A Method of Computing Bivariate
Normal Probabilities

With an Application to Handling Errors in
Testing and Measuring

By D. B. OWEN* and J. M. WIESEN*
(Manuseript received August 20, 1958)

Charts and formulas are presented from which bivariale normal proba-
bilities may be computed. Formulas involving the bivariate normal are given
for the solution of a problem of handling errors in testing and measuring.
These formulas include, in addition to previously published cases, two new
cases. In one, the product is not necessarily centered relative to two-sided
specification limits; in the other, one-sided specification limils are con-
sidered.

I. INTRODUCTION

Many manufactured products are 100 per cent tested with the idea of
insuring that each unit of product meets the performance specifications.
The general procedure is to set the test specification limits, which are the
limits used for product unit acceptance, at or arbitrarily near the per-
formance specification limits. These are established by engineering re-
quirements and require a test-set accuracy and precision of a specified
amount with respect to the performance specification limits or some
nominal value. Eagle! and many others have studied the problem of
locating test specification limits with respect to performance specifica-
tion limits under various conditions of test-set precision when testing
itself is subjeet to random error. He pointed out that, when random errors
of testing exist, two types of errors or mistakes can oceur which should
be taken into account in setting test specification limits. The first error,
called consumer’s loss (CL), is defined as the probability that noncon-
forming product units will be accepted. The second error, called pro-
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ducer’s loss (PL),* is defined as the probability that conforming product
units will be rejected.

The problem of locating test specification limits with respect to per-
formance specification limits may be considered heuristically as in Fig.
1, where A and p are performance specification limits, and B and ¢ are
test specification limits. Consider a product unit which just fails to meet
the lower performance specification limit and therefore is nonconforming
and should not be accepted. The chance that a produet unit of this value
will be accepted by the test set is shown by the shaded area under the
test-set-error distribution curve to the right of B, the lower test specifi-
cation limit. This then is a part of the consumer’s loss (CL), and the sum-
mation of similar considerations for all product units outside the per-
formance specification limits constitutes the CL. Consider now a product
unit with value at ¢, well within the performance specification limits,
which should be accepted. The shaded area under the test-set-error dis-
tribution curve to the right of ¢, the upper test specification limit, shows
that there is a 50 per cent chance of the test set rejecting a product unit
of this value, and thus this is a part of the producer’s loss (PL). The sum-
mation of similar considerations for all produet units inside the per-
formance specification limits constitutes PL. Different settings of the
test specification limits, B and ¢, with respect to the performance speci-
fication limits, A and b, and/or different spreads (standard deviations)
of the product and test-set distributions would lead to different pro-
ducer’s and consumer’s losses.
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Fig. 1 — Diagram showing effect of test-set errors on test acceptance limits.

* Consumer’s loss and producer’s loss are called consumer’s risk and producer’s
risk by Grubbs and Coon? and others. The terminology used here is an effort to
avoid confusion with present standard statistical quality control terminology.
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Eagle presented graphs of PL and CL which assume that the product
distribution and test-set-error distribution are both normal (Gaussian)
and also that the mean of the produet distribution is midway between
the performance specification limits and also midway between the test
specification limits. Thus, these two sets of limits are symmetrical with
respect to the mean of the product distribution. He also presented for-
mulas based on Pearson’s tables? for computing PL and CL. Pearson’s
tables are now out of print and are not readily available to many who
may wish to make these caleulations. However, the National Bureau of
Standards? plans to reissue Pearson’s tables with some extensions.

Hayes’ and Wiesen and Clark® have presented additional graphs of
PL and CL for the same conditions as those considered by Eagle. In the
present paper, the solution is given in formula form without the product
distribution centering requirement. Also, one-sided test and performance
specification limits are considered.

Grubbs and Coon? also considered the problem of setting the perform-
ance and test specification limits for a centered product distribution.
They found the locations which minimized the sum CL plus PL, and also
the loeations which minimized total cost when the consumer’s loss was
subject to a given cost and the producer’s loss subject to another cost.
In this paper, formulas are given for the same cost assumptions, but for
hoth one-sided and not necessarily centered two-sided performance and
test specification limits.

Tingey and Merrill’ considered the problem of minimizing the total
cost when the cost to the consumer of accepting nonconforming product
units varied with the degree of nonconformance. They presented a table
of constants for constructing test specification limits under these circum-
stances. Formulas (20) and (21) are given below for computing the total
cost under these assumptions.

Eagle! and Owen®? showed that the bivariate normal distribution un-
derlies the above problems. Consequently, a method for computing bi-
variate normal probabilities is first considered here. Although this
method is discussed relative to the present problem, the method is per-
fectly general and can be used wherever bivariate normal probabilities
are required.

II. COMPUTATION OF BIVARIATE NORMAL PROBABILITIES FROM THE CHARTS

Let

V(h 1 e 1 (2" — 22y + o
] (h,f\;p):m A exp| — 3 - g dz dy. (1)

M(h, k; p) is the probability that a normal random variable X with
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mean zero and variance one is greater than h, and another normal ran-
dom variable ¥ with mean zero and variance one is greater than k, where
p is the correlation between X and ¥; that is, Pr(X > h, ¥ > k) =
M(h, k; p).

It is convenient also to have a functional notation for the univariate
normal integral. To this end, define

1 h _3;2
G(h) = vor f_w exp (T)dx
Volumes of the bivariate normal over other rectangular regions may be

expressed in terms of the M- and G-functions. In terms of standardized
variables (zero means and unit variances),

Pr(X < h, Y <k) = M(—h, —F; p)

= Gh) + Gk) + M(h, k; p) — 1, @
Pr(X <h ¥ > k) = M(=h, k; —p) = G(—k) — M(h, k; p) ®
= Gh) — M(—h, —k; p)
Pr(X > h Y <k)=Mh, —k; —p) = G(—h) — M(h, k; p) @
= G(k) — M(—h, —F; p).
Ref. 8, which is an elaboration of Ref. 9, shows that
M(h,k;p) = M (h, 0; 3,%) .

__(pk — h)(sgn k) ) _ {0
+ M ("’ 0; VhE — 2phk + k2 1’

where the upper choice is made if ki > Oorif hk = Obut b 4+ £k = 0,
and the lower choice is made otherwise; and sgn h = +1if A = 0, and
sgn h = —1if h < 0. Note that sgn h as used in (5) is a multiplicative
factor; i.e., it affects the sign of the quantity it operates on but not the
absolute value of the quantity.

Equation (5) means that bivariate normal probabilities with any
limits can be computed from a table of the bivariate normal probabilities
where one of the limits is zero. Figs. 2 through 5 are graphs of these
probabilities, i.e., of M (h, 0; p). Figs. 4 and 5 can be obtained by rotat-
ing Figs. 2 and 3, respectively, 180 degrees and replacing & by —h and
p by —p. However, to avoid confusion both figures are included. The fol-
lowing examples illustrate the use of these graphs.
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Example 1: The following probabilities may be read from Figs. 2
through 5:

M(1, 0;0.5) = 0.127,
M(1,0; —0.5) = 0.031,
M(~—1,0;0.5) = 0.469,

M(—1,0; —0.5) = 0.373.
Ezxample 2: Find M (1.96, 1; 0.56).
Solution:

VT = 2phk + 2
M(1.96, 1; 0.56)

Il

\V/2.6464 = 1.6268.

M (1.96, 0; 0.060) + M(1,0; —0.861)
= 0.014 + 0.002

= 0.016.

The value computed by more elaborate methods®* is 0.016.
Example 3: Find M (04, 0.1; —0.5).
Solution:

VR = 2phk + I = /2L

M(0.4,0.1; —0.5) = M(0.4, 0; —0.655) 4+ M(0.1,0; —0.982)
= 0.069 + 0.015
= 0.084.

The value read from Pearson’s tables?® is 0.0836.
Example 4: Find M(1, —2;0.7).
Solulion:

VE = 2phk + k2 = 2.793.

M(1, —2;0.7) = M(1,0;0.967) + M(—2, 0;0.859) — 1
= 0.159 + 0.500 — 0.500
= 0.159.

The value computed from Pearson’s tables® is 0.1587.
Example 5: I'ind M (1, —2; —0.5).
Solution:

$
L]
|
]
°
=
=~
+
=
w
Il

1.732.

M(1, 0: 0.866) + M(—2,0;0) — 3
= 0.157 4 0.489 — 0.500
= 0.146.

The value computed from Pearson’s tables® is 0.1454.

M(1, —2; —0.5)
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III. ERRORS IN TESTING AND MEASURING

Before giving the formulas for the problem of errors in testing and
measuring, let the following quantities be defined.

Let P = a random variable (normally distributed with mean g and
standard deviation ,) which describes the true product values.

Let T = a random error of measurement (test-set error) normally
distributed with mean A and standard deviation o, .

The term A is called the bias of the measuring instrument. In Refs.
1, 2, 5 and 6, A was taken to be equal to zero. This is not necessary, as
only a slight change in the definition of the test specification limits
takes care of this. (See the definition of b; and b, below.) Of course, in
most cases where A is known, the test instrument would be recalibrated
and the bias eliminated. There may be situations, however, where this
would not be practical and it really is no problem to carry A as an extra
parameter. Also, in assessing the problem of an unknown bias, it is con-
venient to have the parameter A available (see Example 8 below).

Let S = the observed measurement = P + T, so that, if T and P
are taken to be independent, S is normal with mean g 4+ A and variance
el = o2 + o2 Also, P and 8 are correlated, and it will be shown that
the correlation is equal to a,/a; .

The expectation or mean of a random variable X is indicated sym-
bolically by E(X). The correlation between two variables X and V is
defined as

E[(X — p)(Y — py)]

Tx0y

For P and S, then, the numerator of the correlation is
El(P — p) (S —p —N)]
=E(P-p@+T—p—N)]
= E[P? + PT — Pu — P\ — pP — uT + p® 4+ pAl

Now, E(X?) = ox* + u?; E(constant) = constant; E(XY) = E(X)E(Y),
if X and Y are independent; E(X + ¥) = E(X) + E(Y) and E(X) = px .
The correlation between P and S is then
of-i-#?-l-#l—ng—,uk—#z—#?\-l-#z-l-#?\:@_

TpTs Oy

Pps —

Let &, and k; be defined so that the performance specification limits
are at u + ko, and u — ko, . For a lower performance specification
limit only, take &, = e ; and for an upper performance specification
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limit only, take ks = . In Refs. 1, 2, 5 and 6, the k’s were taken to be
equal which meant the produet distribution was assumed to be centered
with respect to the performance specification limits.

Let b, and b be defined so that, when the test specification limits are
placed at u + A + ko, — byorand at p + A — ks, + bao,, either a
desired consumer’s loss or a desired producer’s loss is not exceeded, or
some combination of these losses is not exceeded.

In this paper, g, A, 0, and ¢, are assumed to be known. When any of
them are unknown, experiments must be run to establish their values.
In this connection, the reader may wish to read a paper by Grubbs,"
which gives methods for estimating o, and ¢, when the variance of each
observation is a linear funetion of o,? and o2 Fig. 6 shows diagram-
matically the relationship between u, \, ¢, a¢, by, ba, kyand ks .

{L = MEAN OF PRODUCT DISTRIBUTION
0p = STANDARD DEVIATION OF PRODUCT DISTRIBUTION
0}, = STANDARD DEVIATION OF TEST-SET ERROR DISTRIBUTION
A = TEST-SET BIAS
j«--—— PERFORMANCE SPECIFICATION ——=—= >
———kzo'p———a-i-s ——————— Ky op ===~ >
r-(————TEST SPECIFICATION—-ff)l

|
‘ /"\+k20'p'bza¥, !

—————

|
ll PRODUCT DISTRIBUTION
|

TEST-SET ERROCR
DISTRIBUTION
WHEN MEASURING

/_L+|K‘ Op-Dy oy

I
i
; M
»u-'kza'p—” J ‘l‘

/
L+A- K, Optb, 0F MUK Op-b, oy ,’!

MLt A+K Op-b oy -7

“-,LL+K|0'p

Fig. 6 — Diagram showing various constants defined for errors in the testing-
and-measuring problem.
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From the definition of consumer’s loss (CL) it is clear that
CL=PrlP>p+ ko, or P <pu— koo, ©
and p 4 A — (koo — booy) <8 < p 4+ A + (krop, — bioy)].
Since the correlation between P and S is given by

o = p = 0p/0s = 0/ Vo + 0l

and P and S are assumed to be bivariate normal, the above probability
can be expressed in terms of the M-funetion. The first step, as with the
univariate normal, is to standardize the variables, i.e., subtract the mean
and divide by the standard deviation. In order to save space and give
compact formulas, additional notation is introduced. Let

klﬂ'p i blo'g kza‘,, —_ bud’t

= \/Upz'f‘ﬂtﬂ and &= V0'p2+ff¢2.

Then,
CL=Pr(P_‘u>k1 o DTy,
op gy
and —Q2<S_:_)\<Q1)
=Pr(P_'u>k1 and S‘”_">—qg)
0p T3

Op Ty

+P1'(PH“<—k2 and S———-——“_h>—q2)

Tp Og
_PF(P‘“<—;~,2 and S_*"_#*'_">ql)_
0'p [

Now (2), (3) and (5) are used to reduce CL to its most easily used form:
CL = M(ky, —q25p) — M(k1, q1 5 0)
— M(ks, g25p) + M(k2, —q1;0).
The producer’s loss (PL) is given by
PL = Pr[p — kwp, < P < p + ko, and
S<p4+Xx— (kwp —bas)) or S>pu+ N+ (ko — bioy).

)

(8)
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If the same procedure as that with consumer’s loss is followed, it can be
shown that (8) reduces to

PL = CL + G(k) + G(ks) — G(a) — G(gqz). 9)

For one-sided specification limits the above formulas reduce to:
For an upper limit only:

CL=Pr(P>pu+ ko, and S < p+ X+ kg, — bio);
hence
CL = G(=k) — Mk, q1 5 p) (10)
and
PL =Pr(P <pu+ ko, and S > p+ N+ kop — bioy);
and hence,
PL = G(—q) — M(ky, a1 ; p). (11)
For a lower limit only:
CL=Pr(P <p— koo, and S > p+ N — koop + bovy);
hence
CL = G(—ko) — M(k2, q2; p) (12)
and
PL = Pr(P > p — koo, and S < p + N — koop + baoy);
hence
PL = G(—¢q2) — M(kz, g2 ; p). (13)
The following examples illustrate the use of (7) through (13).
Example 6: Suppose the performance specification limits are at u + 20,
and at g — 30, . Suppose also that the test specification limits have been
set at u + N + 20, and at p + N — 30, + o, If 0,/0, = 0.5, deter-
mine the producer’s and consumer’s losses of this procedure. Since the
bias is known in this example and has been allowed for in setting the
test specification limits, A does not appear in the caleulations of PL and

CL. (See example 8 for the case where A is not known.)
Solution: Here, ky = 2, ks = 3,b, = 0, and bs = 1. Then,

_k[d'p— blﬂ'g_ 2 -0 — 1789
"= Vg +o2 V1257 0T
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koo, — bioe 3 — 05

G2 = VUPQ + g‘t2 = m = 2.236

and

Op

1
p = WE = 71—?—5 = (0.894.
From (7),
CL = M(2, —2.236; 0.894) — M (2, 1.789; 0.894)
—M(3, 2.236; 0.894) + M (3, —1.789; 0.894).

Application of (5) results in

CL = M(2,0;0976) + M(—2.236, 0; 0.970) — 0.5 — M(2,0;0)
— M(1.789,0; —0.447) — M (3,0; 0.316) — M(2.236,0; — 0.707)
+ M(3, 0; 0.958) + M (—1.789, 0; 0.985) — 0.5
= 0.023 + 0.500 — 0.500 — 0.017 — 0.004 — 0.000
— 0.000 + 0.000 + 0.500 — 0.500
= 0.008.
From (7),
PL = 0.008 + G(2) 4+ G(3) — G(L.789) — G(2.236)

= 0.008 4 0.977 4 0.999 — 0.963 — 0.987 = 0.034.

Example 7: The circumference of a product has a mean value of 28.5
inehes with a standard deviation of 0.5 inch. Only circumferences less
than 29 inches are acceptable. The device for measuring the ecircum-
ference is known to be biased so that on the average it measures 0.1
inch too small with a standard deviation of 0.2 inch. If the upper test
specification limit is set at 29 inches, and there is no lower limit, what
are the producer’s and consumer’s losses?

Solution: Here, u = 28.5, ¢, = 0.5, x = —0.1l and ¢, = 0.2.

Hence, for the performance specification limits,

u + ke, = 29,
or

28.5 + £:(0.5) = 29.
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Solving this equation results in &, = 1. For the test specification limits,

M + A + f-‘lo',, - bla; = 29,

or
28.5 — 0.1 4+ 1(0.5) — b,(0.2) = 29.
Solving this equation results in b, = —0.5. Hence
]\'10'1, —_ b;ﬂf 0.5 ‘I’ 0-01
= —— = — = 1.1
" Veptes oz M
and

. ap . 0.5
P T VoiF o2 V029

= 0.928.

I'rom (10),
CL = G(—1) — M(1, 1.114; 0.928)
= 0.159 — M(1,0; — 0.447) — M(1.114, 0; 0.083)
= 0.159 — 0.036 — 0.073 = 0.050.
IFrom (11),
PL = G(—1.114) — M (1, 1.114; 0.928) = 0.133 — 0.109 = 0.024.

Thus, for the measuring device considered here, the consumer’s loss is
0.050 and the producer’s loss is 0.024.

Example 8: If the bias A is assumed to be zero when it is actually posi-
tive, the effect is to accept more produets in the lower tail of the product
distribution and to reject more in the upper tail. The effect on CL and
PL is the same as if ko, had been decreased by A and k.o, increased by
M, i.e., as if both test specification limits had been decreased by the quan-
tity A.

As an example, the performance specification limits for a product are
at g + kyop, = 90 and g — koo, = 80. Also, p = 85,0, = 1 and o, = 2.
Then &, = ko = 2.5, and Table I of Grubbs and Coon? can be used to
find b; = b. so that the consumer and the producer accept equal losses.
The table gives by = b, = —0.5902 and results in a consumer’s loss and
producer’s loss each equal to 0.0061 or a total loss of 0.0122. Now suppose
that the tester is biased one unit high, i.e., A = 1. What effect does this
have on the producer’s loss and the consumer’s loss?
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Solution: The test limits were set at
u + by — by, = 90.5902
and
u — kooy + beoy = 79.4098,
whereas, if the bias had been taken into account, they should have been
set at
g+ A+ ke, — bioy = 91.5902
and
g4+ A — ko, + bao = 80.4098

to maintain the equality of PL and CL. To find the effect of this error,
it is only necessary to decrease ko, by A; i.e., redefine &, so that
ko, = 5 — A = 4 and hence take & = 2, and redefine k; so that
koo, = 5 4+ X = 6 and hence take ks = 3. Now the formulas for CL
and PL [(7) and (9)] are used with the following parameters:

]\'1 = 2,
by = —0.5002, by = —0.5902,

]Lff_w = 3,

oy = 2, o= 1.
CL = M(2, —2.947; 0.804) — M (2, 2.053; 0.894) — M (3, 2.947; 0.894)
+ M(3, —2.053; 0.894)
— M(2,0;0.982) + M(—2.947, 0;0.962) — 0.500 — M(2,0; —0.281)
— M(2.053,0; —0.180) — M(3,0; —0.193) — M (2.947,0; —0.267)
+ M(3,0; 0.962) + M(—2.053, 0; 0.982) — 0.500
0.023 + 0.500 — 0.500 — 0.006 — 0.007 — 0.000 — 0.000 + 0.001
+ 0.500 — 0.500

= 0.011.
PL = 0011 + G(2) + G(3) — G(2.053) — G(2.947)
— 0.011 + 0.977 + 0.999 — 0.980 — 0.998 = 0.009.

Hence, because of the bias in the test set, the consumer’s loss is increased
from 0.006 to 0.011, and the producer’s loss is inereased from 0.006 to
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0.009. If the same test specification limits are used over a period of time,
it would probably be worthwhile to compute the consumer’s loss and
producer’s loss for a whole range of biases. These could be plotted on a
graph showing the assumed bias on the abscissa-and the producer’s or
consumer’s loss on the ordinate.

IV. SPECIAL CRITERIA FOR DETERMINING SPECIFICATION LIMITS

Following Grubbs and Coon,? if the condition is that the producer and
consumer accept the same or equal losses in rejecting a conforming prod-
uet unit and in aceepting a nonconforming product unit, the solution is
obtained by setting CL. = PL in (9) for two-sided test and performance
specification limits, or setting CL. = PL in (10) and (11) or (12) and (13)
for one-sided test and performance specification limits. This results in
¢ = kyand g = ks or

— klﬂ'p - kl '\/U,F + 0'12 (14)

T

by

and

by = kagy — ks A/ a2 + 0'12. (15)

(]

Equations (14) and (15) may be solved for b; and b, , respectively; or,
if r is set equal to e/, , the value of b satisfying (14) and (15) may be
read from Table I (p.16) of Ref. 2. The values for consumer’s loss and
producer’s loss, however, will have to be calculated from (7), (9), (10),
(11), (12) and (13).

Another criterion discussed by Grubbs and Coon is to assume that the
sum of the consumer’s and producer’s losses is to be a minimum. Then
the b’s for two-sided test specification limits are obtained by solving the
equations

— ks — pqn — k4 e\ 1
G(\/I—P2)+G(\/1—p2)_§

and

G(— ky, — PQz)+G(— k2+.0§’2) =l
m V1 — p? 2"
Again following Grubbs and Coon, if k; = 1.5, k: = 1.5, ¢, = o¢and

the b’s are negative or small positive, then the first integral in each of
the above equations is nearly zero, so that approximate solutions to the
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above equations are ky = pg; and ks = pga, or

by o — Faoe (16)
Op
and
by o — P20t a7
Op

The b values can be read from Table II (p. 16) of Ref. 2, but the con-
sumer’s and producer’s losses have to be computed from the formulas
given in this paper. Equations (16) and (17) for the b’s are exact for one-
sided test specification limits.

Let C.; be the cost of accepting a noneconforming product unit, and
(', be the cost of rejecting a conforming produect unit. Then the values
for by and b, that minimize the total cost are those that satisfy the equa-

tions
—ky — PQ1) (_kl + PQ'l) Co
G|l—F/—— Gl—F7/— )= 2
(‘\/1—.02 TO\VI—p/) T tut o

=k — Pq'z) (—7\'2 + Pg’z) Cou
G\—F—F7——, Gl—F——— ) = F .
(‘\/1 — p? + V1 — p Ca + Cp

Again, if ky = 1.5, k» = 1.5, 0, = o, and the b’s are negative or small

and

positive, then the first integral in each of the above equations is nearly
zero and the b's may be obtained approximately from the equations

'—'klﬂ'g - bldp) C I
G s d 18
( Vot + o Co + Cui (18)
and
—kzd‘g —_ bgo'p) C !
G\—F/—————— | = £ . 19
(Ve =ata .

In this case the b’s may be obtained approximately (for two-sided test
specification limits) by setting the limit of the integral to that devi-
ate of a univariate normal which corresponds to the fraction

Cu
Ca+ Cp’

Tingey and Merrill” also consider this problem, and they allow the cost
of accepting a nonconforming item to be different for the two tails of the
product distribution. They give a short table of values of by and b (their
Table IT) under these conditions. Note that the subseripts 1 and 2 must
be interchanged to enter their table with the formulas given here.
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For a one-sided test specification limit the b is obtained exactly by
(18) and (19). The corresponding producer’s and consumer’s losses may
then be caleulated from (10), (11), (12) and (13) given in this paper.

As mentioned in the introduetion, Tingey and Merrill” consider the
case where the producer’s loss is constant but the consumer’s loss varies
with the degree of nonconformance. They give a table of values of b,
and b, which will minimize the total cost under these conditions. Note
that they use the subseript 1 for the lower tail of the product distribu-
tion and 2 for the upper tail, while the reverse has been used here. Hence,
if the formulas in this paper are being used, interchange b; with b, and
Jy with ks when entering Tingey and Merrill’s table. They do not give
values for the total loss, but their formula for the total loss may be re-
duced to a computing form as follows:

Let C.," = cost to the consumer of accepting a nonconforming prod-
uet unit from the upper tail only of the product distribution. Then, if
the cost to the consumer varies with the degree of nonconformance, this
is defined mathematically to be

[) — u — hcr
Cczu = = "F Cu,
Gp
where (" is the unit cost associated with the aceeptance of nonconform-

ing product in the upper tail of the product distribution. Then, in the
notation used here, Tingey and Merrill’s formula can be reduced to

v ou

g,i = —IaM(ky, —q2;p) + kM (ky, s p)
l\ —_ pq’o
+\/) exp (— 2Q" (‘\/;—p')

—ky + pql) (20)

— P . 1. N
,\/gelp( 29’1)(!(\/1_ 2

1 b (1l ql-l-p-'u
T V2 NPT V=@

+\/—e*<p( f.l)G(f’/:”’A‘)

Hence, with the aid of Figs. 2, 3, 4 and 5 and a table of the univariate
normal distribution funetion and its derivative, it is possible to compute
C'..". A similar formula for the consumer’s cost for the lower tail of the
product distribution may be obtained by interchanging ky with £, and
interchanging ¢ with ¢ .

If the cost per product unit to the producer of rejecting conforming
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product is constant, the total cost to the producer may be found by mul-
tiplying the PL obtained from (9) [where the CL in (9) is computed from
(7)] by the per product unit cost. Then the total cost to both producer
and consumer is obtained by adding (a) the consumer’s cost for the up-
per tail of the product distribution, (b) the consumer’s cost for the
lower tail of the product distribution and (c) the producer’s cost. It is
this total cost which is minimized by the values of b; and b; found in
Tingey and Merrill’s Table 1.

Consider now the case where the producer’s cost of rejecting a con-
forming produet unit is proportional to the degree of nonconformance,
but only the upper tail of the product distribution is to be considered.
The consumer’s cost can be obtained by putting ¢, equal to infinity in
(20). The result is

%L = —kG(—k) + kM&, q;p)
_ _i: 1.2 .:ELj;ﬁﬂ) ¢
/2w exp (—3q)G ( Vi (21)

1 G — pky
—_— 172 =

As before, a similar formula holds if a lower tail only is considered and
may be obtained by replacing %, with k&, and g, with g, .
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