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The voltage and current modulation of ideal cylindrical electron beams
in Brillowin flow, as well as beams in zero magnetic field, are studied by
means of Laplace transforms. With a large-diameter beam of this class,
suddenly accelerated from a temperature-limited cathode and without trans-
verse velocities, the minimum noise figure of an amplifier is found to be
smaller than it would be for a narrow, essentially one-dimensional (fila-
ment or sheet) beam, or for a confined-flow beam with the same diameter,
longitudinal velocity and direct current.

Certain space-charge wave solutions obtained in field analyses of beams
from shielded diodes, which have never been detected experimentally, are
found to be nonexistent in the sense that no phenomenon taking place in a
vacuum tube excites them.

I. INTRODUCTION

When a beam only partly fills the space within a concentric drift tube,
the field patterns of the modes derived by small-signal slow-wave analy-
sis are not orthogonal to one another. This makes it difficult to find the
amplitude of any single mode excited by an arbitrary initial disturbance.
The eases of ion-neutralized beams in the absence of a magnetic field and
of Brillouin flow are even more difficult, for in these cases infinite groups
of modes assume the same phase velocity and degenerate into a wave
of arbitrary transverse distribution, which, we shall show, cannot be
excited at all.

In treating the excitation of a confined-flow beam, Scotto and Parzen'
have circumvented such difficulties by means of a Laplace transform
procedure. More recently, Bresler, Joshi and Marcuvitz® have succeeded
in formulating a complete set of orthogonal modes for such unidirectional
electron beams, at the cost of some increased complexity in deseription.

In this paper, a technique similar to that of Scotto and Parzen will
be employed to solve several problems in the excitation of a solid-cylin-
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drical beam, focused in ideal Brillouin flow. The method consists of trans-
forming the exciting current or voltage with respect to the axial coordi-
nate z, and finding the beam response by means of a transfer function
which satisfies the transverse boundary conditions. The relative ampli-
tudes of each of the various modes could be found, in this way, by using
transfer funetions evaluated in terms of each such mode. Here, only the
fundamental mode, having axial symmetry, will be considered. The solu-
tions so obtained will also apply to the beam in zero magnetic field, as
the mode patterns are the same in both cases.”

The first problem treated, of field modulation by means of an annular
gap in a concentric drift tube, will illustrate the general technique. The
remaining three caleulations deal with different aspects of the problem
of noise excitation of a finite-diameter beam in a shielded diode, in
which the effect of transverse electron motions is disregarded. These cal-
culations show that the “noisiness” of such a beam falls to half that for a
narrow beam or a one-dimensional beam as the diameter is increased (as
Bb is made larger). An additional ealeulation shows that certain space-
charge waves obtained in field analyses of such beams," * which are inde-
pendent of transverse boundary conditions, cannot be excited and there-
fore do not exist.

The prospects of producing low-noise amplifiers with large-diameter
beams in Brillouin flow are not very good, because of large transverse
electron excursions near the cathode. However, it is possible that a simi-
lar noise-reduction mechanism may be present in confined-flow beams
abruptly hollowed-out (relative to the cathode surface) close to the
cathode. The extremely low noise figures reported® " for TWT amplifiers
using beams of this sort are chiefly due to other noise-reduction proe-
esses,” ' but the effect of large beam size may perhaps be important at
higher frequencies.

II. MODULATING VOLTAGE ACROSS GAP IN DRIFT TUBE

At the input plane, z = 0, an ac voltage V' is impressed across a very
short gap in a drift tube of radius a, concentric with and enclosing a
Brillouin-flow beam of radius b. The response is sought in the form of
the total current in the drift tube to the right of this plane, #,(z, a).
Polar eylindrical coordinates (r, 8, z) and MIS units will be employed,
consistent with the notation of Ref. 5, in which axial-symmetric space-
charge waves in beams of this type are described. All of the ac quantities
associated with any such wave are assumed to propagate as

exp (jwt) -exp (—jBz) (1)

with the time variation suppressed.
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As the amplitudes of all ac quantities are zero to the left of the input
plane, it is convenient to use the Laplace transform pairs in the form™

o

l J(2) exp (jBz) dz, (2)

F(B)

1) = 5 [ F@) exp (— js) ds. 3)
The integration contour for the inverse transform (3) is along the real
axis of 8, indented above any poles on that axis, and enclosing the third
and fourth quadrants of the complex g-plane. When F(8) has n simple,
distinet poles within this contour, the last integral ean be evaluated by
means of Cauchy’s residue theorem, for z > 0, as

) = = 218 = BIF(B) exp (=j8)lses, - (4)

Accordingly, the transform of the impressed field, in a gap of nominal
(but negligible) width d, is

od

A(ﬁ)=} (—=V/d) exp (jB2) dz = —V. (5)

The response current is found by multiplying this quantity by a transfer
funetion Y(3) to obtain the transform of that current, and then its in-
verse transform. Any transfer function relating two ac quantities with
the same (z, {) variation will, in general, be a function of the propaga-
tion constant 8 and the transverse properties of the electron beam and its
eylindrieal enclosure. The transfer funetion Y(8) relating the ac ampli-
tudes 7,(z, a) and E.(z, a) will therefore be the same as that relating their
transforms #,(8, @) and E.(3, a). In the present instance, the z-com-
ponent of the field equation for curl H provides the desired relation
defining ¥ (83):

(8, a) = 2wafly = 2maF.V(8), (6)

and the response current is given by

1z, a)

Il

—aI’f Y(8) exp (j8z) dB
- (7)

j2raV 20 [(8 — B.)Y(8) exp (—jB82)]s=s, -

The boundary equations at the surface of a drifting Brillouin-flow
beam” must be solved in terms of Y(38), rather than of the infinite ad-
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mittance of a conducting wall. The axial electric field inside and outside
of the beam, respectively, can be written

B, = Al (]

1A
1A

b), (8)
E. = Bly, + CK,, b=r=a), (9)

P

where 4, B, C are arbitrary constants, and 7 and K stand for the modified
Bessel functions of the first and second kinds, respectively, the first sub-
seript denoting the order number and the second the radius. The propa-
gation factor, exp j(wt — Bz), as well as the argument (8r) are omitted
for brevity, and will be omitted elsewhere when they are unambiguous.

The surface ripple due to ac radial electron motions can be represented
by a surface charge density,

iR,
g or’

o6 = —Rel, = (10)
evaluated in terms of the fields just inside of the beam, where R is the
square of the reciprocal of the space-charge reduction factor, p, defined
in terms of the radian plasma frequency w,, the excitation frequency w
and the beam drift velocity w, as follows:

2

1 _ “p _ By
Rl praay v, R (1)

In the last expression, 8, = w,/u and 8, = w/u.
The boundary equations at » = b can then be written

2

R:

Aly = Bly + CKg, (12)
.(1(1 - R)[]b = BIH, - CKH,, (1-_)1)

and the admittanee function is

Y(g) = (%‘): - %(g—)=

_ Jwe Tia [(B/C) - (Kh/rm)]
8 Toa L(B/CY + (Koa/Toa) ]

Substitution here of (B/C), found by solving the two boundary equa-
tions, yields:

(14)

_ j_wgépQ — wn
V() - dful —un, (15)
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where

w = pblyKe, (16)

_ InK,, 7

n=1-%+ Kulo’ (amn

IﬂbKna
—1— ) 18
m Kulo (18)
By writing

pr—wn (8 — B — B, wn (19)

Pt — wm (B — B.)? — Bwm

it is readily verified that, along the real g-axis, the only poles of Y(B) are

Bi2 = 0. £ Br:‘\/lm = B £ By, (20)
in terms of which
p— wm = (B — BB — Ba). (20

In addition, as the integration contour encloses the third and fourth
quadrants of the g-plane, the term /,(8a) contributes poles at each of the
zeros of Jo(x) along the negative imaginary g-axis. I'or each root x, the
pole is 8 = (jz./a), so that the corresponding residue contains a factor
exp(—x,z/a). Since such terms decay rapidly with distance 2z from
the input plane, and we are solely interested in propagating waves, they
will not be considered further.

If the changes in w, m and n due to changes of g8 are neglected, by
evaluating all Bessel-function arguments at 8., the expression for the
current response reduces to the following:

) B, . Law(m — n) . .
iz, a) = —wwe 5. aV I—;, —m— [exp (—jBiz) — exp (—jB2)]

€

—jV2rew, sin B,z exp (—jB:2) (22)

I(l)b I\-Ou)
EI u"‘ T
Beto (L.b Toa
In klystron theory, it is customary to write this quantity in another

form, by introducing the de beam current 7y and voltage Vo. For a
beam with negligible potential depression,

I 2mrew, b’

. - (23)
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With this and the reduction factor p = \/wm, we obtain

" . —JiVl [0,,[1,,) sin 8,z exp (—j8.2)

Beck' has treated this problem in a slightly different way, by intro-
ducing several additional approximations. His result consists of the
above expression, followed by a smaller second term. The present deri-
vation shows that this latter term should be simply zero.

1II. MODULATION BY INJECTED FILAMENT OF NOISE CURRENT

The response of a one-dimensional beam to injected noise current
has been computed by one of the authors' with the Laplace transform
technicque deseribed above. Within the framework of its assumptions,
this computation led to results in agreement with the work of Rack,
Llewellyn and Peterson,” thereby establishing its validity as an al-
ternative procedure. It is now proposed to extend this treatment to
the noise excitation of a finite-dinmeter beam in Brillouin flow or in
zero magnetic field, and with an infinitely remote outer conducting
tube. The treatment will be for a source of electrons with no transverse
velocities. This may be unrealistic, but it is not unphysical, for such a
source can be approximated by collimating the electron flow from a
cathode by means of an array of holes, such as a thick hexagonal grid.
I'irst, the response will be found to a slender filament of noise charge
injected at the axis of this beam, and later on the response will be cal-
culated for noise-charge modulation over the entire beam area. Com-
parison of the results with those for the one-dimensional beam should
reveal the effect of beam diameter on its noisiness.

The approximations used in the one-dimensional computation' are
to be adopted here as well, and the reader is referred to Ref. 10 for a
detailed discussion of their meaning. Effects due to the multivelocity
nature of the beam and the inertial effects of a space-charge cloud during
acceleration are avoided by assuming the beam to be abruptly accel-
erated from a temperature-limited eathode. The modes of propagation
of the beam are assumed to be indistinguishable from those for a beam
without thermal veloeities. Excitation of Landau-type damped plasma
oscillations,” which tend to decelerate fast-entering charges, is neglected.

The noise excitation due to injected charge in each velocity class is
calculated in a narrow frequency band, and its mean square summed
over all velocity classes, restricted to a small spread about the mean
beam velocity. The beam is thus regarded as a linear impedance through
which the exciting charges flow. The entering charges are treated as



SPACE-CHARGE WAVE EXCITATION 105

current filaments with diserete velocities, which are modulated by the
noise field due to all the other charges, but have no separate identities
with respect to entering times.

The Brillouin beam is taken to have radius b, and to be drifting in
free space. In a narrow frequency band about w, the injected filament
with veloeity » can be regarded as a circular electron stream of radius
8, earrying a convection current

i = 18(2) exp (—jvz), (25)
w g
Y= -, (2h)
v
where S is the unit step function, and z is measured from the enter-
ing plane. This current corresponds to an ac charge density

1 -
! 2
) (27)

m

£ 1=

(€]

The total charge density p, at the input plane must satisfy Poisson’s
equation
pe=p+ pp = ediv E, (28)

where p is the induced charge density in the driven beam, consistent
with the dynamies and charge-conservation equations for axial-sym-
metric space-charge waves in Brillouin-flow beams:

p = Rediv E. (29)

Thus the total charge density at the input plane is related to the in-
jected charge density p; as follows:

p1 Y .
== 30)
PPT TR wm)(1 — R) (
Outside of the radius 8 the charge density is zero, and the axial elec-
trie field up to the rim of the beam can be written:

E;] == 4'1 IUr + B I{Or) (3])

omitting the propagation factor exp(—jB8z) for brevity. In terms of
these constants, the total charge per unit length within the very small
radius & is then

_J2meB

e = jg'll'jf(.‘l[]g, - BI{IB) é 5

(32)

for g6 < 1
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In the unbounded space outside of the beam, the longitudinal electric
field must have the form

Ezz = C Ko,-. (33)

Taking the surface charge of the beam into account, the boundary
equations at radius b are

Aly+ BKy =C Ky, (34)
(1 —R)(A Iy — BKy) = —C Ky . (35)
The total current inside of a eylinder of radius r > b is

J2mrwe aEzz _ _j21r7'we

g o B

To obtain the transfer function needed in this problem, a relation

between the injected current ¢ and the total indueed current 7,(r), or

between their transforms 4, and #,(r), the boundary equations must be
solved for the constant C, as follows:

1(r) = 2xrH, = CK,. (36)

J.qu _ B
B = 2re  2nwe(l — R)’ (37)
~ B(1-—-R) _ JyBi .
¢= 1 — RBbI WK  2mwe(l — RBOIWKy)’ (38)
S0 — ’Y?‘Klﬂ:l — .
W) = —pa RebIaks ¢ (v, B)ia (39)
and
1.(8,7) = F(y, Bu(B), (40)
where
i(g) = z'af exp j(8 — y)zdz = 10 (41)
0 B—

The response current within the radius r is thus

ilr, 2) = —2,0 f P, 6) 5o (T_jﬂ ) df (42)
— 2 Z ,:(ﬁ - ﬁn)r(% ﬁ) ekp (_Jﬁz)] ) (43)
B—v 8—Ba
The integrand
F('Y} B) _ (77‘)(.8 - ree)zKlr (44)

8—v (B— B — B.)! — B2BbI Ko
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has four poles:

Bra = Bo & Bp(BbIp Kw)'™* = Bo % B, (45)

and
63 =7, |64 = 0- (46)

The pole of K,(8r) at § = 0 contributes a residue —7,, which serves to
make 7,(r, z) zero at zero frequency. This is consistent with the formu-
lation of the problem, in which the de component of the entering charge
is neglected, and the beam itself manifests its de current only in the
plasma wave number. However, as the caleulation is only valid for slow-
wave propagating modes (8 > k), this residue will be disregarded.

As before, the resultant expression is simplified by neglecting the
small rate of change of the Bessel functions with 38, replacing 8 by 8.
where this error is small. With the time factor suppressed, the result is

?"‘(T’ z) — fo’Y"Kl(ﬁc?') 1:13'1 exp (_jﬁlz) _ B4 exp (_jﬁEZ)jI

T B (47)
+ dyyrKi(yr) I:('Y (; ‘if);‘;f:p_(;{'rz)} _

The assumption of small velocity spread in the entering charges,
centered about the mean velocity u of the beam, permits the definition
of a small quantity associated with each value of v:

v —u

— <1, (48)

(v — B)" = (=e8)" =0, (49)

such that only terms up to first order in e need be retained, to a good
approximation. The expression for total current response then reduces
to

1(r, 2) = fo(yr) K\ (8.r) exp (—jB.2) (cos Bz + je wﬂ sin B.,z) . (50)
q
The total current in the drifting beam, 4,(b), is related to the total
convection current, 7.(b), by the ratio d

i) R 1 1

2 = = = 5
W) R—1 1—p8bluKa BblpKy 61
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Thus,

i.(b, 2) = ioyb exp (—jBe2) (cos Bz + je £ sin qu) . (52)
Beblo wy
the argument of the Bessel function understood to be (3.b) here.

The beam responses due to electrons in different velocity ranges are
assumed to add in a mean square manner. In each velocity class, the
impressed current has only shot noise. Thus, using the subseript n for
each velocity class, the mean square impressed current in each class is

i, = 2el,Af, (53)

where ¢ is the electronic charge, Af the bandwidth about f = w/2m,
and 7, the direet current in the nth velocity class. The mean square
convection current response in the beam, due to i, , is

‘ i 2 | — 28],1Af
c n [0b2

(cos’ B,z + €.’ sin’ B,2), (54)

where e, is associated with », as in (48) and, approximately,

9 ~~ a2 2

’Ynz = 5 = Iﬁ‘ﬂ . (55)
The total mean square convection current is then

| .2| _ 2(’-[0A

Lo}

f (cos’ B,z + € sin® B,2), (56)

where [ is the total direct current in the injected filament, and

~ ; Le. 1

5 I, E (57)
- _— = — W, — )7,
¢ Iy u? ; I ( Y
assuming that
o= W= f") ~ - u) , (58)
(va)? u?
where u is the average velocity, given by
1
w == Ian,. (59)
I =

The expression for | 4. | in the finite beam is the same as that pre-
viously obtained in the one-dimensional analysis," except for the pres-
ence of B, in place of 8, within the brackets, and the term 74’ in the
denominator. Thus the maximum value of | .| is less than the total
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impressed shot-noise current by the factor 1/I4°, which is smaller, the
larger the beam diameter.

IV. NOISE-CURRENT MODULATION OVER ENTIRE BEAM AREA

The beam of the previous section is now supposed to be uniformly
modulated by impressed noise current over its entire area, subject to
all of the assumptions and conditions stipulated earlier. Since the space-
charge mode of interest has axial symmetry, the contribution to the
total induced current by any entering charge filament is independent
of its angular position. The elementary areas of excitation can be taken
to be thin rings (r to r 4+ &), for which the transfer function relating
the induced to the exciting eurrent is the same for noise-current modula-
tion in each velocity class as for coherent rings of injected charge, of
the same velocity.

The rms charge in a ring of current with velocity ¢ is related to the
rms current in the nth velocity class by

dy, = %, (60)
Ll
where
di, = (di,2)"" = [(J.27r6r)(2eA0)]", (61)

J, being the portion of the uniform current density with this veloecity.
As in the previous section, the total ring of charge at the input plane
is related to this current element by

dga v din
1— R wl—R)

dq: = (62)

and
di, = | di. | exp (—jyz), (63)
where, as before, vy = w/o.
To evaluate the transfer funetion giving the current within some
radius @, outside of the beam (radius b), the cross section is divided
into three regions, separated by the rings of charge at radii r and b:

E:l = ;1.[0,1 (0 = r é T—)x (64)
E. = Bly + CKy (ry =9 2 b)), (65)
]—'-‘1:3 = I)I\vﬂr’ (J“’ ; b+). (66)

The first expression holds inside of the injected charge ring; the second
hetween that radius, », and the beam boundary, b; and the last in free
gpace outside of the beam.
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The boundary equations at r and b, respectively, are:

Al = Bl + CK,,, (67)
AL, =19 _ pr ¢k, (68)
2mre
Bly + CKy = DKa, (69)
(1 — R)[Bly — CKy) = DKy, (70)

The total current within radius a, due to the injected charge ring at

r, is
. _ J2mawe 8E.; _jQwawE
di(a) = 2 ar 3 DK,,, (71)
where
18r1 o, d
D= JBr 213 q - -
Qrer |:1 + (1 — R) BbIDbKlb:I

Thus, we obtain the transfer function F(y, 8) relating the transform
of the total induced current di,(8, @) to that of the injected current
ring di.(83, r):

) = vaK.Io.(8 — ﬁc)ﬂ di,

B —B)B —B) F(y, 8) di.(8, r), (73)

dit(lﬂ! a

where
Bz = B. + .Bp(IBbIIBKDTJ)HE = f. £+ B, . (74)

The inverse transform of di,(3, a), describing the total current in the
propagating wave, is evaluated as before with the approximations

yE=B=B. (75)
in terms that are not sensitive to changes in 8:
dv,':(z, Ol) — l d@n | f F(Y: 3) exp (_JBZ) dﬂ , (76)
o B —
n 6 - Y B=B,

= | diy | (B.0) Krolor exp (—JB.2) [cos Baz + je £ gin ﬁgz:| . (78)
Wq

Following the same summation procedure as in the case of the single
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injected noise filament, the total mean square current due to charge
rings at » in all of the velocity classes is

| dii(z,a) | = (2eJoAf) (B.a) K\ Lo 2nrér
n BRI (79)
: I:cos” Bez + €& (—) sin” {302} )
Wq

Jo=2J. (80)

where

is the total direct current density. The square of the total response
current is found by integrating this quantity over the beam radius:

| 1‘:2(3, a) ] = (Q(JIIIAf)(ﬂea'[(la)Q([Ohg - I1b2)

2 [ @ : 2 (81)
. |:cos' Bez + € (4) sin” qujl )
We,

where I, is the total direct current.
The mean square noise conveetion current in the drifting beam is
consequently

i) | = (eloAf) ([““;[“’) |:cos_<2 Bz + & (E) sin® B,,z] (82)
ob” q

The noise convection current at the maxima and minima of this
standing wave are, respectively,

max — QEIOAf [1 - ('{E)":| ) (83)
Tn
;aﬂm“=QMMfP-—(ﬁ)]é(iy. (84)
Iub Wy

The product of maximum and minimum rms amplitudes of the noise
convection current can therefore be written in the form

i imnximin ‘H ( 1162 W 12

pmErRr =1 - =)= (&, 85

el Af Tw2) @y () (85)

where the subseript B stands for the Brillonin-flow beam. If all of the
electrons are accelerated by the same de voltage Vi, such that (eVo/kT.)
> 1, where T. is the cathode temperature,

e = 3(kT./eV), (86)

[

and

| imnximin ‘.H' Ilbﬂ w kq'c -
maxbmin (5 _ (g 2w ) @ Ble
QBIQAJ. I0b2 qu eI'[, (8")
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By comparison, the result of the same analysis applied to the one-
dimensional beam," which is identieal with that obtained by the Rack-
Llewellyn-Peterson method,” is

| Lmax?min IT _ w ,l'Tc (88)

2eloAf 2w, eV’
the subseript T' standing for the “thin” beam; or
N P (89
‘ Lmin?max I’I‘ ][)bl
if the two types of beam are compared on the basis of the same I,
Vo, T and w/w, . This ratio is less than unity for finite gb.

Although the “‘noisiness” | Zmax Zmin | 0f 2 thin beam is a measure of
the least attainable noise figure of any amplifier using that beam,"" '™
117 it does not follow from this result that the Brillouin-flow beam is
necessarily less noisy than a thin beam with the same direct current
and voltage. For instance, in a thin beam the shot-noise current is
2efyAf and all of Iy is effective in interaction with the longitudinal rr
field of an amplifier circuit. In the Brillouin-flow beam, however, the
rr field has both longitudinal and transverse components, and varies
in intensity over the beam cross section. The effective part of the total
beam current, therefore, may be less than 7 .

In single-velocity thin-beam theory, the kinetie power P, accounts
for virtually all of the power transported by the space-charge waves,
and may be defined by

Re(Py) = 1K (i* — i), (90)

where i, and %, are the convection currents in the “fast’” and “slow”
traveling waves, respectively, and
w, ’fo
K=2=2_—. (91)
w Iy
In terms of K the noise-current expression for the thin beam may be
rewritten as

1)3 = 31\’ [ im:\ximin I = 'r“'TrAf' (92)

This noise quantity has the dimensions of power; we may call it noisi-
ness. It is invariant in all beam transformations not involving loss of
rrF power." The minimum attainable noise figure Fy of any amplifier
depending on RF interaction between a cireuit and the slow space-charge
wave has been shown to be' **
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Fp=1+ PJTAf) =1+ T./T, (93)

where T is the ambient temperature. This summary of thin-beam
theory applies to a thin hollow heam as well as a filamentary beam, as
in both such beams the rr field acts equally on all of the direct current
j[] .

From this it follows that the minimum noise figure Iz of any ampli-
fier using the ideal Brillouin beam we have discussed can be evaluated
by finding the noise kinetic power of an equivalent thin beam. Both
beams will be equivalent with respeet to interaction with any external
rF circuit if both produce the same fields (or wave admittances) in
free space just outside of the thick beam, at r = b.

Just outside of the Brillouin beam, with eurrent /, and voltage 1,
the TM wave admittance looking into the beam is’

. Hy  jwe w,’ :|Iw
(et At RN & Bt U 9
. 8 |: (w — Bu)*] I (64)

The portion Y4 of 17 due to displacement current 4, in the volume oe-
cupied by the beam is given by the same expression, with w,” = 0:

- '?.(1 wa Ilé
Vo= (2] =12 93
¢ (2wbE:)r=b 8 Tu (95)

The remainder of the total admittance 1s due to the convection current
7. in the beam:

. be Jwe w,’ Iy .
Vo= (b} = 99 _-u 0
(zwa";)r:b f.‘g (m — ,(31(-)2 Inb ( h)

The equivalent beam is chosen to be a thin hollow beam, of the same
radius b as the Brillouin beam, with current 7, not yet specified, and
the same voltage 17,. We can take the ac convection current of the
thin beam as equal to the total conveetion current of the Brillouin flow
beam, because it ecan be shown that the total convection current of the
Brillouin beam is equal to the surface current to within a small frac-
tion w,/w.

The relation between total convection current 7. and longitudinal
field %, in this hollow beam is

Le _ B [ .
(E)"l‘ B (B — By (2170) ) (”l)

Its eleetronic admittance in gpace just outside of this beam is
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. _(H\ _ 3B o
Yo = (E:)rzb ~ 27b(8. — B (QVO) ' (%)

Near 8.4 = w, the admittance YV, due to displacement current in the
space inside of this eylinder is the same as for the Brillouin-flow beam:

Vo="——. (99)

The two beams will then be equivalent if their electronic admittances
are the same at r = b:

__jﬂ'__(i“)=_ji£"’—ﬂzﬂ’ 100
27b(B. — B)2\2V B (w— pu)2ly’ (100)
OV Bu  In
’Lu 21!‘1)&&)1,2 I]b (101)

As this expression changes relatively slowly with 8b, the admittances
of the thin hollow beam and of the Brillouin beam vary in essentially
the same way with 3. This approximation, therefore, is fairly good over
a small range of 8 about w/u.

The noisiness of the equivalent hollow beam is

Ps = %I< l imuximin | ] (92}
where
. 20, Ve w, Bu g
K = %o _ @ Loy
* w G o 2rbewy® {1y (102)
and
. . - Ili_‘, qu(RT Af) .
| irlmxtuun l - (1 Igb) WT"‘ ] (10-‘})

as found above for the thick beam. Since the direct current density and
longitudinal velocity of this beam are constant over its cross section,

Iﬂ e Iﬂ ’ll'bg 9
il Sl R P 104
2V, mu? w PE (104)
With these substitutions, the expression for noisiness P, in the Brillouin-
flow beam reduces to

P, = (I} — I} (Olﬁjbl}n)kT AS. (105)

Another way to state this result is to express the minimum attainable
noise figure Iy of the Brillouin-flow beam in terms of that of the thin
beam (whose noisiness is k7'.Af):

Fo—1 2 af gb
Lo I“)(zwflbmb)‘ (106)
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This ratio, plotted in IFig. 1, varies rather slowly from unity at gb = 0,
to one-half at 8b — «. With Fr = 4, corresponding to about 6 db, the
predicted value'® for a univelocity thin beam, the least noise figure of
the infinitely broad beam, for example, would be 4 db.

We should, of course, recall that this result applies for the unusual
but not unphysical case of a heam with no transverse velocities.

Haus™ has demonstrated formally that an amplifier with a thick
beam in confined flow cannot have a lower noise figure than one with
a thin beam, when the input conditions are full shot-noise current and
the Rack equivalent velocity fluctuations. His proof depends on ex-
pansion of the excitation in terms of a complete orthogonal set of fune-
tions at the input plane. In the absence of mode coupling in the accel-
eration region, each mode can be treated as though it were along a
single thin beam, independent of the other modes. The opposite point
of view has been advanced by Beam and Bloom' and by Paschke.”
They have argued, essentially, that a lower noise figure can be obtained
with a thicker beam (in confined flow), because the field of the rF circuit
couples less effectively to the beam interior than to its surface, whereas

1.00

0.95 \

0.90|——

0.70 — —— AN —t ]
0.65 . \\ S
0.60 |— \‘;_
0.55 |
0 05 10 1.5 =20 =25 30 3.5 40 45
Ab
Fig. 1. — The ratio of the noisiness P, of an idealized Brillouin-flow beam to

that of an equivalent thin hollow beam in confined flow, as a function of the
produet of propagation constant g and beam radius b. The ordinates also represent
the ratio (Fg — 1)/(Fp — 1), where Fy and Fp are the minimum noise figures
attainable with the two types of electron beam, respectively, when they are
abruptly accelerated from temperature-limited cathodes [see (106)].
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the noise excitation is uniform over the entire cross section. This argu-
ment, however, assumes that the circuit field in the presence of the
beam is the same as in its absence—an assumption open to question.

In connection with the fact that we have found a noisiness less than
that preseribed by Haus, we ean only note that, for the beam with
zero magnetic field and for the Brillouin flow beam, in whose interior
the ac space-charge density is zero, the set of propagating space-charge
modes is incomplete. (There are no slow space-charge modes with radial
periodicity.) It may be that the axial-symmetric mode fails to propagate
all of the axial-symmetrie noise excitation and the higher-order modes
fail to carry all of the excitation with angular periodicity. Recent cal-
culations by Bobroff and Haus™ point to the same conclusions—that
the space-charge wave modes in such beams do not form a complete
set, and therefore that an arbitrary initial exeitation cannot be ex-
panded in terms of these modes.

The noisiness of beams produced by shielded guns is actually much
greater than that caleulated for the idealized beam, because of the
transverse thermal electron velocities near the cathode, neglected in
the caleulation. Their principal effect, as Beam has shown,” is to in-
creage the velocity fluctuations near the potential minimum due to
“mixing” of electrons from different parts of the cathode. The increase
in noisiness due to this effect probably outweighs any possible decrease
due to increase in beam diameter. However, the noise reduction mech-
anism described by the ecalculations may perhaps play a role in low-
noise beams of a speeial type.

Noise figures considerably less than the 6-db minimum for an abruptly
accelerated thin beam have been observed by a number of workers.
Using a hollow confined-flow heam in a backward-wave amplifier,
Currie and Forster® have measured a noise figure of less than 4 db.
More recently, St. John and Caulton’ have attained a noise figure of
4.5 db with a fairly conventional gun and, by using a solid-circular gun
gimilar in eross section to that of Currie and I'orster’s annular gun,
they attained a 3.5-db noise figure at microwave frequencies. Noise
reduction due to a gradual acceleration allowing drifting” has been put
forward as a plausible explanation of such low noise figures.

It should be noted, however, that in both instances the beams were
found to have current density profiles sharply peaked at the surface,
s0 as to resemble to some degree the case of Brillouin flow, in which the
ac current is at the surface of the beam. Their low noisiness, therefore,
might, at least in part, have been due to the noise-reduction mechanism
deseribed by the caleulations of this paper.
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V. SPACE-CHARGE WAVES INDEPENDENT OF BOUNDARY CONDITIONS

In analyses of slow-wave propagation along electron beams produced
by magnetically shielded guns,”’® two pairs of space-charge waves
are found. In one of these, the field distributions and propagation con-
stants depend in the usual way on the transverse boundary conditions.
The waves of the second pair, however, are not accompanied by any
field outside of the beam; they have never been detected experimentally
and they are not found when magnetic flux, however slight, threads
the cathode.” * These very singular waves appear to have first been
described in 1946 by Feenberg and Feldman.*

For simplicity, the properties of such waves will be examined in the
case of axial-symmetrie fields in a Brillouin-flow beam.’ At the surface
of this beam, the boundary conditions are (i) that E. be continuous,
and (ii) that

[(1 = RE)™™ = [E]™, (107)

where R = w,’/w,” as defined in (11). For these waves, R = 1. It fol-
lows that the fields are zero outside of the beam, and F, is zero at the
common boundary. The waves, therefore, cannot be excited by fields
outside of the beam.

Within the beam, if excited somehow, they would propagate with
arbitrary radial field distribution and the longitudinal propagation
constants

B2 = B. £ By, (108)
which are characteristic of waves with purely longitudinal fields. (In
ordinary space-charge waves, the plasma oscillation frequency is re-
duced, because of transverse fields coupling the current filaments to one
another and to other currents.) However, if F, were zero everywhere
inside of the beam, E. would also be zero, as it is zero at the boundary.
This leads one to suspect that these waves do not really exist at all.

It was shown that, when a Brillouin-flow beam is current-modulated,
the total charge density p, at any point in the excitation plane is related
to the injected charge density p; , and to that induced in the smoothed-
out beam, p, by the equations

pr=p+ m = edivE, (28)
p = Rediv E. (29)

When R = 1, therefore, the initial conditions are p; = p for all values
of the injected charge gy . This means that the £ = 1 modes cannot be
excited by charge modulation or, since the charge-injection velocity is
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arbitrary, by either current or velocity modulation within the beam. As,
in addition, they cannot be excited by external voltage modulation, the

R = 1 modes are physically nonexistent.
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