Paramagnetic Spectra of Substituted
Sapphires—Part I: Ruby”

By E. 0. SCHULZ-DU BOIS

(Manuseript received September 29, 1958)

The paramagnetic resonance properties of Cr' " dons in ALO, (ruby)
were tnvestigaled theoretically and experimentally in order to obtain infor-
mation necessary for the application of this material as active material in
a three-level solid-state maser (3LSSM). Numerically computed energy levels,
together with their associated eigenvectors, are presented as a function of
applicd magnetic field for various orientations of the magnetic field with
respect to the crystalline symmetry axis. A more detailed discussion is de-
voted to energy levels, eigenvectors and transition probabilities at angles 0°,
54.74° and 90°, where certain simple relations and symmetries hold. Para-
magnetic spectra for signal frequencies between 5 and 2/ kme are shown;
agreemend between computed and measured resonance fields is satisfactory.

I. INTRODUCTION

Among the paramagnetic salts that have been used as active materials
in three-level solid-state masers (3LSSM)," ** * ruby shows rather desir-
able properties. While maser action of this material has been achieved
at microwave signal frequencies of 3 to 10 kme,” it should be possible to
cover more than the whole centimeter microwave range. Perhaps even
more important from a praetical point of view are the bulk physical
properties. Iixtremely good heat conductivity at low temperatures allows
handling of relatively high microwave power dissipation. Industrial
growth of large single erystals by the flame fusion technique and ma-
chinability with diamond tools make it possible to fabricate long sections
of ruby to very close tolerances, a necessity in travelling-wave maser
(TWM) development. Also, ruby can be bonded to metals, thus allowing
a high degree of versatility in maser structural design. While the use of
ruby in 3LSSM, in particular in nonreciproeal TWNMI, will be deseribed

* This work is partially supported by the Signal Corps under Contract Number
DA-36-039 se-73224.
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in forthcoming papers by members of Bell Telephone Laboratories, this
paper is intended to give some background on paramagnetic resonance
behavior of ruby.

In general, the paramagnetic resonance properties of an ion in a crystal
can be completely deseribed by a spin Hamiltonian containing a relatively
small number of constants. In the case of ruby, these include the spec-
troscopic splitting factors parallel and perpendicular to the crystalline
axis, g) and g, the total spin S = 3/2 and the sign and magnitude of 2D,
the zero field splitting. Nueclear interactions can be neglected since the
most abundant isotope, Cr”, is nonmagnetic (/ = 0) whereas the mag-
netic isotope, Cr™, (I = 3/2) has small abundance (9.5 per cent) and
leads to negligible line broadening only. Taking this into account, one
ean even predict on the basis of the total spin and the erystalline sym-
metry surrounding the Cr™* jon that no other terms ean occur in the
spin Hamiltonian.

However, in order to predict operating conditions of this or other ma-
terials in a 3LSSM, it is necessary to know the separation of energy
levels for supplying the proper pump and signal frequencies, the order
of magnitude of the associated transition probabilities and perhaps other
circumstances, such as coincidence of transition frequencies, which, by
spin-spin interaction, may lead to shortening of the associated relaxation
times (self-doping condition). In this paper, this information is evaluated
by the formalism of the spin Hamiltonian and, at least in part, compared
with experiment. The data presented graphically are intended to form
an “atlas” of the ruby paramagnetic resonance properties. In the paper
which follows, some general viewpoints are presented on modes in which
paramagnetic materials ecan be operated as active materials in a 3LSSM.
In further papers, paramagnetic spectra of other substitutional ions such
as Co™ and Fe**™ in sapphire will be presented in order to furnish suffi-
cient information to find coincidences of transition frequencies of Crt**
with Co™" or Fet™ lines resulting in reduced relaxation times (impurity-
doping condition).

For a derivation of the method of spin Hamiltonians, reference should
be made to such review articles as those by Bleaney and Stevens’ and
Bowers and Owen.® Knowledge of the associated formalism is perhaps
desirable but not necessary for utilization of the results reported in this
paper. Briefly, the spin Hamiltonian describes the energy of a para-
magnetic ion arising from interaction with host crystal environment and
applied magnetic field. Obeying quantum laws, the ion can exist in one
of several states associated with discrete energy levels. Transitions be-
tween such states can oceur if the energy balance AF is supplied to or
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extracted from the ion. Given some probability for radiative transitions,
these can be induced by applying a magnetic field of radio frequency
v = AE/h (b = Planck’s constant). If there are more transitions to the
higher state, net absorption will be observed such as is normally ob-
served with a spectrometer. If there are more transitions to the lower
state, stimulated emission of energy will be observed such as is utilized
for amplification in a 3L.SSM.

II. THE SPIN HAMILTONIAN

The spin Hamiltonian of Cr™"" in Al,O; was first published by Manen-
- .8 . <9
kov and Prokhorov’, and later by Geusic' and Zaripov and Shamonin.
) o
It was given in the form

3¢ = gH.S. 4 g (HS: + H,8,) + D[S — 1S(S + 1)]. (1)

The effective spin S = 3/2 is identical with the true spin. All Cr " ions
in the crystal lattice show identical paramagnetic behavior, with the
magnetic z-axis being the same as the trigonal symmetry axis of the
crvstal. The best values for the constants seem to be

9D = —2D" = —0.3831 =+ 0.0002 em ' = —11.493 & 0.006 kme,
gy = 1.9840 = 0.0006,
g, = 19867 £ 0.0006.

. . . - - - -1
While it is customary in spectroscopy to express energy in units of em

omitting a factor he (h = Planck’s constant, ¢ = velocity of light), units
of kme are used simultaneously, omitting a factor of 10° h, because this
allows direct interpretation in observed spectra.

In particular, the negative sign of D was obtained by Geusic.® He
deduced this from the fact that g, < g, since in less than half-filled
d-shell ions, such as Cr™™" the spin-orbit coupling term X is positive,
and D is given by 2D = Mg, — g.). Sign and magnitude of D are in
agreement with results of low-temperature static susceptibility measure-
ments by Bruger."” In this work also, the negative sign of D was con-
firmed by comparing the relative intensities of two lines at liquid nitrogen
and helium temperatures.

The spin Hamiltonian (1) ean more conveniently be written in
spherical coordinates:

ac = gyH cos 08, + ig.H sin B ¥S, + ¢“8.)
|
— D[S — 38(S + D).
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Here S, = S, & ¢S, . In both representations (1) and (2) the erystalline
axis was chosen to be the z-axis. While the choice of reference system is
immaterial to obtaining eigenvalues (energy levels), this choice shows
up in the associated eigenvectors. The eigenvectors have no direct phys-
ical interpretation; they must be evaluated in order to obtain transition
probabilities. The transition probabilities most naturally obtained from
eigenvectors of the Hamiltonian (2) are those which correspond to ex-
citation by mF magnetic fields whose polarization is either linear and
parallel to, or eircular and perpendicular to, the crystalline axis.

In 3LSSM design, however, it seems more appropriate to analyze the
performance in terms of RF magnetic fields whose polarization is either
linear and parallel to, or circular and perpendicular to, the applied field.
The corresponding eigenvectors and transition probabilities can, of
course, be obtained from those belonging to the Hamiltonian (2) by a
4-by-4 transformation matrix. But it is more efficient to obtain them
directly through a transformation of the original spin Hamiltonian (1)
or (2) into a coordinate system with the z-axis parallel to the applied
field. The result of this transformation is

5 = (g cos® 8 + g. sin® O)BHS.
— D'(cos” 8 — % sin® 0)[S. — 38(S + 1)]
— D'} cos 0 sin 0 (.8, + 8,8 + (S8 + S_8)] @)
— D'tsin® 0(eS, 4 S,

III. ENERGY LEVELS AND EIGENVECTORS

From the Hamiltonian 3¢ (3), its energy eigenvalues IV are found
numerically by solving the fourth-order secular equation

[{n]oe — W [m}| =0,
n,m = 3/2,1/2, —1/2, —3/2.

)

The eigenvalues TV are functions of H and 8, but not of ¢ sinee, because
of the symmetry of the Hamiltonian, rotation about the z-axis does not
change the physical situation. On the following plots (left-hand sections
of IMigs. 1 through 11) diagrams of energy levels W (in units of kme) are
shown as a function of applied field A (in units of kilogauss). Plots are
given for angles 8 from 0° to 90° in steps of 10° and, in addition, for
54.74°.

Also, by change of scales, dimensionless eigenvalues y = W/D" are
shown as functions of the dimensionless quantity x = /1, where

G = (g cos” 0 + g, sin” 0)8H.
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Fig. 8 — Energy levels and eigenvectors at 60°.
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This dimensionless representation facilitates computations and reveals
more clearly symmetries and singular relations in the energy level
scheme. It also permits the use of the same diagrams for ions having the
same Hamiltonian but different zero field splitting 2D. Similar energy
level diagrams were computed by P. M. Parker" for the case of nuclear
spin resonance with nuclear quadrupole splitting present which is de-
seribed by the same type of Hamiltonian.

As a convenient way to identify the energy levels I, a quantum num-
ber 7 ranging from —g to +3 is used in order of increasing energy.
Thus W(—12) is the lowest, W(3) the highest energy level. It is easily
shown that, for all angles @ and & = 0, y(—5) = y(—3) = —1 and y&)
= y(3) = 1. As a matter of mathematical curiosity, it may be mentioned
that, irrespective of 8 at x = 1, y(3) = 1/2.

The eigenstates | #) (using Dirac’s “ket” notation) associated with
energy levels W(#) can be expanded in the form

3/2

l = 2. ali;m) \ m). (5)

m=—0/2

Here, | m) are eigenstates of a Zeeman Hamiltonian 3¢ = gB8HS. . The
¥(@; m) are amplitudes of eigenvector components or, more briefly,
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eigenvectors and form a normalized and orthogonal system of coefficients.
With high applied magnetic field H, | i) — | n) and a(i; n) — 1; there-
fore, | m) are termed high-field cigenstates and a(si; m) high-field eigen-
vectors,

Eigenvectors a(ii; m) are obtained as solutions of linear homogeneous
equation systems, the matrix of which forms the secular equation (4)
with the particular eigenvalue W (7) inserted. Since this matrix depends
on g, the a(ii; m) are also functions of ¢. The computations were carried
out for ¢ = 0, with 8 restricted to 0 < 8 < x/2 and negative sign of
D= -D".

This choice implies that the erystalline axis lies in the positive quad-
rant of the x-z plane and it results in real eigenvectors a(ii; m). These
are plotted in the right-hand sections of Iigs. 1 through 11, adjacent to
plots of the corresponding eigenvalues W(@). Negative a(si; m) are indi-
cated hy dashed lines.

A nonzero ¢ would, in general, result in new complex eigenvectors
o'(i; m) = [exp ilm — A)ela(a; m). Taking 7/2 < § < wore = 7
would change the sign of every second eigenvector, that is, of those with
m =n=+ 1and m = n = 3. The same is true for a change of sign of D,
but then, in addition, every 7 and m and energy eigenvalue has to be
replaced by its negative. It is obvious that such transformations do not
change the physical situation as far as transition probabilities are con-
cerned.

IV. TRANSITION PROBABILITIES

There are several ways in which transition probabilities could be
evaluated and plotted. One way would be to consider transitions induced
by radiation of given polarization. With eigenvectors belonging to the
Hamiltonian (3), the obvious rF magnetic field polarizations to consider
are those with rr H-field linear and parallel to, or eircular and per-
pendicular to, the applied field. But transitions due to any other polariza-
tion could be evaluated as well. Perhaps more natural from a theoretical
point of view would be an evaluation of the maximum transition prob-
ability. This requires a particular—in general—elliptical, polarization for
excitation, which of course should be evaluated, too. All polarizations
orthozonal to this (which in general are elliptical as well), and which
describe a plane in space having complex components, are associated
with zero transition probability. Taking into account these different
viewpoints and the six transitions which are possible between four
encrgy levels, it appears that an unrealistically high number of graphs
would be necessary to deseribe the transition probabilities properly.
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I'urthermore, in maser design it is usually sufficient to know the order
of magnitude of transition probabilities of particular lines, because often
other factors may be more important. Therefore, no plots of transition
probabilities are presented. On the other hand, enough of the per-
tinent formalism is given below so that any transition probability
can be evaluated from the eigenvectors plotted.

Following essentially Bloembergen, Purcell and Pound,” with slight
generalization, the transition probability w deseribing the rate of transi-
tions per ion from a lower state @ to a higher state 2’ > i is given by

Wit = }(ngf’Hl)“ glv — wo) | (" | Sy | 7) 1% (6)

Here H, is the amplitude of the exciting rr magnetic field, g(» — w) is a
normalized funetion deseribing the line shape [g(» — w) dv = 1, and S,
is o spin operator reflecting the polarization of the inducing rF magnetic
field. If the mr magnetic field is deseribed by the real parts of
H, = Hwae™', H, = Hbe™', . = Hyee™' with “complex direction
cosines’ a, b, ¢ accounting for elliptical polarization,

a*a + b*b 4+ ¢*¢ = 1,
then
Si = a*S; + b*S, + ¢*S.. )

Matrix elements for S; ocecurring squared in (6) are linear combinations
of the following three:

+3/2
@ | 8. |a)y = Z-"u': ma(i'; m)a(i; m), (8)
@ | Sy | @) =
+1/2 ) (g)
E.' [S(S + 1) — (m + Dm]Pa(@’; m + Da(; m),
m=—3/2
(' | S|y =
+ala 7 . (10)
Z; [S(S + 1) — (m — Dm]"a@@;m — Da(i; m).
m=—1/2

The square root in (9) and (10) takes on the values V'3, 2 and /3.
For example, with linear polarization in the z-direction, . = H, cos wi
and 8 = S.. IYor circular polarization perpendicular to the z-direction,
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H, = (1/A/2)H, cos wt, H, = +£(1/4/2)Hy sin wl and S; = (1/4/2)8; .
For linear polarization in the x direction, H, = H; cos ol and S, = S; =
(S, 4+ S.). Similarly, in the y direction H, = H, cos ol and S, =
S, = (/20084 + So).

The expression (7), or more correctly, the associated matrix element,
can he interpreted as a sealar product of (a*, b¥*, ¢*) with (@’ | S| 7).
It should be noted that, in general, all components can be complex. As
a consequence of this interpretation, the maximum transition probability
oceurs if Hy or (a, b, ¢) is parallel in space and conjugate complex in
phase to (7’ | S | @1). Since for real eigenvectors the matrices (8), (9), (10)
are all real, it follows that (@' | S, |7y and (@' | S. | @) are real, whereas
(@' | 8, |4) is imaginary. Thus, for all ruby lines, the polarization for
maximum transition probability will be a linear combination of H. and
H. components with an H, component in quadrature. In a similar fash-
ion, a set of complex direction cosines can be found which causes the
scalar product of (a*, b*, ¢*) with (@' | S|7), and hence the t ransi-
tion probability, to vanish. These vectors (a, b, ¢) deseribe a plane orthog-
onal to the veetor for maximum transition probability.

It should be noted that frequently the complete formula (6) is not used
to evaluate and compare transition probabilities. Instead, usually only
the squared matrix element | (@’ | Sy | @) *is computed and this is then
compared with a simple standard transition. The obvious standard is
the transition —1/2 — 41/2 of an S = 1/2 Zeeman doublet induced
by eircular polarization, This is deseribed, in our notation, by
| ¢ +1/2] (1/4/2)S, | —1/2) > = 1/2. Accordingly, transitions involv-
ing a squared matrix element of order 1 or greater are considered strong,
while perhaps 1/100 is typical of weak transitions.

V. SPECIAL CASES

5.1. 8 = 0°

The energy levels are parts of straight lines y = 1 £ 32, — 1 £ v
with change of slope for some of them at x = 1 and 2. Eigenvectors
are =1 and 0 only, again joined for some levels at x = 1 and 2. The
minus sign of eigenveetors at 0° has no significance; it is only used to
preserve continuity to neighboring angles.

At 6 = 0° and © < 2, the labeling of energy levels by high field quan-
tum numbers in order of inereasing encrgy is perhaps not the usual one.
In this paper, lowever, it seems appropriate because, with this termi-
nology, in going from 6 = 0° to other orientations, the notation of states
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stays the same. It may be pointed out that energy levels defined in this
fashion should be considered as continuous functions of applied field
without cross-overs (see Fig. 1). The reason is that any off-diagonal
perturbation will indeed prevent levels from intercepting by perturbation
theory arguments.

Only three transitions are allowed:

0<a<1:(+3|S;|+3)V =4
(HF185-| =3 ={(+3 |8+ -3 =3,

l<az<2: (438, —3V =4
(F3 18- +3)° = (+z] 84| -5
4

I

I
.

Ii

2 < (+3| 8+ —3)
(FF1 84| +2) = (=3 |8+ | =8 = 3.

It is interesting to note that, for 0 < x < 2, one transition requires
opposite polarization from the others. This was verified in an experi-
ment. Resonance absorption was measured for this and another transi-
tion in a propagating comb-type slow-wave structure having regions
of predominantly eircular polarization. Reversal of applied magnetic
field results in drastic increase of one and reduction of the other line.

52. 0 = 54.74° cos" 0 = 1/3.

For this angle, the fourth-order secular equation reduces to a bi-
quadratic one. The four eigenvalues are y = £[1 + 22° + (32° +
«)'*]"*, This implies an up-down symmetry y(—a) = —y(@). The
closest approach of the two middle eigenvalues is y(+3) — y(—2)=
1 at * = 1. A similar symmetry relation holds for eigenvectors
a(—7; —m) = (Am/| am |)a(fi; m). As a consequence, some transition
probabilities for linear polarization are identical, namely

(=218 =3 = (+T| 8. | +D)
and
(2| 8] =8) = —(+F[ 8| —D).

The analogous is not true for other polarizations.
P
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5.3. 8 = 90°

The secular equation can be factorized into two quadratic equations
with the solutions

¥ =3+ 0+ + )"

Y3 = =5+ 0 -z
W-0 =5 - (L +a+a)?
Y= =-5-U—a+H"

Flach state contains only two eigenvectors, namely «(si; n) and
elfi;n = 2). In addition, e(7; n) = a(n = 2;7 £ 2) and a(i;n £ 2) =
—aln £ 2; n). As a result, transition probabilities between adjacent
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Fig. 12 — Paramagnetic resonance spectrum of Cr+* ions in ruby at signal fre-
quency 5.18 kme.
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levels i — 1 4 1 contain only matrix elements of Sy and S_, the same
being true for —3 — +3. Double jumps 7 — n + 2 are described by
nonvanishing elements of S. only.

VI. PARAMAGNETIC RESONANCE SPECTRA

In Figs. 12 through 17 some resonance spectra are shown for signal
frequencies of 5.18, 6.08, 9.30, 12.33, 18.2 and 23.9 kme. The plots show
resonance fields as funetions of the angle between crystalline axis and
applied field. Measurements have been carried out at all of these fre-
quencies to varying extents, although measured values are recorded only
on Figs. 14 and 15. Generally, these spectra have been used in the lab-
oratory to align ruby crystals by resonance for maser experiments. They
have proved accurate to about 50 gauss.
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Tig. 15 — Resonance spectrum at 12.33 kme.
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Measurements at 9.3 kme are an extension of Geusic’s work® and con-
firm his results. Results at 12.33 kme show some discrepancy between
theory and experiment, which, however, is believed to be caused by
inadequate magnetic field measuring equipment used in an experiment
designed for other purposes. As a general rule, the spectra show two
looping lines if » < 2D. Lines marked ‘“‘forbidden” are strictly forbidden
at 0° only. Usually, however, they can be followed quite close to 0° by
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use of more sensitivity in the spectrometer. An exception is the line
shown on the graphs having the lowest resonance field at 0°if » < £D’,
It has the second lowest resonance field if £0D" < » < 40 and the third
lowest if D" < » < 3D'. Tt originates between —§ and 44 eigenstates
at 0° and is more strongly forbidden than the other forbidden lines; hence
it usually ceases to be measurable at about 30°.

Ior reasons of symmetry, all lines approach 0° and 90° with zero slope
dH /d6. Experimentally, it has been found that most lines are rather
narrow at 90° and similarly at 0°, whereas they broaden in proportion
with dH /d6. This behavior is expected from erystalline imperfections if
these can be interpreted as fluctuations throughout the erystal of the
direction of the erystalline axis.
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