the following
cquations®* and appears in Fig. 5:

ni = nipla; ® aig ® g:)' + mpala @ gi),

Mipi(a; @ aip @ g)' + niplai(ain ® gi),
ninia" + aizy),

Il

m;

(9)

Il

wy

v, = mimi—y + ai).

* These equations can also be manipulated to an equivalent scheme obtained by
IKetchledge? from other considerations.
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IV. APPROXIMATE PROPORTIONAL COMPARATORS

4.1 Approximate Binary-Binary Comparalor

In some applications of digital comparators it is not necessary to
obtain the exact difference. For example, a digital servo will operate
satisfactorily if the comparator or error detector supplies a control
signal which increases with inereasing error and deereases for decreasing
error, but which is not neecessarily equal to the true error difference,
except for small errors. It is difficult to build circuits using the logic of
the previous sections which meet very high speed requirements and it
is desirable to simplify the circuits as much as possible. The logic schemes
derived in this and the following section are attempts to simplify the
cireuitry of the exact proportional comparators synthesized previously.
Again, many variations are of course possible. The particular binary-
binary approximate comparator synthesized in this section meets the
further requirement of simple translation to a binary-Gray approximate
comparator.

Consider the subtraction of two binary numbers A and B where the
most significant output oceurs in the &th digit, Then | A — B | will he
maximum if all the following digits (4 — 1, & — 2, .-+, 1, 0) have the
same polarity outputs. With the run structure determining the outputs
as described in Section 3.1, it is not possible to have an uninterrupted
sequence of opposite polarity outputs start in the next digit. Therefore
| A — B| will be minimum if all the digits starting two lower (& — 2,
-+, 1,0) have the opposite polarity outputs. From these considerations,

A - B ‘mnx = 2k +221 = 2* + (2“ _ l) — 2k+1 _1,
iz
=2
|4 = Blaw=2"—22 =2 - @7 —1) =2 41,
im0
and therefore
32f <A -B| <22 (10)

whenever the most significant difference output occurs in the kth digit.
This means that, if only the most significant difference digit is allowed,
the result will always be within a factor of two of the exact difference.
The same result will be obtained if the output digits of one polarity, say
w; , are cancelled by the appearance of digits of the opposite polarity
v; for ¢ < k. These should of course not be striet rules in the synthesis
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of approximate comparators sinee allowing some lower-order output
digits may frequently improve the approximation.

When forming carries starting from the more significant digits it is
still necessary to detect combinations of digits forming runs, as dis-
cussed in Section 3.1. This restriction avoids some of the difficulties
when analog subtraction is to be performed on the new output differ-
ence digits. Two carries will again be used, with the property of deter-
mining outputs of the correct polarity in the proper digits.

The logic of this scheme is simplified if all carries are allowed to propa-
gate unaltered through digits of lower significance. One of the conditions
for a positive carry u; is then an incoming carry, or n,;; = 1, and a con-
dition for a negative earry m; is m;q = 1. If the most significant mis-
mateh occurs in the 7th digit it must necessarily be preceded by a;1; ®
biy1 = 0. Under these conditions, a positive carry is started if ad/ = 1
and a negative carry is started if a/b; = 1.

Information concerning the end of a run, and therefore the need for
an output, in the exact comparators discussed previously, was contained
in the carries and the address number. Examination of the conditions
ending o positive-type run, e.g., (1000) — (0111}, at the 7th digit indi-
eates that it is necessary to have a,—’ biy = 0. One of the conditions is
therefore a;,_; = 1. This condition will be used in the output expres-
sions derived later. The other necessary condition for ending a positive
type run at the 7th digit is a;,—/'b,—," = 1. This condition will be used
to start a carry of the opposite polarity. In other words, we start a
negative carry m; if there is a mismateh of the previous digits, i.e, a1 @
biyn = 1, and a/b/ = 1. Similarly, the conditions for ending a nega-
tive-type Tun, e.g., (0111) — (1000), at the 4th digit is ai.x = 0 or
a;_ib—; = 1. The first condition will also be used in forming the outputs
and the second condition will be used to start a positive carry. Thus,
after the end of a run both carries may be present. The presence of
a carry at the ith digit is given by the OR of the above conditions.

ne = nip1 + ad(ain @ b)) + abileq ® big),
mi = Miy + a’blaiz @ b)) + albi(ain @ i),
And, since 2'y’ + ay = (x @ y)’, these expressions can be rewritten as
ni = g+ alaipg @ b @ b)),
(11)
m; = My + a/ (i @ by @ b)),

Outputs are again formed only when carries are present. That is, for
a positive output w; we need n; and for a negative output v; we need m; .



a6 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1959

However, first outputs in the case of a run are never allowed until the
last digit of a run. The end of a positive-type run at the 7th digit, as
explained above, can be detected by a,; = 0, or by the start of the op-
posite type earry in the next digit, 1.e., m;; = 1. Similarly, the end of
the first negative-type run at the 7th digit can be detected by a; = 0 or
n,_y . Outputs are therefore given by
w; = niai + miy),
(12)
v = miai’ + ni).

Note that the logic of (11) and (12) also allows a proper output at the
most signifieant mismateh which is not the start of a run. Such o scheme
will give an approximate difference when the outputs are fed into an
analog subtracter of the type shown in I'ig. 2. This difference will always
be within a factor of two of the exact difference, and the difficulties in-
herent, in analog subtraction when a run occurs in the original input
numbers, as explained in Section 3.1, do not appear. The following ex-
amples showing formation of the most significant outputs may help to
clarify the process:

A 10010 A 10010 A 10000 A 10011
B 01110 B 01100 B 01100 B 00111
N 11111 N 11111 N 11111 N 11111
M 00000 M 0000l M 00011 M 01111
w o00111 W o0o0111 W 00111 W 11111
¥ oo000 VvV 00OO0OO0O1 V 00011 V¥V 01111

Fig. 6 shows the circuit for the 7th digit of this approximate propor-
tional binary-binary comparator. Note that it is possible in this scheme
to have outputs of both polarities appearing together. This may also
lead to difficulties in the analog subtraction of the W and V numbers.
A simple way to avoid this is to allow outputs only when there is exactly
one carry present and to inhibit all outputs when both carries are present.
The output expressions given by (12) should then be modified as follows:

nam (a1 -+ M),

w;
(13)

v = m,:n,;"(a.,-_l’ + nr’—l)-
For this type of output the circuit of Ilig. 6 should be modified by
adding the dotted-line inputs to the output gates. This modified scheme
still gives an approximate difference within a factor two as determined
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by (10). It also avoids subtracting digits of equal weight in an analog
subtracter. In faet, if an analog difference is not required, the numbers
W and V can be used directly as the approximate digital difference.

4.2 Approxvimale Binary-Gray Comparator

Difficulties of using the binary code for an input number which is
rapidly changing were pointed out in Section 2.2, These difficulties can
be avoided by translating the varying number into the Gray code, as
was demonstrated in the synthesis of exact comparators. Again we as-
sume only the input B to be rapidly changing.

Examination of the logic synthesized for the binary-binary comparator
of Section 4.1 shows that digits of the number B appear only in the ex-
pressions for the carries and that the only combination of these digits is
b; @ biyr. From (3), this is exactly the expression used for translating
from binary to Gray. By direct substitution, the expressions for the
carries therefore become

niy + aiain ® g)'

H;
(14)
m; = My + o' (@i @ g0,

and the equations for the outputs are not altered.
Using (12) for the outputs and (14) for the carries results in the ap-
proximate binary-Gray comparator cireuit shown in Fig. 7. As with the

,
by, ap 4L

ai -
bi+ — I— i
—_ *
p— o
ai+i I
ni -1
Ni +1 ] {
! :
mi \ ] mi
L+ ! } I
‘;*1’7 \’71‘7
I/ NS
NS S
| 1
1 1

P

\
-

N

AN
W

Fig. 6 — Approximate binary-binary comparator.
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binary-binary comparator of the previous section, we can again inhibit
all outputs during the presence of both carries by using the dotted con-
nections shown.

V. SIGN-ONLY COMPARATORS

5.1 Modifications of Approximate Comparators

The approximate comparators of Section IV were largely the result of
simplifying the exact comparators of Section II1. In this section we will
examine the approximate comparators and attempt to simplify them
turther. All of the previous schemes gave an output which was propor-
tional to the difference between the two input numbers and also indi-
cated the sign of this difference. If only the sign is required, with no
measure of the magnitude of the difference, then it is possible to synthe-
size simple schemes giving an output on a single lead when one of the
input numbers is less than or equal to the other input number, or when
one number is greater than the other. No analog conversion is necessary
in this case, since the output gives the desired indication directly. How-
ever, if the sign-only comparator is used as an error detector in a digital
servo it is still necessary to have a linear error signal when close to zero
difference.

Considering again the schemes having both inputs in the hinary code,
it is apparent that the sign of the difference is determined completely

!

gi ai at ai
mi-1
ai+ ® o
L=1
ni -1
- L
ny
; \
Ni+1 } '
I
mi
; \
mi +1 F T :
1
Y71’7 f.*l"7
\\]:/ T
AN A
| I
1 1

Fig. 7 — Approximate binary-Gray comparator.
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by the direction of the most significant mismatch. In the proportional
comparators it was desirable to examine the adjacent lower significant
digits for the start of a possible run and to prohibit any output until the
end of a run. Since the sign is determined only by the sign of the first
mismateh it is not necessary to account for any run structure in sign-only
comparators and the logic is therefore simpler. Whenever the most sig-
nificant mismatceh is detected, an output should be formed immediately.
In addition, we should avoid any contrary action due to opposite polarity
mismatches in the lower significant digits. This funetion can be performed
by ecarries propagating toward the lower significant digits.

These ideas can be illustrated by an example with both inputs in the
binary code. Let the output of the 7th digit, designated u,, be zero for
all digits which precede the first mismatch and also be zero during and
after the first mismatch if it is of the form a;/b; = 1. Let w; = 1 for the
first mismateh if it is of the form a,b;/ = 1. Then an OR over all u; will
provide the proper output:

OR (w) =1 if A >B
0£ism (15)

=0 if 4 =8B

|
-

1A

Fach w; is determined by the carries present in that digit. A positive
carry n; should be formed for a positive mismatceh, i.e., ab/ = 15 and a
negative carry m; formed for a negative mismatch, ie., a/b; = 1. If
these carries are allowed to propagate through lower significant digits
and an output is formed in the ith digit only if a positive carry is present
but not a negative carry, then the comparator output given by (15) will
result. The expressions for the earries in the 4th digit and the output at
the 7th digit are

W, = nmi,

nig + ab/, (16)

n;
m; = miy + a'b;.

The cireuit for this logie is very simple, requiring three AND gates and
two OR gates, each with two inputs for each digit.

A similar scheme when one of the input numbers is in the Gray code
can be obtained from the same type of reasoning by using the carries
of (14) in Section 4.2. Again, the output in the ith digit is w; = nmn/'.
The ecircuit for this scheme is given in Fig. 8.

An improvement of the logie used in Fig. 8 follows from a close ex-
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amination of the carries n; and m; . The functions of these carries in this
sign-only comparator can be summarized:

i. For all initial mateh digits there are no carries and therefore no
outputs.

ii. Only one carry is present at the first mismateh. This carry deter-
mines the output.

iii. If an opposite polarity mismatch occurs afier the first mismatch a
second carry is formed. This second carry inhibits all outputs.

Evidently then, one carry has been used to permit outputs and the
other carry to inhibit outputs. These two operations could be performed
equally well by one earry if the output function were properly chosen.
When a positive mismatch oceurs first at the 7th digit, we require a
positive output, i.e., u; = 1. From the positive carry of Section 4.2, a
positive mismatch at the 7th digit is detected by ad{aiyy @ g))' = 1;
however, this output should be inhibited if a previous negative mismatch
has occurred. Therefore, we could use the negative carry of Section 4.2

9m @m am gm-1 dm- a'm-1 go 80 do
1
dm ]
|
® ®
I I 1
i [
\ _
/ === -
|4
—_—
o -
_ ]
I i
]
]
|
i
- N !
_____________ J
[ :
!
N P L/
QUTPUT:
1t FOR A>B
0FOR ASB

Fig. 8 — Sign-only binary-Gray comparator,
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am gm @am am-1 gm-1 8m-i ao Jo 8o
dam a,
1 ]
® ®

J \[::} ) ﬁi

4 PRpp—

I
™~
7/
I
LI_/ \;{ _____ ) L'_/

OUTPUT:
1FOR A>B

OFOR A<B
Fig. 9 — Alternate sign-only binary-Gray comparator.

as an inhibit function on w; . The logic for this scheme then appears as

w, = a; e @ gi)'mi,
(17)
m; = miy + a/ (@i ® g0).

These equations, together with (15), have the circuit shown in Fig, 9,

5.2 Other Sign-Only Comparatlors*

Assume that the first mismateh oceurs between a; and b; ; that is, all
the digits @, and b; for i > j match in corresponding places. If 4 > B,
then this first mismateh will be of the form a; = 1 and b; = 0. There-
fore

ab/ =1, or a;+b/ =1, if4A>B. (18)
Similarly, if 4 < B, then this first mismatech will be of the form a; = 0
and b; = 1. Therefore

ab/ =0, or a;+ b/ =0, If A <B. (19)

* The comparators derived in this section were previously obtained by Ketch-
ledge? from other considerations.
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For all digits of higher significance, that is, for all 7 > j, we have
ab; + a/bf = 1.
This is equivalent to
(a; + 0/)(ad)) = 1.

Since (20) holds for all 7 > 7 up to m, we can write

(@ + b @my + bua) - (@ip + bip") (@i + b)) = 1
and

Awbn' + @Gmaibmo + - + @iy’ + ad = 0.

Now consider the function

‘p" = (a’fi + bk’) + ambm’ + ﬂun—lbm—lr + et + af,-+1b_{,-+1’

(23)

for all possible values of % for the conditions A = B, 4 > B,and A < B.
Then, if A = B, from (21), ®, = 1 for all &. Thatis, the digits match in

each place so that (20) is 1 for all <.

If A > B from (21) and (22), ® = 1 for all k. That is, the first mis-
match will be of the form a;b;/ = 1, by (18). Therefore, ®, = 1 and,

since the digits mateh for all & > j, we have a; = b, or a;, + b/

=1,

which is the first term in @, . Also, ®; for all & < j will include the term

a;b/ = 1 as an OR term and will therefore be 1.

If A < B from equations (21) and (22), ® = 0 for & = j. That is,

’ U U
am bm am-y bm- am-2 bm-z

’
dg bo

&m Sm ®m-2

allir

OUTPUT:
1FOR AZB
OFOR A<B

Fig. 10 — Sign-only binary-binary comparator,

do
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dm-1 gm- dm-2 Jm-2 dp Qo
1 am a'm-1 a\
® @ ®
|
i o Svee
D 7 D L T U
&m dm- $m-2 i ¢o
| [
—
QUTPUT:
11IF AZ2G
bo IF A<G

Fig. 11 — Sign-only binary-Gray comparator.

from (19), a; + b/ = 0, and, from (22), a.b.’ + - + ajpbi =0
if the first mismateh oceurs in the jth digit.

If &, is generated in each digit we then have a function which is al-
ways 1 if A = B and which will be 0 for at least one digit if A < B.
Therefore, the desired sign detector can be obtained by forming the AND
over all the & :

AND (@) =1 for A = B
mzkz=0 (24)
=0 for A < B.

Fquations (23) and (24) are implemented in the circuit shown in
Iig. 10. As in the previous developments, it is desirable to modify this
scheme to operate with one of the input numbers in the Gray code. To
transform b; to g; , we note that, if the first mismatch occurs in the jth
digit, then all the preceding digits match. Thus, for ¢ > j

bi=g:® b= g ® ap
and
b," = i ® (1¢‘+1I. (25)
Substituting in (23) gives
i’f.‘ - [a-i.' + ((Jﬂ: @ GA'+1’)] + ﬂmgm,’

(26)
+ (g ® an) + o+ Gea(gen @ arge’).
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As previously, if 4 = G in magnitude, then either ¢, = 1 and g¢ ®
iy’ = O0ora, = 0and gr @ ary’ = 1for 0 = £ = m. That is, & = 1
for all k. If A >  and the first mismatch occurs for ¢ = j, then &, = 1
for k > j,a; = 1land g; + a;u’ = 1. Therefore, ®; = 1, since the tcrm
ailg; ® a;,) = Lforallkif A > G. If A < G and the first mismatch
oceurs for 7 = j, then, by transforming (19), we have a; + (g; ® a; ') =
0, and therefore ®; = 0.

By forming the AND over all & of the function given in (26) we have
the desired sign detection:

AND (®;) I, for 4=z G
maizo (@7)
=0, for A <G

Il

A cireuit performing the operations of (26) and (27) is shown in I'ig. 11.
The circuits of Figs. 10 and 11 could be modified by using the duals of
the above expressions and changing the output gate to an OR over all k.
The individual digit functions &, would then be changed to AND’s of
each of the dual terms.

REFERENCES

1. Hoover, C. W., Jr., Staehler, R. E. and Ketchledge, R. W., Fundamental Con-
cepts in the ])eqlgn of the I*l}mg Spot, Store, B.S.T.J., 37, September 1958, p.
1161.

. Ketchledge, R. W., this issue, pp. 1-17.

. Richards, R. K. Anthmetw Opem.twn.s in Digital Computers, D. Van Nostrand
Co., New 1011\ 1955, Ch. 9 and 10.

. I\EI.":feI w., th(-hle A, E. and Washburn, 8. H. The Design of Swilching

(‘wcmfs D. Van Nostrand Co. , New York, 1951, Ch.

. Foss, F. A., The Use of a Reflected Code in Dlg]tnl Conm ol Systems, Trans.

LR.E. Y EC-3 December 1954, p. 1.
Gray, F., Pdtent No. 2,632,058, March 17, 1953.
. Culbelt B. N., Gray Codes and Paths on the n-Cube, B.8.T.J., 37, May 1958,
. 815,
. Flores, I., Reflected Number Systems, Trans. I.R.I5., EC-5, June 1956, p. 79.

002

o NS U ke



