On Trunks with Negative Exponential
Holding Times Serving a
Renewal Process

By VACLAV E. BENES

(Manuscript received June 27, 1958)

A group of N trunks serves calls arriving in a renewal process, and lost
calls are cleared. The number, N(k), of trunks found busy by the kth arriving
customer is studied as a Markov process imbedded in a (usually) non-M arkov
process N (1), the number of trunks busy at t. Results of C. Palm and F.
Pollaczek on the distribution of N (k) are generalized, and a study is made of
bounds for, and approximations to, the probability of loss. The probability of
loss s studied as a functional of the interarrival distribution function, and
certain extremal properties are proven. Formulas for the mean of N (k) and
for the covariance function are given, together with equilibrium curves for
the probability of loss, for the mean and variance of N (L), and for the first
Sfour values of the covariance function. Some applications to switeh counting
are discussed.

I. INTRODUCTION

We shall study a mathematical model for the random behavior of the
occupancy of trunk groups. The principal results are complete descrip-
tions (in principle) of (a) the variations of the traffic in time, (b) the
equilibrium probabilities and (e), the covariance function of the traffie
found by arriving customers. These mathematical results have practical
application in engineering trunk groups to have a given probability of
loss, and in estimating the sampling error incurred in certain ways of
measuring traffic.

A “trunk group” is a set of transmission channels (trunks) between
central offices. The trunks in a group are often equivalent in the sense
that a call handled on one idle trunk could as well have been assigned
another. A “holding time” of a trunk is a length of time during which it
is continuously unavailable beeause it is being seized and used as a talk-
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ing path. By “interarrival times” we mean the time intervals elapsing
between successive epochs at which attempts are made to place a call on
the trunk group. With these definitions in mind, the theoretical model
we use to describe the trunk group involves four assumptions:

i. The holding times of trunks are independent random quantities
having a negative exponential distribution, with mean value, vy is
the hang-up rate). This means that if a trunk is in use at time x, the
chance that it is still in use at (x + dz) is 1 — vydz — o(dz), o(dz)
denoting a quantity of order smaller than dx, irrespective of how long
the trunk has been in use. The probability that a holding time is less
than ¢ is then 1 — exp { —~¢} for ¢ = 0, and 0 otherwise.

ii. The interarrival times of calls are independent positive variates;
each has the general distribution A (), where A(u) is arbitrary except
for the condition A(0) = 0. If #, and £, 4, are successive arrival times, then

Pritey — & = u} = A(u),

for all k, independently. This assumption covers Poisson (or completely
random) arrivals as a special case. In accordance with the usage in the
literature, we call a sequence of mutually independent, identically dis-
tributed, positive variates, a “renewal process.” The interarrival times
in our model then form a renewal process. It has been shown by Palm'
and noted by Feller’ that non-Poisson renewal processes arise in their
own right in the study of overflow traffic from a trunk group, even when
the original offered traffic is Poisson in character.

iii. There are N < o trunks in the group.

iv. Calls which find all N trunks busy are lost, and are cleared from
the system.

A model like the ahove, but without the strong simplifying assump-
tion of exponential holding time, was studied by Pollaczek.” The model
described in (i) through (iv) al*ove has been considered by Palm,' and
also by Takdcs,' who used a functional equation. Takécs’ paper was ap-
parently written without knowledge of the prior work of Palm and Pol-
laczek ; in a recent paper,” Takacs thanks R. Syski for calling his attention
to Refs. 1 and 3. The same model has also been treated by Cohen.’ For
convenience and unity of exposition, some of the results of these authors
shall be rederived here, and attributed to the appropriate author as they
arise.

II. SUMMARY OF RESULTS

Tt is natural to use the number N(f) of calls in progress on the trunk
group at time ¢ as an indicator of traffic; N(f) is a random step function,
fluctuating in unit steps from 0 to N.
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Unless the arrivals form a Poisson process; that is, unless
Aw) =1 — exp{—u/m}

for v = 0 and g, > 0, N({) is not a Markov process. However, let ¢ be
the epoch of the kth arrival, and suppose that N (£, — 0) is known. Thus,
we know how many busy trunks were found by the kth call. Until the
next call arrives at f;4, , the number of calls in progress forms essentially
a simple death process, with death rate ¥ per head of population. The
conditional distribution of N({,, — 0), given N(# — 0), can then be
caleulated from the known transition probabilities of the death process
(see Feller’). No additional knowledge of N(¢) for ¢ < t, is of prognostic
relevance to N() for ¢ > &, when N({; — 0) is known. We define

N =Nt — 0),

where N (k) is the number of trunks found busy by the kth arriving call.
The variates N(k) form a Markov chain imbedded in the non-Markov
process N (£). This Markov chain is the basie random process considered
in this paper.

Let the numbers a, , n = 1, -- -, N be defined by

an :f e " dA(u),
0

so that a, is the Laplace-Stieltjes transform of the interarrival distribu-
tion A(u), evaluated at the point ny, where v is the hangup rate. The
prineipal theoretical result of this paper is Theorem 1 in Section IV. This
result gives formulas for the generating functions

Vale) = 2 & Pr{N(h) = n)

for an arbitrary initial distribution of N (0). These formulas depend only
on the numbers a,, - -, ay defined previously, so the entire Markov
process N () depends only on these numbers. Theorem 1 determines, in
principle, the transition probabilities of N (k) purely in terms of ay, - - -,
ay , and so provides a complete deseription of the statistical variations
of the traffic found by arriving customers. For N(0) = 0, the formulas
were obtained by Pollaczek;’ the formulas to be given coincide with those
of Pollaczek in this case.
In Section V the limiting probabilities

p. = lim Pr{N(k) = n},
k—m

already considered by Palm, Pollaczek and Takées, are briefly discussed.
The quantity p, is the equilibrium chance that an arriving customer find
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n trunks busy; in particular, py is the probability of loss. It should be
kept in mind that p, is not the probability that, if we inspect the trunk
group at a random moment in equilibrium, we will find n trunks busy;
the moments of inspection must be those immediately preceding arrivals.
In Section V, also, various moments (such as the ordinary, binomial and
factorial) and the variance of the limit distribution {p,} are presented.
Curves of the probability of loss, the fraction of trunks found busy by
an arrival and the variance of {p,.} are plotted as functions of the offered
erlangs for three choices of the interarrival distribution A ().

Sections VI and VII discuss bounds for, and approximations to, the
probability py of loss. The results of Section VI are general; those of
Section VII are restricted to the case of regular arrivals. Consideration of
the unrealistic (for telephone trunking) special case of regular arrivals is
justified (in Section VIII) by the fact that regular arrivals form a limit-
ing best case.

In Section VIIT we treat py as a functional of the interarrival distribu-
tion A(w). The chief results can be summarized informally as follows:

i. Tor a fixed mean interarrival time and a fixed hang-up rate, the
minimum loss is achieved when arrivals are regular.

ii. Arriving customers can, without changing either their mean ar-
rival rate or their hang-up rate, still make the telephone company give
them arbitrarily bad service (high loss) by a proper choice of A (u).

iii. The maximum number of erlangs that N trunks can carry at a
fixed loss probability p [the maximum being over A(u) that achieve p],
is 2 number depending only on N and p.

Section IX is a brief discussion of Pr{N(t) = N}, the chance that the
Ith arrival suffers loss, as a function of k. The case N = 2 is described
in detail, and curves are included for one choice of A (u).

Finally, Section X is devoted to the mean value E{N(k)} of N(k) as a
funetion of k, and to the covariance function of N(k) defined as

R(n) = ]kim E{N(EN(k 4+ n)} — EB*{N(k)).
General formulas for both E{N(k)} and R(n) are derived, together with
a recurrence relation for the latter to facilitate computation. The chief
practical application of the covariance function is to theoretical estimates
of sampling error in traffic measurement. Discussions of the use of our
results to estimate sampling error in certain possible kinds of switch
counting are given, together with some curves of the covariance. We
stress that our results are for a finite, not an infinite, number of trunks.
In particular, we show that a natural exponential approximation to the
covariance, valid for N = o, can be several times too large for small N.
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III. SUMMARY OF PRINCIPAL NOTATIONS AND DEFINITIONS
‘I is used to denote mathematical expectation
N = number of trunks in the group
v = hang-up rate = (mean holding time)™
A(u) = Pr{interarrival time = u}

u; = ith ordinary moment of the interarrival distri-
bution A ()

-]
a, = f e ""dAw),n =12 ---,N
0

N(f) = number of trunks busy at ¢
l, = epoch of the kth arrival

N({E) = N(t — 0) = number of trunks found busy by
the ith arrival

p. = lim PriN(k) = n} = equilibrium probability
k=reo
of finding n trunks busy
py = equilibrium probability of loss
N P
by = 2. (:1) P = nth binomial moment of the
distribution {p.,.}

Moyn'b, = E nin — 1) ---(n —m 4+ Dp. = nth fac-
torial moment of {p,.}

m, = 2. m" p, = nth ordinary moment of {p,.
”
o = m» — my = variance of {p.)

P(xr)y =14+ (x — 1)e ™

N
EaY = 2" Prilth eall find m trunks busy}
m=0
olx, z) = 22 Ela™")
I
Valz) = 222 PriN(k) = n}
-
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N
baz) = 22 (:z) Ym(z) = (n!))™" X factorial moment
generating function
N
ko = 2 (;?) Pr{N(0) = m} = nth binomial mo-

ment of initial distribution

D(ay,ay, - ,ay,?) =2( )(l—zal)---(l—za.-)am---ayz””
0

7

N
LI.:(N) = H (1 —ax + ak+m)
m=1

N—1

Uﬁa(N) = H (1 — Qi4m + ak+N}

Sy aa, o0 an) = 1+(N)1 — i"1+--'—F(N)(l_xl)'“(1—T'N)
1 RS N X1 = Uwn

Rn) = lim E{N()N(k + n)} — E*{N(k)} = covar-

k—w0

iance function of N (k)

Qx 2;0 mpm Pr{N(k) = N | N(0) = m}

IV. DERIVATION OF GENERATING FUNCTIONS

The behavior of a trunk group with (a) independent holding times,
(b) independent interarrivals and (¢) N trunks with lost calls cleared
has been studied by Pollaczek®, who derived the generating functions

> 2 Pr{kth arrival finds n trunks busy},
k

on the condition that the first arrival found all trunks idle.
Palm and Takécs derived the limit probabilities

Pn = Klim Pr{kth arrival finds n trunks busy}
for the case of exponential holding times, to which we are also limiting
ourselves here. Takdes used the equilibrium equations for the same
Markov process N (k) as we have introduced. We shall show that his
functional equation approach can be used to generalize Pollaczek’s
results, and to obtain further formulas of practical importance in traffic
engineering.
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We let Py(z) = 1 4+ (z — 1)¢ ™. Then, by the argument of Takées,*
B | Nl = f [Pu()[FEE-WN® g4 (),
0

with the & symbol indicating that lost calls are eleared. Hence

E{.?JN(H-U} _ ](‘]“’ [ Z PI-IJT\I(,T\‘.) _ ?L}Pul+u($)

+ Pr{N(k) = N}P.,“’(.u)] dA(u).
Let

olr,z) = F RN

=

=
e

u(z) = 2 ZPr{N(k) = n}, n=0,1,---,N.

=

=
<

Then ¢ satisfies the functional equation
olr,2) = E{z"")

m (1)
+ Zj(; {‘P[I)u(-v)a Z]P..(.lf) - \bN(Z)[PuIH-l(-t) - Pi:N(‘v)]} dA(u)

This is a diserete time-dependent analog of Takdes’ functional equation,
To solve it, set * = 1 + w and define the functions b, by

b.\’(z) = E (:?) ‘pm(z)y n = O) 1» Rty iv-

m=n

Note that

bu(z) = \l’N(Z)s (2)
oz, 2) = Z_: a2 (3)

If we now equate coeflicients of like powers of w in the functional equa-
tion (1), we obtain the following recurrence for the functions b,(z):

b.(2) = za, I:b"(Z) + bua(z) — (“ A_r 1) %(z):l + ke, nz1, (4)
where

kw = f‘, (::1) Pr{N(0) = m},

m=n

a, =f e "M dA(w).
0
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The terms k, are the binomial moments of the distribution of N(0), and
represent initial conditions. Since

N
> Pr{N(k) = n} =
n=0
for each k = 0, we find by(2) = (1 — 2)7",
The solution of the recurrence (4) is

N

b(2) = [I =Y
1]

1 — za;

.{(i m0s ;Zl; [(1 f 1)b~(2) - %] 11:11 ! ;izai},

where the first term of the produets is always taken to be 1. I'rom this
and (2) one can determine by(z) and hence all the ¢.(z). The complete
result is

Theorem 1: The generaling function ¥, (z) of PriN(k) = n}, defined by

(5)

w(2) = 2, & PriN(k) = u}
k=0
1s given by the formula

o= E () bto,

where the b,(2) are solutions of (4). In particular, the gencrating function
of the probabilitics that the Ith arvival find all N trunks busy s

Un(z) = bylz) = Z “Pr{N(k) = N}

k=0

Ekx(1 — 2)(1 — zay)
Teo + k(1 —_2) 4o+ s (1 — zawoy)

( y! zm Nayray -+ ay
]+(.JV)1*ZG]+_”+<N)(1—VZCLI)"‘(1_ZCLN)‘
1 13 N 2t ag - -0 Ay
This reduces to Pollaczek’s result (Ref. 3, p. 1470) when the system

starts empty with N(0) = 0, since ky = 1, and N(0) = 0 implies that
ki = 0 for7 > 0. Let us set

N
DN(TI y e,y = Un, z) = Z (ijv) (1 - Z.l']) e (] - z.!'j)-ls;lH st -1',\,'ZN -J.

=0
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In this notation we can write
Dylay, s, - ay,2) = aas - -- ayz” |[denominator of yx(2)).

Lemma 1: The functions Dy(xy, xs, -+, @x, 2) salisfy the recurrence

relations
DNH(-'I‘.'; y Ty LN, E) = 3-'1'1.-+NDN(J’J¢ y 0ty ThgN—1 z)
+ (1 - Z-l'A-)D,-v(-’lka y 0ty TN, z).

Proof of this is from the formula

()02

V. THE STATIONARY DISTRIBUTION

. . 7 . . . .
In the terminology of Teller,” the variates N(k) form an aperiodic,
irreducible Markov chain; hence the limits

p. = lim Pr{N(k) = n}

k—w

exist, and can be evaluated from the generating functions ,(z) by Abel’s
theorem. The result is
Theorem 2: The stationary distribution of N(k) is {p.}, given by

N—n ”
P = Z (_1)j(]L +}) bu+j:
=0 n

with by = 1, and

b, = ﬁ ) {1 — Py i( N ),ﬁ ﬂ}, (6)

ol — a o \m — | 0 @;

s " Ay

[

probability of loss = D@ g, <, an, D

L% _ A - _ -
{1 +().)1 o +(A\)(1 a) (1 —an)| "
1 a N Mz -+ Ay

Theorem 2, and the loss formula (7) are due to Palm' and Pollaczek;’
these results have been rederived independently by L. Takdes, H. Secarf,
the present author — and doubtless many others.

The quantities b, of Theorem 2 are the binomial moments of {p,},

defined as
Y fm
bu = Z ( ) p”li

m=n h

Dy
(7)

I
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and they satisfy the recurrence

b = 1,

ay [bn + bn—l — Pn (n ‘Z_Y 1)}, n > 0,

which can be solved to give formulas (6) and (7). The factorial moments
My are then given by

ba

N

M(n):n:bn= Zm(m—-l)'-'(m—ﬂ"rl)pm,

and they satisfy the recurrence
Mg =1,
ﬂf{n) = a"[ﬂff(n) —+ ﬂ”[(nfn - ?'EPNN(N - 1) e (N —n+ 2)], n=1.

In Fig. 1, the probability px of loss has been plotted as a function of
the average offered load, a, in erlangs, for three separate choices of the
interarrival distribution A(w), for values of N from 1 to 8. The choices
have been intentionally made so that the crucial quantities a, depend
on v and A(w) only via the offered load, a. The choices are as follows:

i. Poisson arrivals are represented in Fig. 1 by a dashed line. In this
case, a, = a/(a + n).

ii. Suppose that the times between successive arrivals are uniformly
distributed in the interval (g — b, p1 4 b) for 0 < b = p;. The mean
interarrival time is p;, and a simple ealculation gives

0, — g sinh nyb _ )
nyb

We choose b = u; ; then a, depends only on yuy = a ', and

o sinh n/a

a =
§ n/a

This choice of A (u) we shall call “uniformly distributed interarrivals;”
it is represented in Fig. 1 hy alternating long and short dashes.

iii. Regular arrivals are represented in Fig. 1 by a solid line. For
regular arrivals, @, = ¢ "%, which is the limiting form of (8) as b tends
to zero. .'

The curve for regular arrivals (a, = ¢ ") always falls below the curves
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Fig. 1 — The probability of loss: (i) Poisson arrivals, a, = a/(a + n), dashed
line; (ii) uniformly distributed interarrivals, ¢, = e/ (sinh n/a)/(n/a), long-
and-short dashed line; (iil) regular arrivals, @, = e/, solid line.

for the other two choices. This is a consequence of Theorem 9 of Section
VIII, according to which regular arrivals form a limiting best case, for
which px assumes its lower bound for fixed offered traffic a. On the other
hand, the curve for Poisson arrivals, although always above the curves
for the other two choices in Iig. 1, is by no means the limiting worst
case, since there is none. I'or Theorem 10 of Section VIII says that, for
given ¢ > 0 and offered traffic ¢, we can always find an interarrival
distribution A(w) for which py > 1 — e

The differences in py for the various choices of A (%) in Fig. 1 are pos-
sibly explainable by considering the amount of mass that A(u) concen-
trates in the neighborhood of 0. For regular arrivals there is no mass,
so that the system always has a “breathing spell” before the next ar-
rival. For uniformly distributed interarrivals, there is always mass in
a neighborhood of zero, but the density at 0 is no larger than anywhere
else. For Poisson arrivals, however, not only is there mass in any neigh-
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Fig. 2 — The probability of loss as a function of load per trunk for Poisson
arrivals, a, = a/(a + n).

borhood of 0, but the density is a maximum at 0, so that the damaging
short interarrivals are, in a sense, the most likely.

Trom Theorem 13 and the Palm formula (7) it ean be verified that,
as @ — =, the curves for the different choices of A(u) must approach
each other and 1. But for small values of @ there are substantial differ-
ences among them. For this reason, they have been replotted in the
separate Figs. 2, 3 and 4 as functions of a/N, the offered load per trunk.
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Fig. 3 — The probability of loss as a function of load per trunk for uniformly
distributed interarrivals, a, = ¢/« (sinh n/a)/(n/a).

The first two ordinary moments m; and ms of {p.} are respectively
given by
¥

my= Mo = by = 2 np, = a(l — py)

)
n=>0 ]. — I

Moy + Moy = 20, + by = 2 n'p,

n=0

ma

t’l'lﬂ-g(l - p\) _ 202.\’vp_\' — ny
(1 —_ {11)(1 —_ (12) 1 — a2
a,, for N = 1.

, for N > 1,
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Fig. 4 — The probability of loss as a funection of load per trunk for regular
arrivals, a, = e™/e,

The variance associated with {p,} is then
o = R(0) = me — mi° = 2bs + by — b,

where R(n) is the covariance function.

Because of the bias introduced by defining N (k) to be the number of
busy trunks found by the kth arriving customer, it is not in general
true that m; equals im E{N({)} as ¢ tends to e, even when this limit
exists. In Fig. 5, the ratio



ON TRUNKS SERVING A RENEWAL PROCESS 225

%—‘ = fraction trunks found busy

__expected number found busy by an arrival
number of trunks

is plotted as a function of offered load a for Poisson arrivals. In Figs. 6
and 7 the same ratio is plotted for uniformly distributed interarrivals,
and regular arrivals, respectively.

In Figs. 8, 9 and 10, the variance o of N(k) in equilibrium is shown
plotted against the offered load a for Poisson arrivals, uniformly dis-
tributed interarrivals and regular arrivals, respectively. The variance is
also the value of the covariance function R(n) for n = 0. In all cases,
as the load a increases, the variance increases to a unique maximum,
and then decreases to zero.

VI. BOUNDS FOR, AND APPROXIMATIONS TO, Py FOR GIVEN day, ***, On

This section is devoted to inequalities which may be useful in esti-
mating the loss probability py without too much computation. Since
1>a > -+ > oy, we have

1 —a, 1 — @

< )
Qn Ani1

so that, from (7), we find

sy ==z ()5

This proves:
Theorem 3: The probability px of loss salisfies (ax) = py £ (a)".
To obtain a sharper result, write

N
_ - N
pyv = (e, - ay) 120 (J)(l —a) - (1 — aj)ap - an.
Then, in view of 1 > a; > -+ > ax,

N _ i N—j<ﬂqag"'aw
> j)u (o) 5 2

IA

IIA

> (i" ) (1 — an)a)

From this we conclude:
Theorem 4: The probability py of loss salisfies

(1 —a + aw)iN = —ﬂ—* = (1 + a — GN)#N-
ala.z st AN
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Fig. 5 — limg,, Z{N (k) }/N = mi/N as a function of offered traffic a for Poisson
arrivals,
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o
~
o
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Fig. 6 — limy., E{N(E)}/N = mi/N as a function of offered traffic a for uni-
formly distributed interarrivals.
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Tig. 7 — lim., E{N(k)}/N = mi/N as a function of offered traffic a for regular
arrivals.

This result suggests that, if @, — a is sufficiently small, then the prod-
uet @as -+ ay can serve as an approximation to py . There are cases,
to be exemplified later, in which this is a good approximation. However,
the next theorem shows that the product aja; - - - ax always underesti-
mates the loss.

Theorem 5: For N = 1, py = ay ; for N 2 2, py > may -+ ay .*
To prove this, we write py in the notation of Lemma 1 as

_ Qs -+ * Ay
Py Dy(ar, -+ ,ax, 1)’

so that it suffices to prove that Dy(a:, -+ -, ax, 1) < 1. We shall actually
prove the stronger result that Dy(ai, -+, tryn, 1) <1 for b = 1.
First, we note

Dg((l:; y (g1 1) = Upg41 -+ 2{1 — ﬂ:,(-)a}\-_{.l + (l — G!-g-)(l - ak-H)

:1—(lf‘-+ﬂ;—+1<1.

Now, because 1 > a, > -+ > a > ---, we find
Dy(ag, -+, QGiyna, 1) < Dy(aisr, = QGeyw 1)
gy - * ° QN1 App1lpy2 * ° Qrgp N

* A.J. Goldstein has pointed out that Theorem 4 implies directly that py >
ai1s -+ ay for N = 2.
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| |
UNIFORMLY DISTRIBUTED N=8
2.6~ INTERARRIVALS 4 — 1
an =g N/a SINH (n/a)
n n/a

1 //

02 VARIANCE

a, OFFERED TRAFFIC IN ERLANGS

Fig. 9 — The variance o2 [= R(0)] of N(k) in equilibrium for uniformly dis-
tributed interarrivals. )

Therefore, the recurrence of Lemma 1 gives, for z = 1,
DN-H(aL y "y QegN, 1) < DJV(ak-l—l y "ty Qg 1) < 1:

and the result follows by induction.

We now discuss the approximation py ~ ayaz - - ay . Since 1 > a; >
ax , two cases in which a; — ay is small are as follows: (a) @, is close to
0 and py is very small; (b) ax is close to 1 and py is very high. The quan-
tity @ — ax determines the excellence of the approximation, as meas-
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Fig. 10 — The variance ¢* [= R(0)] of N(&) in equilibrium for regular ar-
rivals.

ured by Theorem 4. The value of a; — ay may be estimated from below
in terms of a; alone by the inequality a; — ay = @ — a". From Theo-
rems 4 and 5 we see that

@ylds - - - Ay
DPwn

(1—a+a)' =r= <1,
and this inequality indicates the values of a; — ay for which py ~
aa -+ ay is justified.

To put the matter more intuitively, we note that a, is the chance that
a conversation, in progress at one arrival epoch, is still in progress at
the next arrival epoch, i.e.,

a; = Pr{holding time > interarrival time}.
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Similarly, if by, -+, iy are N (independent) holding times,

ay = Pl'{lg’i‘;“\, h; > interarrival time}.
So the approximation is likely to be good at least when the chance that
one holding time exceeds an interarrival time is not very different from
the chance that each of N holding times exceeds an interarrival time
(the same one for all N). As a tentative conclusion we may say that
Py ~ mas - -+ ay is good when the loss 1s very high or very low.

The ratio r = mas - -+ ax/px has been plotted as a function of the
average offered traffic ¢ in Iigs. 11, 12 and 13 for Poisson arrivals, uni-
formly distributed interarrivals and regular arrivals, respectively. The
curves bear out the conclusions of the previous paragraph, that the

1.0
\ ~ 1 -t S IR S
|
| : | ‘
o'g_. B I S W S — bt N=2 o+ —
I
| _ —_ _ B N
i |
o8 W+ — — — —
| ‘ | ‘ i
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3
0.71- - — _— — - E—
T S — - —t
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06| — —— T T
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05 + . e— — —_— = —_— ——
N |
- N -
‘ \ ‘ i | |
oal NN — -
5
5 i ‘
0.3 — -1 N 1 — T ’Trf- e N t ——-‘
' I N =86
0.2
0 1 2 3 4 5 6 7
a
Fig. 11 — The ratio r = (@as - - ay)/py as a function of traffic « for Poisson

arrivals,
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0.35

0.30

0.25

0.20

Fig. 12 — The ratio r = (aa. --- ay)/pny as a function of traffic a for uni-
formly distributed interarrivals.

approximation py ~ aas -+ ay is good for low and high traffic. Fig.
14 shows a detail of r for very low traffic, for all cases at once.

Lemma 2: For m, k = 1, &is1 + Gim = @G + Gppmir -

Proof: the case m = 1 holds by convexity; for the same reason,

7 + 279K ] 2 2ak+1 .

Assume that the lemma holds for a given m and all ¥ = 1. Then

Qg2 + Qiy14m = T + t-24m

IA

A1+ Crpmpt £ Ggn +
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Fig. 13 — The ratio r = (aia» -+ - ax)/px as a function of traffic a for regular
arrivals.

But ap + arye = 2ar, Implies

Ay — Qg2
Qg A B

4

1A

ay

so the lemma follows by induetion.
Theorem 6: Let

N

Lk[‘\r) = I I [1 — + ak+m]|
m=1

— N—1

U™ =TI [1 = ares + aisal.

i=0
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Fig. 14 — Detail of r = (aias - - - ay)/py for low traffic a for Poisson arrivals,
uniformly distributed interarrivals and regular arrivals.
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Then
Lk(N_D = DN((Ir;, ey QpygN-1, 1) = Ukw_n
and, also, the chance of loss salisfies

Qg * ¢ AN < Py = s - " Ax < ayds *** Ay
T = Pv = = —
U,w=n Dy(ar,az, -+, axn, 1) L0

Proof: For N = 2, we have for b = 1:

§)) (n
Dolay , aryr H)=1—a + @pa = U’ = L.

v

Now, assume that for all £ = 1
(N—1) r (N—1)
L"\' éDN(a*‘x !akJrN‘l)l) é Dk .
Then, by Lemma 1,

N—D (N-1)
(1-1.-+NLA-( + (1 — ) Lya = DNH(CM;, oty Qg 1)

< a‘k+NkaN—l) + (1 - ak)UkH(N—u_
By convexity and Lemma 2,
L.L-+1(N_n ; Lk(Nfl),
U "7 2 UV

Therefore
L™ "1 — a4+ araw) S Dyt , -+ 5 g, 1)
< (1= a+ aw) U™
But
(1 — ar + e L™ = LY,
(1 — a4 ty ) U™ = U™,
so the theorem follows by induction.

VII. BOUNDS AND APPROXIMATIONS WHEN ARRIVALS ARE REGULAR

In telephony, it is unrealistic to expect regular arrivals. Nevertheless,
the results of Section VIII indieate that regularity of arrivals represents
in a definite sense a limiting best case, for which the loss assumes a lower
hound. YFor this reason we devote some effort to approximating the loss
px in this case.

TFor regular arrivals the loss py is given by

AT ol — o2 oy
(pN)_I:Z(:\.y el—a 1-d

J xr x* X

1
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where x = exp{—(1/a)} and a = offered erlangs. A simple procedure
for obtaining an upper bound on py is as follows: we note that, since
<1,

()™ = 2 (f ) (1= 2L+ o)1 427 a7 o ( 3,.—1)

N Ny —‘I?N (l—Iﬂ)j"N
%;(j)(l—.t)j!—N!(l x) ;—_(N—j)i'

The term on the right of the last inequality is seen to be the reciproeal
of B[N, 1/(1 — z)], where B(c, a) is the classical Erlang B function;
that is,

G;CIN
_ /M) _
B(C,a)_ N 7 1 — P(C + lja),
J*ﬂjj-

where P(c, a) is the cumulative term > a'e¢ “/n! of the Poisson dis-
tribution. This proves: nEe

Theorem T: If arrivals are regular and a erlangs are offered, then py =
B(N, u), where B is Erlang’s function,and 7 = (1 — 2)" = (1 — ¢ "),

From Theorem 9 of Section VIII we know that py = B(N, a); that
is, we overestimate the loss for regular arrivals if we pretend that arrivals
are Poisson. Let us therefore see whether the bound of Theorem 7 is
better than B(N, a). Let a = (1 — {)™, so that n = (1 — €)™, Now
¢ is tangent to ¢ ' at ¢ = 1, i.e.,, at @ = =, and ¢! is convex; hence
=z andl — ¢ 21— &7 so that

a=(1-0""<1-€"N" =9

for finite a. Since B is monotone increasing in the offered erlangs we
conclude that B(N, a) < B(N, 7). Thus the bound of Theorem 7 is
nowhere as good as the overestimate B(N, a) for py .

However, there is a systematic way of obtaining a useful upper bound
on px for regular arrivals. This bound again has the funetional form of
Erlang’s formula B(N, %). However, 5, instead of being chosen equal to
a, is chosen to correspond to a Poisson process, which gives the right
value of a;, exp{—(1/a)}, and involves fewer offered erlangs » < a.
Now

0 = ¢ V' for regular arrivals at a erlangs
17 \a/(1 + 7) for Poisson arrivals at n erlangs.
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So 7 erlangs will give the right value of g, if and only if

Y

= 1/a
1 —y )

7 for y=¢

We first show that, if 4 is defined in this way, then 3 < a. For u > 0,
we have u + 1 < ¢“, so that for u = ¢~ we find

e—lt‘a < G,(]. _ e—l,'a),

Y

— 1/a
TSy .

<a for y=¢€

For this choice of 4, then, B(N, ) < B(N, a). Now, from formula (7),
it is apparent that if the a; are replaced term by term with quantities
a;, with a; £ a/, the result will be =py . We choose

a’ = n/(n + 1), i=1,2 ---, N.
The a/ correspond to Poisson arrivals with  erlangs offered. To obtain
a bound it remains to be shown that, for< = 2,3, .-+, N,
—ira 4 Ui
a; = e =a; = T
1 = n + ?‘

This is equivalent to
y+i=iy =y, for y=e"",
which is seen to be true because y + ¢ — 7y is tangent to ¥ ‘aty = 1.
The result of replacing a; by the chosen a;/ is just B(NV, 9). This proves:
Theorem 8: If arrivals are regular and a erlangs are offered, then
py = B(N, n) < B(N, a), where B 1s Frlang’s function, and

y e(—11’0:)

Ty 1= et

n

This result suggests use of B(N, 1) as an approximation to py . Two
numerical cases illustrate this approximation:

i. N = 8, 8 erlangs are offered; then y = ¢ ' and 7 = 0.747. We
find py = 0.17, B(N, 9) = 0.20, B(N, a) = 0.235.

ii. N = 5, 8 erlangs are offered; again, n = 0.747, and py = 0.437,
B(N, n) = 0450, B(N, a) = 0478.

VIII. THE LOSS AS A FUNCTIONAL OF A(u)

Tor each N, and each hang-up rate v, the loss py can be regarded as
a mapping from the set of distributions A (%) of positive variates to the
interval (0, 1). We write px(A) in this section for the loss resulting from
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the interarrival distribution A (w), and we study the loss as a functional
of A(u).
Tirst, it is instructive to keep the mean interarrival time p; fixed and

to vary the interarrival distribution A(w). Since ¢ "™ is convex in %,
we find

=3

e "< f e """ dA(w) = a.,

0
and hence

TRYRL

1—e > 1 - @
G_ﬁw‘l - (n

But ¢ "™ = a, for the case where arrivals are regular, and p; apart.

This proves:
Theorem 9: [f v, 1, are positive constants, then

fu dA(u) = ,ul}

is achieved for the unil slep distribution

-~
A('M) — {1: U = {1,

inf {pN(A}

0, 1 < py.

Thus, the probability of loss assumes a minimum, for fixed v and py,
when the arrivals are regularly spaced at epochs p; apart.

We next show that, if the mean interarrival time p; and the hang-up
rate v are kept fixed, then the probability of loss can still be made ar-
bitrarily close to unity by a proper choice of A(u).

Theorem 10: If v, p1 are positive constants, then

sup{p,v(A) f wdA(u) = ,u.1} = 1.

To prove this, let 1 > € > 0 be given, and consider those distributions
which have a mass (1 — p) at 5o > 0, and a mass p at y, > 0. For such
an A(w) we have

a, = (1 — ple "™ 4 pe "™,

Let ¢ = (1 — p) exp{ — Nyw}, so that, for each n,
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Then, since ay < ay_; < -+ < a; < 1, we find from Palm’s formula

(7) that
pr(A) = (1 + ‘_q‘—q) .

We can now choose p and y, so small that py(4) = 1 — ¢, independ-
ently of y, which can then be chosen to satisfy u, = (1l — p) + np.
This proves the theorem.

It is natural to use

1 1

# f wdA(u)
0

as a measure of the calling rate, and to use

ra(A) = 1 — py(4)
H1

= fraction served times calling rate

as o measure of the rate of service, the rate at which calls are actually
being completed. Suppose now that we are willing to tolerate a probabil-
ity p of loss. Can we find an interarrival distribution A («) which achieves
» and for which the rate of service is a maximum for a given hang-up
rate v? To answer this question, define the function

f(@y, 22, -+ aw) = 1 _!_(];,T)l - .1‘1_|_ +({t:)(l -—_-r;)-.-(l—.lw),

11 Xy ... TN

so that px(1) = [fla, az, -, av)] .
Theorem 11: If v > 0 and 0 < p < 1, then

(1—p)
sup {ry(A A) = =
Ap[m( )|:DN( ) ZJ] log;v
where x 1s the unique solution of the equation f(x, 2°, - -, a%) = p ' in

the unit interval. The supremum ts achicved by the unil step distribution
A(w) defined by

_ fl, w = —y loga,

Aw) = 10, u < —v "log x.

(9

The funetion f(x, 2°, -+, 2") is monotone, decreasing from = to 1
in the unit interval. Since f is continuous, and 0 < p < 1, there exists
a solution z of the equation f(z, 2%, -+, 2") = p~". Obviously, for A (u)
defined by (9), we have py(A) = p. Now let B(x) be any other inter-
arrival distribution with a finite mean, so that the service rate ry(B)
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exists. Suppose that B(w) achieves the probability p of loss; i.e., that
px(B) = p. We show that

f: udB(u) = —y7" log .
For, suppose the contrary and set

y = EXP{— 4 f: u dB(u)};
then, by Theorem 9, [f(y, &/°, -+, ™)' < p, and

f: wdB(u) < —y 'loga

implies y > x,s80 that U('I.: a'ﬂv ] J"N)]il < [f(yv ?]2, T yN)]71 = P,
which is impossible. This proves that

inf {f w dB(w)

and also Theorem 11. Note that the supremum in Theorem 11 is a linear
function of the hang-up rate, v.

Let N () be the number of trunks busy at time ¢, and let E{N({)}
be its average. It is not always true that lim K{N({)} exists as { — o,
However, if A(u) is not a lattice distribution, then

pv(B) = P} = —v " log g,

lim B(N()} = %4-).

where p; may be . This limit is the number of erlangs carried by the
trunk group in equilibrium (see Takdcs). Now a lattice distribution
can be approximated arbitrarily closely by absolutely continuous dis-
tributions. Thus, an immediate consequence of Theorem 11 is:

Theorem 12: If 0 < p < 1, and x s as in Theorem 11, then

. 1=
e 1:1-{2 EIN®) = —log =’
where the supremum 1s taken over A(w) such that py(A) = p and such
that im E{N(t)} as t — o exisis.

This theorem means, intuitively, that the maximum number of er-
langs that N trunks can carry at a fixed loss probability p [the maxi-
mum being over the appropriate A (u) which achieve a loss p] is a number
depending only on N and p.
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It may also be of interest sometimes to know what is the least proba-
bility of loss incurred by offering a traffic of a erlangs to N trunks, with
A(u) being varied, and v as well. The answer is given by:

Theorem 13: If a > 0, then

inf {pN(A) ‘ f yu dA(u) = al} = [flz, 2", -, 2",
Ay
where x = ¢ %, and the inf is achieved by any unit step distribution A(u)
and v > 0 such that

CLu =z (en

AQ) = 10, u < (ay)™".

The proof is essentially that of Theorem 9, and is omitted.
x. Pri{N(k) = N) AS A FUNCTION OF k

The time-dependent behavior of the process N(k) is only touched on
here, since a complete treatment requires the detailed investigation of
the roots of the polynomial Dy(a;, a», +--, ax, 2) occurring in the
generating function yx(z). Such a study is still incomplete.

Nevertheless, some hints of the rate of approach to the limit py can
he obtained from Theorem 1 and y¥x(z) as they stand. For instance, if
N(0) = 0, then

_ —1 .. N
nlz) = — N (1 — 2) ayae an? .
Z.:}(;) (1 —az) - (1 = az)aiys - ayz"""
From this it can be seen directly that
Pr{N(k) = N |N(0) = 0)} =
0 for k < N,

maz --- ay  fork = N, (10)

N—1
[alaz---aN[l-i—Z(a,-—a,v)] fork =n+1.

=1

More terms may be computed from the generating function, but the
labor involved increases rapidly. Tt is to be noted that (10), together
with Theorem 5, suggests that the approach to py is monotone; also,
the first nonzero term is the approximating product a;a; - - - ay discussed

in Section VI.
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I'or N = 2 trunks, it is possible to discuss Pr{N(k) = N | N(0)} in
a particularly simple way. The results are given here, together with a
numerical illustration, for the light they shed on the time development
of the process. I'rom Theorem 1 we find that

(1'1(1222
(1 = 2)(1 — z2a1 + 2a2)’

;z" Pr {N(k) = 2| N(0) = 0} =

so that
Pr {N(k) = 2| N(0) =0} =

0 for k =

a,as k=1
1 — — k=
p— (L‘g[ (@ — a2)"") fork = 2

|
=
—

Here py is mas/(1 — a; + as), and is approached exponentially.
Similarly, the generating function of PriN{k) = 2| N(0) = 1} is

a2 n 21
(1 — 2)(1 — zay + za2) 1 — zag + 200’

g0 that
Pr (N(k) = 2| N(©O) = 1} =

0 fork =0
as fork =1
%&E [1 = (ay — a)" "] + aslay — a2)*™" for kb = 2
Tinally, the generating function of Pr{N{k) = 2| N(0) = 2} is
(1 — 2)(1‘11j232a1 + zay) + 1 - szQ+ 205 + L
from which we find
Pr {N(k) = 2| N(0) = 2} =
1 fork =0
as fork =1
2 1 — (ay — @) "] + aslay — @)™ for k = 2.

l—a + a



ON TRUNKS SERVING A RENEWAL PROCESS 243
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K

Fig. 15 — Pr{N (k) = 2IN(0) = 0] for @ = 1 erlang, N = 2 trunks and uni-
formly distributed interarrivals.

This agrees with the previous conditional probability for k = 1, as it
should.

The three conditional probabilities PriN(k) = 2|N(0) = m]} for
m = 0, 1, 2 have been plotted as functions of & for uniformly distributed
interarrivals in Figs. 15, 16 and 17, respectively. The probabilities have
been drawn continuously, but of course the functions are only defined
for integers k. The example chosen exhibits a very rapid approach to
equilibrium in terms of numbers of arriving calls, since the third arriving
call finds essentially the equilibrium situation.

X. THE EXPECTATION OF N (k) AND THE COVARIANCE

The next result gives a formula for the mean value E{N (k)] in terms
of the initial value E{N(0)}, and the probabilities Pr{N(j) = N} for
j<k—1

Theorem 14: The mean value of N (k) is

_ a1(1 —_ alk)
1 — a

E{N(k)}

+ a"E{N(0)} — ga1j+l Pr {N(k —j—1) = N}.
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Fig. 16 — Pr{N (k) = 2IN(0) =1} for a = 1 erlang, N = 2 trunks and uniformly
distributed interarrivals.

1.0
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Fig. 17 — Pr{N (k) = 2|N(0) = 2} for @ = 1 erlang, N = 2 trunks and uniformly
distributed interarrivals.

244
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To prove this we first obtain the generating function b(z), either by
differentiation from (1) or directly from the recurrences (4). We find

2ai(1 — 2)7" — ywl2)] + E{N(0))

1 —zay

2 ZEIN()] = blz) =

and this gives Theorem 14 upon expansion in powers of z.
We define the covariance function R(n) of the random process N (k)
by

R(n) = lim E{N(k)N(k + n)} — E*{N(k)}.

From Theorem 14 we can derive a formula for the covariance function
R(n).

Theorem 15: If Yu.x(2) is yn(2) for the initial condition N(0) = n,
|z| < 1, {pa} is the stationary distribution of N(k), and m; = > M pm
Jori =1, 2, then "

i an(n) — Z Pt {zal[(l - z)—l - \bm.N(Z)] + m}

m 1 - 2

mia, — a," ™)

2
+ a"mas — my
1 — ay

R(n) = R(—n) =

m

n—1
— Y mpn 2 a7 Pr (N(n — j — 1) = N|N(0) = m}.
=0

Before developing the results of Theorem 15 into a form useful for
computation, we shall sketch the reasons for interest in the covariance
function R(n). The function expresses quantitatively the cohesiveness
of the process, the extent to which N(k + n) and N(L) are correlated.
Besides this theoretical role, the covariance is involved in the practical
matter of evaluating (theoretically) the sampling error in a certain kind
of switch count (traffic measurement.) For a concrete example, suppose
that

S = SN®

is used to estimate the average traffic encountered by arriving custom-
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ers. Here n is the number of successive observations of the random
process N (k). The variance of S is

var{S} = {Z 2 N(%)N(J)} — n'my’
= 2 2 cov(N(i), N(;)

Z;R(i—j)

nR(0) + 2 Z‘; (n — NR(H),

where we have assumed that the observations began in a condition of
equilibrium. Thus var{S} can be expressed in terms of the covariance
funetion R(n).

The formula for R(n) can be made more useful for computation by
turning it into a recurrence relation for successive values of a certain
linear function of R(n). We define auxiliary quantities @ by

N

Qi = 2_ mp, Pr{N(k) = N | N(0) = m]} (11)

m=0

and note that

n—1
’J‘?llﬂl myay i+1
R(n) + m® — i—a = a" (??1-2 -1 ) — > a’MQuj.

C![ — =0

Hence also

nmyay
—

n—1
=a {a;" (mz - ) - Q. — 2 al’“QH-_l} (12)
1 — =0

= aq {R(n) + ms — Q,,}

Rln + 1) +m —

1 — &

Thus, if the @, are known, the R(n) may be calculated by a simple re-
cursive procedure from R(0), which is the variance. The calculation of
the @y is simplified by the fact that, for small &, (a region of principal
interest), many terms of the sum defining Q. are 0. For example, if
0 £ m < N — &, the conditional probability Pr{N(—%) = N | N(0) =
m} is 0, since it is not possible for the kth man to find all trunks busy
if the Oth man found fewer than N — % busy. The first few correction
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TasLe I. — Pr [N(k) = N | N(0) = m]|.

k
m
0 1 2 3

(N* — N + L)an®

+ (v-z-vw'w’N aN108
N 1| ay |[Nayax_1 — (N — ].)(INZ - ; 2 NN

. NN -1

+ Nay_axy + —(2—)‘ ay_say_1dy
N-1 |0 |ay |Nayoray — (N — Day? same as above
N2|0| 0 ay_ay ay_ilay-1 + (N — 1)(ay—2 — aw)]
N-3 0 0 0 Ay_2 AN_1 AN

terms @ as defined above may be computed (by summation) for & =
0, 1, 2, 3 from Table T, which shows Pr{N (k) = N | N(0) = m}, valid
form = 0:

Curves of the covariance function R(n) for n = 1, 2 and 3 are plotted
as functions of the offered traffic @ for trunk group sizes N = 2, ---, 8,
as follows: in Figs. 18 through 20 for Poisson arrivals; in Figs. 21 through
23 for uniformly distributed interarrivals; and in Figs. 24 through 26
for regular arrivals. The curve for N = 1 is not shown in any of Figs.
18 through 26 because, in this case, R(n) = 0 for [ n| > 0 (see below).

The following conclusions seem to be reasonable after examination of
the curves:

i. R(n) is nonnegative and monotone decreasing in | n |.

ii. Tor n and traffic a fixed, the covariance R(n) for Poisson arrivals
exceeds the covariance R(n) for both the other two interarrival distri-
butions (uniform and fixed) we have considered. Similarly, the covari-
ance R(n) for regular arrivals falls below the value of R(n) for both
Poisson arrivals and uniform interarrivals. We conjecture that R(n) for
regular arrivals is less than or equal to R(r) for any other distribution
of interarrivals, for the same traffic.

A particularly simple but important case arises when N = 1; the case
is simple because R(n) = 0 except for n = 0; the case is important, not
because groups consisting of a single trunk are common (they are not),
but because the case N = 1 corresponds to making a measurement only
on the first trunk of a group (of arbitrary size) in which the trunks are
tried in a fixed order. For N = 1 it is easy to see (from Theorem 1) that

Pl‘{.;\r(rlf-) =1 ! ,\1(0)} = 5_4:(0),1 for k = O,
=m otherwise,
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Figl. 18 — The covariance value R(1) as a funetion of traffic a for Poisson
arrivals,
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2.4 :
R (2) AS A FUNCTION OF TRAFFIC 3 |
FOR POISSON ARRIVALS,
, L.e., an=a/(a+n)
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Fig. 19 — The covariance value R(2) as a function of traffic a for Poisson
arrivals.

so that N (k) is independent of N(0) for k > 0. Thus, in this case,
R(0) = var [N(k)) = a1 — a’,

R(n)

E{S/n}

0, for n = 0,
E{N(B)} = a1,

I

2
var{S/n} a—';—al,

so that S/n is a consistent and unbiased estimator for a, . It is to be
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1.8 -

R(3) AS A FUNCTION OF TRAFFIC @ |
FOR POISSON ARRIVALS,

L.e,an=4a/(a+n)
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Figl. 20 — The covariance value R(3) as a function of traffic @ for Poisson
arrivals.

emphasized that in this case S is the sum of n independent identically
distributed random variables, each equal to 1 with probability a; , and
to 0 with probability 1 — @, . Thus, S has a binomial distribution with
“suecess’” parameter a; .

The method of traffic measurement (on a group) outlined in the pre-
ceding paragraph has the disadvantage that it collects information very
slowly. But it is relatively cheap, since all that has to be recorded is
whether the first trunk is busy at arrival epochs or not, and it has the
additional advantage that its statistical theory is relatively simple and
has been well developed in the literature. It must be kept in mind that
the sampling error estimates we develop are limited to measurements
made at epochs just preceding arrivals.

Often the traffic engineer needs to estimate the load offered to a group,
rather than the load carried by it. The use of S to estimate a; tells him
what fraction of the time the first trunk is busy. However, there are
cases in which the knowledge of a; determines the offered load. This
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Fig. 21 — The covariance value B(1) as a function of traffic a for uniformly
distributed interarrivals.

occurs, in fact, whenever a; is a monotone function of the offered load
a only. I'or example, when arrivals are Poisson, we have a; = a/(1 + a),
so it is reasonable to use S/(n — S) as an estimator of the offered load
a. When arrivals are regular, a; = e ", so a reasonable estimate of a
is 1/(log n — log S).

In the Poisson example, this method of estimating ¢ can be evaluated
readily if we estimate a ' instead by means of (n + 1)/(S + 1) — 1,

whose stochastic limit is obviously a ™.
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Fig. 22 — The covariance value R(2) as a function of traffic a for uniformly
distributed interarrivals.

1.4

R(3) As A FUNCTION OF
TRAFFIC @ FOR UNIFORMLY
DISTRIBUTED INTERARRIVALS N=8
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Fig. 23 — The covariance value R(3) as a function of traffic @ for uniformly
distributed interarrivals.
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R(1) AS A FUNCTION |
OF TRAFFIC @
FOR REGULAR ARRIVALS
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Fig. 24 — The covariance value R(1) as a function of traffic a for regular
arrivals.

THE COVARIANCE VALUE R(2)
AS A FUNCTICN OF TRAFFIC
|4l @, FOR REGULAR ARRIVALS,
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Fig. 25 — The covariance value R(2) as a funection of traffic a for regular
arrivals.
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Figl. 26 — The covariance value R(3) as a function of traffic a for regular
arrivals.

The generating function of § is

Ews=n+m—ﬂm"=§f“w=”'

Hence
_ 1 s 1 —(1 — n+1
E{S + 1) =[o Bz} dz = _(i+ 1‘)’;)1 ,
n+1 Cl—ai,
E{WF P - 1} -0 - - )l

There seems to be no simple formula for the second moment of this
estimator, nor for that of n/S. However, noting that

m+17  _(n+1)
S+ DS +2) " (8+1)2

we can verify (by the same method as above) that

1+ afl — a)"™
(n + 1)(n + 2)a®’

(n + 1) 411+ all —a)"
T n+2 a’ ’

1 ¥
B+ 38+ 27"} = [ [ B} dedy =
Joo o

zl
1S+ 1S + 2)
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Fig. 27 — R(n) and R{0)a,* as funetions of traffic a for Poisson arrivals and
N = 3 trunks.

and so conelude that
n+ 1 n4+ 1+ a(l —a)™ 1= =a) T
var § =——— — 1 = - — _ )
LS + 1 n + 2 (112 -
This lower bound is likely to be very close to the variance on the left
for large n, so that, in this region,
et 1 L e D0 = a)™ = (1 = @)™
: S “’_ 1 (I]_z ’
It can easily be shown (by the methods of Section IV) that, if N = = ;
i.e., if the trunk group is unlimited in size, the covariance function is
exponential in character:

R(n) = R(0)a,".
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This suggests that, in some cases, R(n) ~ E(0)a,” is a good approxima-
tion to the covariance for N < «. This approximation is equivalent to
ignoring the correction terms ), in the recurrence relation (12) for the
covariance. Sinee the sign of the @, in (12) is negative, it is clear that
the approximation is an overestimate.

The covariance R(n) for n = 0, 1, 2, 3 and the overestimate £(0)a;"
for B(n) have been plotted together in Figs. 27, 28 and 29 for 3, 5 and
8 trunks, respectively, and Poisson arrivals. The curves suggest the fol-
lowing conclusions:

i. The approximation R(n) ~ R(0)a," is likely to be good if the load
per trunk a/N is low,

ii. If the load per trunk a/N is high, e.g., ¢/N = 1, the approxima-
tion R(n) ~ R(0)a," may give a figure for the covariance (between

2.0

R(n) AND R(O) &l As
FUNCTIONS OF TRAFFIC @
FOR POISSON ARRIVALS

\\AND N=5 TRUNKS

- . ~,
| | | ~J = ~
<0=2 N
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e N3 TN
~=<

ol —
-~
o®

3 4 5
4, OFFERED TRAFFIC IN ERLANGS

Fig. 28 — R(n) and R(0)a;* as functions of traffic a for Poisson arrivals and
N = b trunks.
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Fig. 29 — R(n) and R(0)a,* as functions of traffic a for Poisson arrivals and
N = 8 trunks.

separate observations of N(k)) that is several times the actual value.
This effect seems to increase with the separation, n.
iii. Varianees, such as that of

n

S = > N(k),

1
computed on the basis of the approximation R(n) ~ R(0)a," are overesti-
mates, so that use of this approximation in estimating sampling error is
conservalive.
iv. The value of a at which R(n) has its (apparently unigue) maxi-
mum seems to be the same for all n, depending only on N, the size of
the group.
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