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A study is made of coding and decoding systems for a continuous channel
with an additive gaussian noise and subject to an average power limitation
al the transmitter. Upper and lower bounds are found for the error prob-
ability in decoding with optimal codes and decoding systems. These bounds
are close together for signaling rates near channel capacity and also for sig-
naling rates near zero, but diverge between. Curves exhibiting these bounds
are given.

I. INTRODUCTION

Consider a communication channel of the following type: Once each
second a real number may be chosen at the transmitting point. This
number is transmitted to the receiving point but is perturbed by an
additive gaussian noise, so that the ¢th real number, s;, is received as
si + x;. The a; are assumed independent gaussian random variables all
with the same variance N.

A code word of length n for such a channel is a sequence of n real
numbers (8, 83, +++, 8,). This may be thought of geometrically as a
point in n-dimensional Euclidean space. The effect of noise is then to
move this point to a nearby point according to a spherical gaussian
distribution.

A bloek code of length n with A words is a mapping of the integers 1,
2, -+, M into a set of M code words wy , wz, -+, wy (not necessarily
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all distinet). Thus, geometrically, a block code consists of a collection
of M (or less) points with associated integers. It may be thought of as
a way of transmitting an integer from 1 to M to the receiving point (by
sending the corresponding code word). A decoding system for such a code
is a partitioning of the n-dimensional space into M subsets correspond-
ing to the integers from 1 to M. This is a way of deciding, at the receiv-
ing point, on the transmitted integer. If the received signal is in subset
S;, the transmitted message is taken to be integer 7.

We shall assume throughout that all integers from 1 to M oceur as
messages with equal probability 1/37. There is, then, for a given code
and decoding system, a definite probability of error for transmitting a
message. This is given by

1 M
Pﬂ:HEP“,

where P,; is the probability, if code word w; is sent, that it will be de-
coded as an integer other than 4. P, is, of course, the total probability
under the gaussian distribution, centered on w; in the region comple-
mentary to S;.

An optimal decoding system for a code is one which minimizes the
probability of error for the code. Since the gaussian density is monotone
decreasing with distance, an optimal decoding system for a given code
is one which decodes any received signal as the integer corresponding
to the geometrically nearest code word. If there are several code words
at the same minimal distance, any of these may be used without affect-
ing the probability of error. A decoding system of this sort is called min:-
mum distance decoding or maximum likelihood decoding. It results in a
partitioning of the n-dimensional space into n-dimensional polyhedra,
or polytopes, around the different signal points, each polyhedron bounded
by a finite number (not more than M — 1) of (n — 1)-dimensional hy-
perplanes.

We are interested in the problem of finding good codes, that is, plac-
ing M points in such a way as to minimize the probability of error P, .
If there were no conditions on the code words, it is evident that the
probability of error could be made as small as desired for any M, n and
N by placing the code words at sufficiently widely separated points in
the n space. In normal applieations, however, there will be limitations
on the choice of code words that prevent this type of solution. An inter-
esting case that has been considered in the past is that of placing some
kind of average power limitation on the code words; the distance of the
points from the origin should not be too great. We may define three
different possible limitations of this sort:
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i. All code words are required to have exactly the same power P or the
same distance from the origin. Thus, we are required to choose for code
words points lying on the surface of a sphere of radius /nP.

ii. All code words have power P or less. Here all code words are re-
quired to lie interior to or on the surface of a sphere of radius v/nP.

iii. The average power of all code words is P or less. Here, individual
code words may have a greater squared distance than nP but the aver-
age of the set of squared distances cannot exceed nP.

These three cases lead to quite similar results, as we shall see. The
first condition is simpler and leads to somewhat sharper conclusions —
we shall first analyze this case and use these results for the other two
conditions. Therefore, until the contrary is stated, we assume all code words
to lic on the sphere of radius \/nP.

Our first problem is to estimate, as well as possible, the probability
of error P.(M, n, A/P/N) for the best code of length n containing M
words each of power P and perturbed by noise of variance N. This mini-
mal or optimal probability of error we denote by P, op (M, n,A/P/N). Tt
is elear that, for fixed M, n, P, ., will be a function only of the quotient
A = +4/P/N by change of scale in the geometrical picture. We shall ob-
tain upper and lower bounds on P, .. of several different types. Over an
important range of values these bounds are reasonably close together,
giving good estimates of P, .. . Some calculated values and curves are
given and the bounds are used to develop other bounds for the second
and third type conditions on the code words.

The geometrical approach we use is akin to that previously used hy
the author' but carried here to a numerical conclusion. The problem is
also close to that studied by Rice,” who obtained an estimate similar to
but not as sharp as one of our upper bounds. The work here is also
analogous to bounds given by Elias® for the binary symmetric and binary
erasure channels, and related to bounds for the general discrete memory-
less channel given by the author.*

In a general way, our bounds, both upper and lower, vary exponen-
tially with n for a fixed signaling rate, R, and fixed P/N. In fact, they
all ean be put [letting B = (1/n) log M, so that R is the transmitting
rate for the code] in the form

C—E(R)"-Ha(n) (1 )

3

where F(R) is a suitable function of R (and of P/N, which we think
of as a fixed parameter). [In (1), o(n) is a term of order less than n; as
n — o it becomes small relative to E(R)n.]

Thus, for large n, the logarithm of the bound increases linearly with
n or, more precisely, the ratio of this logarithm to n approaches a con-
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stant E(R). This quantity E(R) gives a crude measure of how rapidly
the probability of error approaches zero. We will call this type of quan-
tity a reliability. More precisely, we may define the reliability for a
channel as follows:

B(R) = lim sup — 7 10g P o on(R, ), (2)
where P, op (B, n) is the optimal probability of error for codes of rate I
and length n. We will find that our bounds determine E(R) ezactly over
an important range of rates, from a certain critical rate R, up to channel
capacity. Between zero and R, , E is not exactly determined by our
bounds, but lies within a not too wide range.

In connection with the reliability ¥, it may be noted that, in (1)
above, knowledge of E(R) and n does not closely determine the proba-
bility of error, even when n is large; the term o(n) can cause a large
and, in fact, increasing multiplier. On the other hand, given a desired
probability of error and E(R), the necessary value of the code length n
will be sharply determined when = is large; in fact, # will be asymptotic
to —(1/E) log P.. This inverse problem is perhaps the more natural
one in applications: given a required level of probability of error, how
long must the code be?

The type of channel we are studying here is, of course, closely related
to a band-limited channel (W cycles per second wide) perturbed by
white gaussian noise. In a sense, such a band-limited channel can be
thought of as having 2W coordinates per second, each independently
perturbed by a gaussian variable. However, such an identification must
be treated with care, since to control these degrees of freedom physically
and stay strictly within the bandwidth would require an infinite delay.

It is possible to stay very closely within a bandwidth W with a large
but finite delay 7', for example, by using (sin x)/x pulses with one tail
deleted T from the maximum point. This deletion causes a spill-over
outside the band of not more than the energy of the deleted part, an
amount less than 1/7 for the unit (sin @)/x case. By making T large,
we can approach the situation of staying within the allotted bandwidth
and also, for example, approach zero probability of error at signaling
rates close to channel capacity.

However, for the problems we are studying here, delay as related to
probability of error is of fundamental importance and, in applications
of our results to such band-limited channels, the additional delay in-
volved in staying closely within the allotted channel must be remem-
bered. This is the reason for defining the channel as we have above.
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II. SUMMARY

In this section we summarize briefly the main results obtained in the
paper, both for easy reference and for readers who may be interested
in the results without wishing to work through the detailed analysis. It
might be said that the algebra involved is in several places unusually

tedious.

We use the following notations:

P =

N
A=
n =
M =
R =

C:

Qo) =

0y =
01=

Qo) =

E.(0) =

Pa opt (ﬂ, Ra ‘:1-) =

signal power (each code word is on the surface of
a sphere of radius v/nP);

noise power (variance N in each dimension);
v/P/N = signal-to-noise “‘amplitude” ratio;
number of dimensions or block length of code;
number of code words;

(1/n) log M = signaling rate for a code (natural
units);

Llog (P 4+ N)/N = %log (A* + 1) = channel
capacity (per degree of freedom);

variable for half-angle of cones appearing in the
geometrical problem which follows;

solid angle in n space of a cone of half-angle 8, or
area of unit n sphere cut out by the cone;
cot™'4 = cone angle relating to channel capacity;
cone angle such that the solid angle 2(6,) of this
cone is (1/M)Q(x), [the solid angle of a sphere is
Q(w)]; thus, 6; is a cone angle related to the rate
R;

G(68) = L(4 cos § + /A2 cos? 6 + 4), a quan-
tity which appears often in the formulas;

the solution of 2 cos 8, — AG(8,) sin® 6, = 0 (this
critical angle is important in that the nature of
the bounds change according as 6; > 8. or §; < 6.);
Q(8, A, n) = probability of a point X in n space,
at distance A4/n from the origin, being moved
outside a cireular cone of half-angle # with vertex
at the origin O and axis OX (the perturbation is
assumed spherical gaussian with unit variance in
all dimensions);

A?/2 — LAG cos § — log (G sin 8), an exponent
appearing in our bounds;

Probability of error for the best code of length =,
signal-to-noise ratio A and rate R;
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®(X) = normal distribution with zero mean and unit vari-
ance,
The results of the paper will now be summarized. P, o, can be bounded
as follows:

" 0(6)
Q(8,)

[Here dQ(8) is negative, so the right additional term is positive.] These
bounds can be written in terms of rather complex integrals. To obtain
more insight into their behavior, we obtain, in the first place, asymptotic
expressions for these bounds when n is large and, in the second place,
cruder bounds which, however, are expressed in terms of elementary
funetions without integrals.

The asymptotic lower bound is (asymptotically correct as n — =)

Q(Hl) é P e opt é Q(Hl) - dQ(G) (3)

Q(6,) ~ = 1 il
! Vnr GA/1T + G2sin 6, (cos 6 — AG sin’ 6;) @)
[/}
B ci(/’:z) ¢ P (6, > 6y).

The asymptotic upper bound is

1) a(f,) o FLOD ( cos th — AG sin 6,
( dQ(a) \/ﬁ 1 2ceos 0, — AGsin? 6, )

This formula is valid for 8, < 6 < 8. . In this range the upper and lower
asymptotic bounds differ only by the factor in parentheses independent
of n. Thus, asymplotically, the probability of error is defermined by these
relalions to within a multiplying factor depending on the rate. For rates
near channel capacity (6 near 8) the factor is just a little over unity;
the bounds are close together. For lower rates near R, (corresponding
to 6,), the factor becomes large. For §, > 6, the upper bound asymptote
is

Q6,) — |

1

. 8 7 2 C—n[EL{Ec)—RJ ) (6)
cos 0, sin” 6.G(6.) /B (8)[1 + G(6)F

In addition to the asymptotic bound, we also obtain firm bounds,
valid for all n, but poorer than the asymptotic bounds when n is large.
The firm lower bound is

P,

IIV

1 vV — 1 63"2 —Ep(0))n
6 n(A + 1)t : (7)
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It may be seen that this is equal to the asymptotic bound multiplied by
a factor essentially independent of n. The firm upper bound {valid if
the maximum of G" (sin 8)°" " exp [— (n/2)(A* — AG cos 6)] in the
range 0 to 6; occurs at ;) is

Poope = 60/ 206G (8,) sin 6,"° exp [; (=4 4+ AG cos B.)]

(8)

1
' {1 t n#; min [A, AG(6,) sin 6, — cot 91]}'

IFor rates near channel capacity, the upper and lower asymptotic
bounds are both approximately the same, giving, where n is large and
(" — R small (but positive):

e alvi /PPEN) o _
Pa opt. = q ['\/R N(I)‘l— 2N) (R (1)]: (9)

where @ is the normal distribution with unit variance.
To relate the angle 6, in the above formulas to the rate R, inequalities
are found:

r (g + 1) (sin 6,)" ! 1
(1 — = tan® 81) e
An+ 1N e n
nl 5 m T cost

(10)
T (g + 1) (sing)" "
< 2
= ) 1 .
nl’ ((n :;_ )> 1r1"2 cosf,
Asymptotically, it follows that:
sin® 4
e*m’? S 1 (11)

\/27n sin 6, cos 6,

For low rates (particularly R < R.), the above bounds diverge and
give less information. Two different arguments lead to other bounds
useful at low rates. The low rate upper bound is:

1
P — [R—(\2A2)/4]
Pe opt é ?\_1\/‘"_”' e" ’ (12)

where X satisfies R = [1 — (1/n)] log (sin 2 sin”' A/4/2). Note that
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as R — 0, A — 1 and the upper bound is approximately

e#ﬂA!H-

1
A/

The low rate lower bound may be written

1 oM a\"
> — —_—
PP—O]’II.=2(I)[ A(Zﬂf—le) ]- (13)

Tor M large, this bound is close to ‘!I:(— A+/n/2) and, if n is large,
this is asymptotic to 1/(A+/zn) ¢ " 4™ Thus, for rates close to zero and
large n we again have a situation where the bounds are close together
and give a sharp evaluation of Peopt .

With codes of rate B = € 4+ ¢, where e is fixed and positive, P, qp
approaches unity as the code length n increases.

[II. THE LOWER BOUND BY THE ‘‘SPHERE-PACKING’’ ARGUMENT

Suppose we have a code with M points each at distance A/nP from
the origin in n space. Since any two words are at equal distance from
the origin, the n — 1 hyperplane which bisects the connecting line passes
through the origin. Thus, all of the hyperplanes which determine the
polyhedra surrounding these points (for the optimal decoding system )
pass through the origin. These polyhedra, therefore, are pyramids with
apexes at the origin. The probability of error for the code is

1 M
H;Pefl

where P.; is the probability, if code word 7 is used, that it will be carried
by the noise outside the pyramid around the 7th word. The probability

of being correct is
= 1
— P“_ .
37 2= P = 37 Z‘, (1 — Pui) ;
that is, the average probability of a code word being moved to a point
within its own pyramid.

Let the sth pyramid have a solid angle ; (that is, Q; is the area cut
out by the pyru.mid on the unit n#-dimensional spherical surface). Con-
sider, for comparison, a right circular n-dimensional cone with the same
solid angle ©; and having a code word on its axis at distance vnP. We

assert that the probabilily of this comparison point being moved to within
its cone is greater than that of w; being moved to within its pyramid. This
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is because of the monotone decreasing probability density with distance
from the code word. The pyramid can be deformed into the cone by
moving small conical elements from far distances to nearer distances,
this movement continually increasing probability. This is suggested for
a three-dimensional ease in Fig. 1. Moving small conical elements from
outside the cone to inside it increases probability, since the probability
density is greater inside the cone than outside. Formally, this follows
by integrating the probability density over the region R; in the cone
but not in the pyramid, and in the region R, in the pyramid but not in
the cone. The first is greater than the solid angle @ of R, times the
density at the edge of the cone. The value for the pyramid is less than
the same quantity.

We have, then, a bound on the probability of error P, for a given
code:

1
=

M=

P,z Q*(2.), (14)

="

where ©; is the solid angle for the 7th pyramid, and Q*(Q) is the proba-
bility of a point being carried outside a surrounding cone of solid angle
Q. It is also true that

M

Z Qf = QU )

=1
the solid angle of an n sphere, since the original pyramids corresponded
to a partitioning of the sphere. Now, using again the property that the
density decreases with distance, it follows that @*(2) is a convex function
of Q. Then we may further simplify this bound by replacing each ©; by

CONE
ELEMENT IN:

Fig. 1 — Pyramid deformed into cone by moving small conieal elements from
far to nearer distances,
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the average Q/M. In fact,

1 5 * « o

Ma
* &)
P,z Q (M :

It is more convenient to work in terms of the half-cone angle 6 rather
than solid angles 2. We define Q(8) to be the probability of being carried
outside a cone of half-angle 8. Then, if 8 corresponds to the cone of
solid angle Q,/M, the bound above may be written

P,z Q(6). (15)

This is our fundamental lower bound for P.. It still needs translation
into terms of P, N, M and n, and estimation in terms of simple func-
tions.

It may be noted that this bound is exactly the probability of error
that would occur if it were possible to subdivide the space into M con-
gruent cones, one for each code word, and place the code words on the
axes of these cones. It is, of course, very plausible intuitively that any
actual code would have a higher probability of error than would that
with such o conical partitioning. Such a partitioning clearly is possible
only forn = 1or2,if M > 2.

The lower bound Q(8;) can be evaluated in terms of a distribution
familiar to statisticians as the noncentral t-distribution.” The noncentral
¢ may be thought of as the probability that the ratio of a random vari-
able (z 4 8) to the root mean square of f other random variables

does not exceed ¢, where all variates z; and z are gaussian and independ-
ent with mean zero and unit variance and 8 is a constant. Thus, denot-
ing it by P({, 8, ), we have

and hence

2+
P(f,8,t) = Pr 1/% i y < ip. (16)
1

In terms of our geometrical picture, this amounts to a spherical gaussian
distribution with unit variance about a point & from the origin in f 4 1
space. The probability P(f, 8, ¢) is the probability of being outside a
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cone from the origin having the line segment to the center of the dis-
tribution as axis. The cotangent of the half-cone angle 8 is ¢/4/f. Thus
the probability @(#) is seen to be given by

Qo) =P(n—1, R_TP,\/R— 1cot&). (17)

The noncentral f-distribution does not appear to have been very exten-
sively tabled. Johnson and Welch® give some tables, but they are aimed
at other types of application and are inconvenient for the purpose at
hand. Further, they do not go to large values of n. We therefore will
estimate this lower bound by developing an asymptotic formula for the
cumulative distribution Q(8) and also the density distribution dQ/d6.
First, however, we will find an upper bound on P,,,, in terms of the
same distribution Q(6).

IV. UPPER BOUND BY A RANDOM CODE METHOD

The upper bound for P, ,,, will be found by using an argument based
on random codes. Congider the ensemble of codes obtained by placing
M points randomly on the surface of a sphere of radius v/nP. More
precisely, each point is placed independently of all others with probabil-
ity measure proportional to surface area or, equivalently, to solid angle.
Each of the codes in the ensemble is to be decoded by the minimum
distance process. We wish to compute the average probability of error for
this ensemble of codes.

Because of the symmetry of the code points, the probability of error
averaged over the ensemble will be equal to M times the average proba-
bility of error due to any particular code point, for example, code point
1. This may be computed as follows. The probability of message number
1 being transmitted is 1/M. The differential probability that it will
be displaced by the noise into the region between a cone of half-angle ¢
and one of half-angle & + dé (these cones having vertex at the origin
and axis out to code word 1) is —dQ(#8). [Recall that Q(8) was defined
as the probability that noise would earry a point outside the cone of
angle 6 with axis through the signal point.] Now consider the cone of
half-angle 8 surrounding such a received point (not the cone about the
message point just described). If this cone is empty of signal points,
the received word will be decoded correctly as message 1. If it is not
empty, other points will be nearer and the received signal will be incor-
rectly decoded. (The probability of two or more points at exactly the
same distance is readily seen to be zero and may be ignored.)
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The probability in the ensemble of codes of the cone of half-angle 8
being empty is easily calculated. The probability that any particular
code word, say code word 2 or code word 3, ete. is in the cone is given
by ©(68)/2(x), the ratio of the solid angle in the cone to the total solid
angle. The probability a particular word is not in the cone is 1 — €( 6)/
Q(x). The probability that all M — 1 other words are not in the cone
is [I — 2(0)/Q(r)]™ " since these are, in the ensemble of codes, placed
independently. The probability of error, then, contributed by situations
where the point 1 is displaced by an angle from 6 to 8 + d#8 is given by
—(1/M){1 — [1 — @(8)/2(x)]" "}dQ(8). The total average probabil-
ity of error for all code words and all noise displacements is then given

by
_ T _ B Q(ﬂ) M—1
P, = - {1 [1 9_("")] }dQ(ﬁ) . (18)

This is an exact formula for the average probability of error P.. for our
random ensemble of codes. Since this is an average of P, for particular
codes, there must exist particular codes in the ensemble with at least
this good a probability of error, and certainly then P,op = Per.

We may weaken this bound slightly but obtain a simpler formula for
caleulation as follows. Note first that {1 — [2(8)/2(=)]"") = 1 and
also, using the well-known inequality (1 — )" =2 1 — nz, we have
11— 1 — )/em™ = (M — 1)[Q6)/2(r)] = MQ()/2r)].
Now, break the integral into two parts, 0 = 8 = and 6, = 6 = = In
the first range, use the inequality just given and, in the second range,
bound the expression in braces by 1. Thus,

T g - [
P, < fo M [Q(T)] dQ(6) fa dQ(o), »
Pos - ok " e + @)

It is convenient to choose for 6 the same value as appeared in the lower
bound; that is, the 8, such that Q(6,)/Q(x) = 1/M — in other words,
the 8, for which one expects one point within the 6; cone. The second
term in (19) is then the same as the lower bound on P, .y obtained
previously. In fact, collecting these results, we have

Q) < Poow 2 Q) — s [ 000, (20)

where MQ(6,) = Q(r). These are our fundamental lower and upper bounds
on Pa opt +
We now wish to evaluate and estimate ©(6) and Q(8).
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V. FORMULAS FOR RATE R AS A FUNCTION OF THE CONE ANGLE @

Our bounds on probability of error involve the code angle 8, such that
the solid angle of the cone is 1/M = ¢ "* times the full solid angle of a
sphere. To relate these quantities more explicitly we calculate the solid
angle of a cone in n dimensions with half-angle 8. In Fig. 2 this means
calculating the (n — 1)-dimensional area of the cap cut out by the cone
on the unit sphere. This is obtained by summing the contributions due
to ring-shaped elements of area (spherical surfaces in n — 1 dimensions

Fig. 2 — Cap cut out by the cone on the unit sphere.

of radius sin 8 and of incremental width d6). Thus, the total area of the
cap is given by

_ (n—1)/2 o8,
(= Vm ™ 7 ™ (in 0)™ao.

1) !

2(6,) =

Here we used the formula for the surface S,(r) of a sphere of radius r
in n dimensions, S,(r) = ne" " /T (n/2 + 1).

To obtain simple inequalities and asymptotic expressions for Q(6,),
make the change of variable in the integral x = sin 8,d8 = (1 — 2°) ""da.
Let 1y = sin 6 and assume 6; < /2, so that ; < 1. Using the mean
value theorem we obtain

2\ —1/2 __ 12 a _

(1 —.’L) = (1 551) +m(z -’111), (22)
where 0 £ a £ x,. The term a(l — o’)""* must lie in the range from
0 to z:(1 — ,°) " since this is a monotone increasing function. Hence
we have the inequalities

(1 - .’1"12)_”2 + %__._Ig)%;z g (1 —_ IE)*IIE é (1 _ Ilz)—llz
( - 11’31) (23)
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Note that z — a; is negative, so the correction term on the left is of
the right sign. If we use these in the integral for 2(6,) we obtain

_ W(JI_I)IZ z1 g o\ —1/9 T — )n
'\——s—
2 (24)

('n/ _ I)W(H*U.@ le - dx
E () B . — T —_—,
(l) - n+1 o € _\/1__‘[.'-
2

( n — 1)7]'("7]”2 [ :rln—l :l_errl B .Tln+l. ]
n—1 ' nl—2af ®-—11-—a)
I‘(njl)\/l—:c[ ( ) (n ) %)

(n—1)/2  n—1 (25)
< a(8) < (n — D= 1
o T fn+1 .
r > (n—l)vl—;cﬁ
(n=1)/2y¢ .+ n—1
T _iﬁi“ o) (1 - ;1; tan® t )
r (n 5 )cos 0,
(26)

< Q(a) - 71'(717]”2(Sill El)u -1
= 1 =

= 1 .
I‘(ﬂ 5 )cos&l

Therefore, as n — =, 2(6,;) is asymptotic to the expression on the right.
The surface of the unit n sphere is nx"" /T(n/2 4+ 1), hence,

T (?2l -+ 1) (sin 6,)" " 1
(1 o tan® 01)

nl’ (n * 1) =% cos 0

—nk
(4

1A

2
(27)

n H n—l1
_ 2(6,) - (§ -+ ) (sin 6,) |
@(m) all (n + ) =" cos 6,

Replacing the gamma functions by their asymptotic expressions, we ob-

tain
e _ sl (1
‘ "~ /2 sin 6; cos 6, nll (28)
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Thus ¢ "* ~ sin" 8,/4/2xn sin 6, cos 6; and ¢ © ~ sin 6, . The some-
what sharper expression for ¢="" must be used when attempting asymp-
totic evaluations of P, , since P, is changed by a factor when 6, is changed
by, for example, k/n. However, when only the reliability ¥ is of inter-
est, the simpler R ~ —log sin §; may be used.

VI. ASYMPTOTIC FORMULAS FOR Q(8) axD Q'(6)

In Iig. 3, O is the origin, S isa signal point and the plane of the figure
is a plane section in the n-dimensional space. The lines 04 and OB
represent a (circular) cone of angle § about OS (that is, the intersee-
tion of this cone with the plane of the drawing.) The lines OA’ and OB’
correspond to a slightly larger cone of angle 8 + d8. We wish to estimate
the probability —dQ,(68) of the signal point S being ecarried by noise
into the region between these cones. From this, we will further calculate
the probability @.(8) of S being carried outside the # cone. What is
desired in hoth eases is an asymptotic estimate — a simple formula whose

Tig. 3 — Plane of cone of half-angle #.
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ratio to the true value approaches 1 as n, the number of dimensions,
increases.

The noise perturbs all coordinates normally and independently with
variance 1. It produces a spherical gaussian distribution in the n-di-
mensional space. The probability density of its moving the signal point
a distance d is given by

1

R e av, (29)

where dV is the element of volume. In Fig. 4 we wish to first calculate
the probability density for the crosshatched ring-shaped region between

Fig. 4 — Special value 6, .

the two cones and between spheres about the origin of radius r and
r + dr. The distance of this ring from the signal point is given by the
cosine law as

d = (#* + A’n — 2rA+\/n cos )", (30)

The differential volume of the ring-shaped region is r dr d6 times the sur-
face of a sphere of radius r sin § in (n — 1)-dimensional space; that is

(n _ 1)'"_(11—1)1‘2(1_ sin 9)?4—2

I‘(“.'7.-21— 1) ' (31)

r dr df

Hence, the differential probability for the ring-shaped region is

1 —(* 4+ A’n — 2rA\/n cos )
(van)" P 2

(n — a2y sin §)"2 (32)

(n + 1) Tdr da
T 2

The differential probability —d@ of being carried between the two cones
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is the integral of this expression from zero to infinity on dr:
1 (n — 1) df

—dQ = 5.5 ‘“““\/ . (n ¥ 1)
™ )

&

-] _ 2 2_ _ 9 -
f exp |: (r + A _ 2rA+/n cos B)] (r sin )" dr.
0 2

(33)

In the exponent we can think of A*n as A’n(sin’6 + cos® @). The cos’
part then combines with the other terms to give a perfect square

(r — A4/n cos 6)°

and the sin® term can be taken outside the integral. Thus

A sin? 0] .
(n — 1) exp [_ T] (sin 8)"2 d@
n R & n + 1
21‘2\/-,1-1( 5 ) (34)
f exp |: (r = A;[ n €05 6) ]r"_l dr.
0

We can now direct our attention to estimating the integral, which we
call K. The integral can be expressed exactly as a finite, but complicated,
sum involving normal distribution functions by a process of continued
integration by parts. We are, however, interested in a simple formula
giving the asymptotic behavior of the integral as n becomes infinite.
This problem was essentially solved by David and Kruskal ® who prove
the following asymptotic formula as a lemma:

fﬂ Zexp (=3 4+ 2y + 1w)dze ~ V2r (S)v exp ()T, (35)

0
as v — o, wis fixed, T =[1 +3+ (Vw? + 4 — w)’] 7" and
Z=3Vr+ 1w+ Vil + D +

This is proved by showing that the main contribution to the integral
is essentially in the neighborhood of the point Z where the integral is a
maximum. Near this point, when » is large, the function behaves about
as a normal distribution.

The integral K in (34) that we wish to evaluate is, except for a multi-
plying factor, of the form appearing in the lemma, with

z2 =7, w = A cos 8, v=mn— 1.
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The integral then becomes

2 2 o0 2 B
K = exp (—A n goﬁ g) f 2" exp r(é + 24 v/n cos 8) dz
1) &

A’n cos’ 0 — (z\"! 7
~exp| — 5 \/ﬂ- p T exp 5)

We have
z=13+/nAcost + v/ InA%cos0 +n — 1

= Vn [%A cos 0 + 4 cos?d + 1 — 1]

(36)

I n

= Vn [%A cos 6 + ,‘/-i? cos§ + 1 (37)

Letting
G = 3[4 cos 0 + /A2 cos? 8 + 4,

we have

. _ 1 1
° = \/HG[I n \/A? cosﬂe—|—4+0(1?):|'

2 n—1 B V?TLG ’nfl[ _ 1 (1)]7&—1
(E) _( ¢ ) 1 71G\/A200526+4+O n?

V29) " e (v )
N( e P\ ~q VA2 cos? 6 + 4)°

1 1\ P
2 — expin@|1— - L1
€XP 5 = CXP anG I:I nG /A% cos? 0 + 4 +0 (nﬁ)]

~ exp (| InG* — 26 (39)
? 24/A% cost 0 + 4

(38)

G
= exp I:%n(l + AG cos 8) — m],
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since, on squaring (7, we find * = 1 + AG cos 6. Collecting terms:

- 1 e (‘ "t n/2 1
I\NP\/QW (\/~ ) e GXP(—G\/A200528+4
G A*

G Mmoo
TN/ Arcosto+ 4 2 "OS"“'QAGCOW) (40)

= T /27 0" VG e exp ( 35 A% costo + O AG cos 9)

since a little algebra shows that the terms

1 G
G/ A cos?8 + 4 /A% cos? 6 + 4

1 —

in the exponential cancel to zero. The coefficient of the integral (34),
using the asymptotic expression for T[(n + 1)/2], is asymptotic to

(n _ ]-)g—{ﬂin2 8)(A2n)/2 n72e(n+l)f2

sin 6
- 1 ni2
2 v/e (M5 Ve
Combining with the above and collecting terms (we find that T =

G/A1+ G):

_dQ
S do

(41)

Ll l n
Vi V1 + G2 sin’ e[G sin 6 exp (—*Jr 3AG 0056)]

This is our desired asymptotic expression for the densily dQ)/d6.
As we have arranged it, the coefficient increases essentially as 4/n
and there is another term of the form ¢ *2“" where
1?
Eu(8) =% — 3AG cos 8 — log (G sin 0).
It can be shown that if we use for 0 the special value 8, = cot —'A (see
Tig. 4) then #,(6,) = 0 and also £’,.(6,) = 0. In fact, for this value

- A2
G(6) = 3(A cosby + /A costhy + 4) = (\/A 1

A1 1A A2
+1/?1ﬂ+1+4)”2(VA='+1+\/A2+1)_°“9“'
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Hence the two terms in the logarithm cancel. Also

A2
E———AGcoseuﬁ——fA\/A +1 \/Aﬂ——
So E.(8) = 0. We also have
!
E',(8) = 1AG sin 6 — 3AG cos 0 — g —eotf.  (43)

When evaluated, the term —G'/G simplifies, after considerable algebra,

to
Asin g

VATcost 0 + 4
Substituting this and the other terms we obtain
E'.(8) = 4— sin # cos 8 + 4:;%
A (A%cos?o+4) | A sin @
I vVaewota !t Vireos o 1 4
Adding and collecting terms, this simplifies to

(44)
— cot 6.

E'(8) = {3 (A cosf + /A2 cos?§ + 4) sin @ — cot 0

AG sin § — cot @ (45)

Ay A 1/ ., 4
cotel:?sm 3+§Sln0 A +c0526_1'

Notice that the bracketed expression is a monotone increasing func-
tion of 8 (0 < 6§ < m/2) ranging from —1 at 8 = 0 to = at § = =/2.
Also, as mentioned above, at 6, G = csc 6 and A = cot fo, s0 E'.(60)
= 0. It follows that E’.(8) < 0 for0 < 6 < 6yand E'(8) > 0 for 8, =
6 < /2.

From this, it follows that, in the range from some 6, to =/2 with 6, > 6o,
the minimum %,(8) will oceur at the smallest value of 8 in the range,
that is, at 6 . The exponential appearing in our estimate of Q(0),
namely, ¢ “%®", will have its mazimum at 6, , for such a range. Indeed,
for sufficiently large n, the maximum of the entire expression (45) must
oceur at 6;, since the effect of the n in the exponent will eventually
dominate anything due to the coefficient. For, if the coefficient is called
a(6) with y(6) = a(8) ¢ "Fr® then

y'(0) = ¢ "0 —a(8)nE'L(6) + o' (0)], (46)
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and, since «(8) > 0, when = is sufficiently large y’(#) will be negative
and the only maximum will occur at 6, . In the neighborhood of 6; the
function goes down exponentially.

We may now find an asymptotie formula for the integral

/2
Q) = [ al@)e i + Q(x/2) (47)
0y
by breaking the integral into two parts,
6,+n"2/3 /2
Qo) = [+ + Qr/2). (48)
6 #1+n2/3

In the range of the first integral, (1 — e)a(6:) = a(8) = a(8)(1 + €),
and e can be made as small as desired by taking n sufficiently large. This
is because a(#) is continuous and nonvanishing in the range. Also, using
a Taylor’s series expansion with remainder,

¢ ELO exp I:_HEI'(BI) — n(0 — 6,)E L(6)
(49)

B ﬂ(g _261)2 E”L(G*):I,

where 6* is the interval 8, to 8. As n increases the maximum value of the
remainder term is bounded by 71(‘11/2)7”3 E” nax , and consequently ap-

proaches zero. Hence, our first integral is asymptotic to

01+n—2/3
0(31) j; exp [—HEL(Gl) - 'R(f’ - BI)E’L(GI)] de

(50)

exp [—n(0 — el)E’L(el)l]’“"”“

= — a(6) exp [—nE . (6,)] nE'L(6) o

a(el)c—nEL(ﬂﬂ
?IE'L(Q])

since, at large n, the upper limit term becomes small by comparison.
The second integral from 8, + n ** to /2 can be dominated by the
value of the integrand at 6; + n~** multiplied by the range

w/2 — (6 + n ),

(since the integrand is monotone decreasing for large n). The value at
6, + n*" is asymptotic, by the argument just given, to

a(y) exp [—nEL(8,) — n(n~**) E'L(6:)].

This becomes small compared to the first integral [as does Q(x/2) =
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®(—A) in (47)] and, consequently, on substituting for «(6,) its value
and writing 8 for 8, , we oblain as an asymptotic expression for Q(0):

1 1 [G sin @ exp (—%-4- 1AG cosﬂ)]
Qo) ~ vVnr A1+ G2sin g (AG sin2 6 — cos 6) (51)

(;'_)’ >0> 6 = cot,“A).

This expression gives an asymplotic lower bound for P. ot , obtained by
evaluating Q(8) for the 8, such that M/Q(8,) = Q(w).

Incidentally, the asymptotic expression (51) can be translated into
an asymptotic expression for the noncentral ¢ cumulative distribution
by substitution of variables 8 = cot '(¢/4/f) and n — 1 = f. This may
be useful in other applications of the noncentral {-distribution.

VII. ASYMPTOTIC EXPRESSIONS FOR THE RANDOM CODE BOUND

We now wish to find similar asymptotic expressions for the upper
bound on P, e of (20) found by the random code method. Substituting
the asymptotic expressions for dQ(8)df and for 2(8)/Q(x) gives for an
asymptotie upper bound the following:

o I‘(n + 1) (sin 6)" -
Qo) + e [T 22 1/’5‘
n

r (n _2‘_ l)vr”z cosd N
p 1 /P " (52)
‘[G Smﬁexp(—ﬁ +§ NGCOSB)] "
V1 + @sin’f
Thus we need to estimate the integral
61 1
W = f T0/1 F G
cos @ sin” 0 4/1 + G2
' (53)

-exp{n(—% + % ,‘/%G’ cos 8 + log G + 2 log sin 8) }dﬂ.

The situation is very similar to that in estimating Q(8). Let the coeffi-

cient of n in the exponent be D. Note that D = —FE.(8) + log sin 6.
Hence its derivative reduces to
@= —AG sin 0 + 2 cot 6. (54)

dg
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dD/df = 0 has a unique root 0., 0 < 6, = /2 for any fixed 4 > (.
This follows from the same argument used in connection with (45), the
only difference being a factor of 2 in the right member. Thus, for
6 < 6., dD/de is positive and D is an increasing function of 6. Beyond
this maximum, D is a decreasing function.

We may now divide the problem of estimating the integral W into
cases according to the relative size of 6. and 6, .

Case 1: 6, < 6, .

In this case the maximum of the exponent within the range of integra-
tion occurs at 4, . Consequently, when »n is sufficiently large, the maxi-
mum of the entire integrand occurs at 6, . The asymptotic value can be
estimated exactly as we estimated Q(6) in a similar situation. The inte-
gral is divided into two parts, a part from 8, — n >'* to 6, and a second
part from 0 to 8, — n*"*. In the first part the integrand behaves asymp-
totically like:

1 ) r 1 P ‘
cos 0y sin’f, V1 + G2(6;) exp (n {_ﬁ + 2 1/; G(8) cosby

+ log (¢(6,) + 2 log sin 8, (55)

- (9 - 01)[:16!(91} sin t — 2 cot, 61]}).
This integrates asymptotically to

exp {”[_'TI]V + 1) ,‘/}]\; G(6,) cos b + log G(8,) + 2 log sin 61]} (56)
cos 6y sin’ 8, /1 + G2(6,) [—AG(6,) sin 8, + 2 cot 6,]n '

The second integral becomes small in comparison to this, being domi-
nated by an exponential with a larger negative exponent multiplied by
the range 6, — n ", With the coefficient

|Gl
/n [F(nj—l) ‘o

and using the fact that
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our dominant term approaches

i AF n
[G sin f exp (—? + 1AG cos 61)] (57)
vVnr /1 + G?sin 6,(2 cos 6, — AG sin6;)

Combining this with the previously obtained asymptotic expression
(51) for Q(6,) we obtain the following asymptotic expression for the upper
bound on P, opt for 8, < 6. :

(1 _ cosf — AG sin® 6,
2 cos 8, — AG sin? 6,

2 “In 58)
[G sin 6, exp (——% + 1A@ cos 81) (

-er V1 + G2sin 6,(AG sin® 6, — cos 6,)

Since our lower bound was asymptotic to the same expression without
the parenthesis in front, the two asymplotes differ only by the factor

(1 _ cosb — AG sin® 6
2 cos #h — AG sin? 6,

independent of n. This factor increases as increases from the value 6, ,
corresponding to channel capacity, to the critical value 6, , for which the
denominator vanishes. Over this range the factor increases from 1 to .
In other words, for large n, P, op¢ is determined to within a factor. Fur-
thermore, the percentage uncertainty due to this factor is smaller at
rates closer to channel capacity, approaching zero as the rate approaches
capacity. It is quite interesting that these seemingly weak bounds can
work out to give such sharp information for certain ranges of the varia-
bles.

Case 2: 6, > 6, .

For 6, in this range the previous argument does not hold, since the
maximum of the exponent is not at the end of the range of integration
but rather interior to it. This unique maximum occurs at . , the root of
2 cos 8, — AQ sin®6, = 0. We divide the range of integration into three
parts: 0 to 8. — w8, —n " to 6, + n % and 6, + n*® to 6. Pro-
ceeding by very similar means, in the neighborhood of 6. the exponential
behaves as

exp (— . {E,_(a.,> + O =0 g a) + 010 - Bc)“}})-
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The coefficient of the exponential approaches constancy in the small in-
terval surrounding 8. . Thus the integral (53) for this part is asymptotic
to

1
cos 0, sin” 6, v/1 + G2

o[-z + w—Twm,ﬁmq}de @

1 . Vo
~ cos B, sin* 6, /1 + & P [—nE.(6 \/anL(G )

The other two integrals become small by comparison when = is large, by
essentially the same arguments as before., They may be dominated by
the value of the integrand at the end of the range near 6, multiplied by
the range of integration. Altogether, then, the integral (52) is asymp-
totic to

1 8*“ [Eg(8.)—R] (60)
Van cos 8, sin’ 6, /1 + G2 VE",(6.) '

The other term in (52), namely, @(8,), is asymptotically small com-
pared to this, under the present case § > 6, , since the coeflicient of n
in the exponent for Q(#) in (51) will be smaller. Thus, all told, the ran-
dom code bound ts asymptotic to

1
cos 0, sin’ 8./nrB” L (6.)[1 + G(6.)Y

for 8 > 8. or for rates B < R, the rate corresponds to 6, .

Incidentally, the rate R, is very closely one-half bit less than channel
capacity when A = 4, and approaches this exactly as 4 — =, IFor lower
values of A the difference ¢ — R. becomes smaller but the ratio C/R, — 4
as A — 0.

e_n[EL(Dc)_R] (61)

VIII. THE FIRM UPPER BOUND ON P, opt

In this section we will find an upper bound, valid for all n, on the proba-
bility of error by manipulation of the upper bound (20). We first find
an upper bound on Q'(#). In Ref, 6 the integral (35) is transformed into
# exp (=17 4 2v/» + 1 w) times the following integral (in their no-
tation):

U= [ o:(y) exp {—% ¥+ Vl:ln (1 + 3—;) - g:l} dy.
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It is pointed out that the integrand here can be dominated by P
This oceurs in the paragraph in Ref. 6 containing Equation 2.6. There-
fore, this integral can be dominated by v/ 2, and our integral in (34)
involved in dQ/d# is dominated as follows:

-] - 2
f exp [——7(?‘ — A/ o8 6) :I ™t dr
0

2
n—1
= (0) e
n—1
() e
We have

z2=1vn(Acosd + A?cost0 + 4 — 4/n) = vn G.
Replacing 2z hy this larger quantity gives

n—1 ) 2 y 2 Y .
(\—/—LG) exp (nG _AP o B) V2.

e 2 2

* —A'n
exp —,— COs 86U

o
! nol

[

8

RS

2 A -
exp —;— cos 8/ 2.

We have, then,

(n — 1) exp (F‘Azn sin? 8) (sin 6)"2 ; i
_d_Q < 2 (\/n(}’)"
do ~ vz g~ om 1 B
VAT = (62)

2 2
exp (nﬁ _An cos’ 6) vV 2.

2 2
Replacing the gamma function by its Stirling expression
nl2
(n ;I— 1) exp (n ;— 1) o

(which is always too small), and replacing [1 + (1/ )] by /2 (which
is also too small) again inereases the right member. After simplification,
we geft,

(n — (@ snd)" exp [(g) (—A* 4+ 1 + AG cos B)]

v/n @G sin® 8 4/27 exp (n 9_ ‘3) (63)

(ﬂ _ 1)63128"13]_,(0)7:
v/ 2mn G sin® 6
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Notice that this differs from the asymptotic expression (42) only by a
factor

({3['-’ \/1 + _G,3 < -

V2@ T

(since G = 1). A firm upper bound can now be placed on Q(#8):

Q(0,) = _/;m%)de - Q(g).

1

We use the upper bound above for d@/d¢ in the integral. The coefficient
of —n in the exponent of ¢

E.(0) = 3(A* — AG cos 6) — log @ sin 6

is positive and monotone increasing with 8 for 8 > 6, , as we have seen
previously. Its derivative is

E'(8) = AG sin 8 — cot 0.

As a function of ¢ this curve is as shown in Fig. 5, either rising mono-
tonically from — o at 8 = 0 to A at 8 = =/2, or with a single maxi-
mum. In any case, the curve is concave downward. To show this analyti-
cally, take the second derivative of £, . This consists of a sum of negative
terms.

EL(8)

Fig. 5 — E;'(#) as a function of 6.



638 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1959

Returning to our upper bound on @, the coefficient in (63) does not
exceed

\/71 eﬂ!ﬂ

A/ 27

sin? 6,

replacing sin § and G by sin 6, and 1, their minimum values in the
range. We now wish to replace ¢ "+ by
exp—n[EL(Bl) + (6 - Bl)h].

If % is chosen equal to the minimum E’;(6), this replacement will in-
crease the integral and therefore give an upper bound. From the be-
havior of /,(8) this minimum occurs at either 6, or /2. Thus, we may
take h = min [4, AG(8,) sin 8, — cot 6]. With this replacement the
integral becomes a simple exponential and can be immediately inte-

grated.
The term Q(w/2) is, of course,

—A%n/2

1
®(—A/n) = VoA’

If we continue the integral out to infinity instead of stopping at «/2, the
extra part added will more than cover @(7/2). In fact, B, (x/2) = A*/2,
so the extra contribution is at least

— 32
Vne oA
—— ¢ ;
An sin” 6, '\/2—1;

if we integrate

,\/ﬁ 33’2 efAﬂnfﬁ—n(ﬂ—ﬁl)A
sin® 6; v/ 2r
to o instead of stopping at =/2. Since ¢ /sin® 6, = 1, we may omit
the Q(w/2) term in place of the extra part of the integral.
Consequently, we can bound Q(6,) as follows:
¢ exp {(n/2) [AG(6;) cos § — A* + 2 log G sin 4]}
Qe,) = = . 2 . : .
A/2mn sin® 6; min (A4, AG(6,) sin 6, — cot 6;)

(64)

In order to overbound P. .p: by (3) it is now necessary to overbound
the term

" 0(0)

o Q6)

dQ(e).
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This can be done by a process very similar to that just carried out for
JdQ(8). First, we overbound Q(8)/2(8,) using (21). We have

0
: n—2
2(6) =j; (sin )" dr
[
9(6) f (sinz)" *dx

]
[ (sin )" dz
1]

f (sin )" *dx + (sin )" * dx
0 0

]
f (sin z)"* cos z dx
0

<
= ] 01
f (sin )" * cos x dz + cos 8 (sin )" dx
0 6

(]
. —2
f {sin )" cos x dx
0

=
= '] 91 b
f (sin 2)" 7 cos z dx + (sin z)"7* cos z dz
0 ]
and, finally,

Q(6) < (sin 8)™ !
Q(6,) = (sin 6

(65)

Here the third line follows since the first integral in the denominator is
reduced by the same factor as the numerator and the second integral is
reduced more, since cos 6 is decreasing. In the next line, the denominator
is reduced still more by taking the cosine inside.
Using this inequality and also the upper bound (63) on dQ/d8, we
have
0
()
—— dQ(8) =
o Q6) Q) =
fﬂl (sin 8)" " (n — 1)e¥2(G sin g)ne™™ A 402D
o (sin @,)"! v/ 2mnG sin” 6
(n _ 1)631'2 6
" AV/2mn (sing)" g
Near the point 6, the integrand here behaves like an exponential when
n is large (provided 6, < 6.), and it should be possible to find a firm

de  (66)

. = I —A2
Gn (S].l’l B)Zn Be(ri,z}( A2+44 cos @) (IB.
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upper bound of the form

k G—EL(ﬂl)n
vV

b

where k& would not depend on 7. This, however, leads to considerable
complexity and we have settled for a cruder formulation as follows:

The integrand may be bounded by its maximum values. If 6, < 6.,
the maximum of the integrand will oceur at 8, , at least when n is large
enough. In this case, the integral will certainly be bounded by

. —3 2y [— A2+ S (0
BIGn(Bl)(S]n 91)2" e(n."’ [—A2+44 cos ) G( |)|.

The entire expression for P, o, may then be bounded by [adding in the
bound (64) on Q(6;)]

= 32, —EL(6)
Poop < Ve e {1 + : L
4/ 27 sin” 6, n8; min [A, AG(8,) sin 8, — cot 8y]

It must be remembered that (67) is valid only for 6, < 6. and if » is
large enough to make the maximum of the integrand above occur at 6.
For 8, > 6., bounds could also he constructed based on the maximum
value of the integrand.

}, (@)

IX. A FIRM LOWER BOUND ON P gy

In this section we wish to find a lower bound on P,y that is valid for
all n. To do this we first find a lower bound on '(8) and from this find
a lower bound on Q(8). The procedure is quite similar to that involved
in finding the firm upper bound.

In Ref. 6, the integral (35) above was reduced to the evaluation of
the following integral (Equation 2.5 of Ref. 6):

” -711’ 1.2 _ VY4
L(1+§)er<p( Y yé)dy

> 1.7 vy _ v -
=j; exp{ 1y -I‘vI:ln(l-l-Z) 2]}(1_:;
o0 2
-y
;j; eXp[ %y2+V(2§2) dy

L] 2 /
=j; exp —¥ (1+;—2)j|dy=%—2ﬂ.—

2

L VI Vi
2 VoY

\
Il
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Here we used the inequality

In(l-l—"'_i)—z:’; —‘y_q for g_i>0,
Z z 2z H

and also the fact that v/ < 1. This latter follows from Equation 2.3 of
Ref. 6 on dividing through by z°.
Using this lower bound, we obtain from (34)

2

—An

IQ (n — 1) sin" " @ exp( 5 )(
dﬂ 2"12% r (n -{)— 1) e
Nowz 2z 4/n — 1 G and

n+1 n + 1\"* 2 1
F( 2 )<( > ) (H”‘ﬁe‘p[b( +1)]

and, using the fact that

n— 1\ 1 ,
(n+ 1) 2yl omz2,

Ity
~—
L
I
3
T
N
Lo |ty
~—
NS
N
&

v

we obtain

dQ ) v — 17 e EL® ) .
o z 6\/5_(, [(-. N 1 :I " forn = 2. (69)
exp 6(n + 1) n

This is our lower hbound on dQ/d6.

To obtain a lower bound on Q(#) we may use the same device as
before—here, however, replacing the coefficient by its minimum value in
the range and the exponent by —n#.(6;) — n(8 — 6L 1 s :

E'Y, = AG sin 0 — cot 8
AG
= A(4 4+ 1),

Similarly, in the coefficient, G can be dominated by A + 1 and sin*6 by
1. Thus,

Q6) =z

T/2 '.\".‘ —nkp(0)) —r:(ﬂ—ﬂl)d(zl-f-l}
[ AT —— @+ Q(f;), (70)
'8} &

6 v2r(4 +1) exv[u T L+ 6(n + 1)J

A
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Integrating and observing that the term due to the x/2 limit can be
absorbed into the Q(/2) — erf A, we arrive at the lower bound:

3/2 Er (8
/—_ﬂ—lej —nEp(01)

- 2 ’ 71
6\/21rn(A+1)33xp[(A—2|_1) +6(n£|—1):| (71)

Qo) =

X. BEHAVIOR NEAR CHANNEL CAPACITY

As we have seen, near channel capacity the upper and lower asymp-
totic bounds are substantially the same. If in the asymptotic lower
bound (42) we form a Taylor expansion for @ near 6, , retaining terms
up to (8 — 8)°, we will obtain an expression applying to the neighbor-
hood of channel capacity. Another approach is to return to the original
noncentral {-distribution and use its normal approximation which will
be good near the mean (see Ref. 5). Either approach gives, in this neigh-
borhood, the approximations [since E(6) = E'(6) = 0]:

aQ . +/n(1+ 4% [_ A+ 1)
~@ *ivizaorLlT " ae O

Az 41
a0 = [ -0 T v o |,
or, since near channel capacity, using ¢ " = sin 8,

6 — 8y = A (C — R)

L A+ 1
Peopt (’n R, /‘/N) = @[ 2n A f——42 T (R — ):I (73)
P+ N _
[_T;m%_—i_m /20 (R — C)].
The reliability curve is approximated near C' by
(P+N)
P(P + 2N)

Tt is interesting that Rice® makes estimates of the behavior of what
amounts to a lower bound on the exponent ¥ near channel capacity.
His exponent, translated into our notation, is

P+ N
2P

a poorer value than (74); that is, it will take a larger block length to

(72)

E(R) = ¢ — R)*. (74)

E*(R) = (C — R),
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achieve the same probability of error. This difference is evidently due to
the slight difference in the manner of construction of the random codes.
Rice’s codes are obtained by placing points according to an n-dimen-
sional gaussian distribution, each coordinate having variance P. In our
codes the points are placed at random on a sphere of precisely fixed ra-
dius /nP. These are very close to the same thing when n is large,
since in Rice’s situation the points will, with probability approaching 1,
lie between the spheres of radii 4/nP (1 — €) and v/nP (1 + ¢), (any
e > 0). However, we are dealing with very small probability events in
any case when we are estimating probability of error, and the points
within the sphere are sufficiently important to affect the exponent . In
other words, the Rice type of code is sufficient to give codes that will
have a probability of error approaching zero at rates arbitrarily near
channel capacity. However, they will not do so at as rapid a rate (even
in the exponent) as can be achieved. To achieve the best possible F it
is evidently necessary to avoid having too many of the code points in-
terior to the \/nP sphere.

At rates R greater than channel capacity we have §; < 6 . Since the
@ distribution approaches normality with mean at 6, and variance
m(A* + 1)*/(A* + 2), we will have Q(8;) approaching 1 with in-
creasing n for any fixed rate greater than C. Indeed, even if the rate R
varies but remains always greater than ' (perhaps approaching it from
above with increasing n), we will still have P, ope > 4 — eforany ¢ > 0
and sufficiently large n.

XI. UPPER BOUND ON P, opt BY METHOD OF EXHAUSTION

For low rates of transmission, where the upper and lower bounds di-
verge widely, we may obtain better estimates by other methods. For
very low rates of transmission, the main contribution to the probability
of error can be shown to be due to the code points that are nearest to-
gether and thus often confused with each other, rather than to the gen-
eral average structure of the code. The important thing, at low rates, is
to maximize the minimum distance between neighbors. Both the upper
and lower bounds which we will derive for low rates are based on these
considerations.

We will first show that, for D £ /2 nP, it is possible to find at least

D 1—n
_ . . =1
M, = (sm 2 sin —2 \/n—P)

points on the surface of an n sphere of radius 4/nP such that no pair
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of them is separated by a distance less than D, (If M p is not an integer,
take the next larger integer.) The method used will be similar to one
used by I&. N. Gilbert for the binary symmetrie channel.

Select any point on the sphere’s surface for the first point. Delete from
the surface all points within D of the selected point. In Fig. 6, x is the
selected point and the area to be deleted is that cut out by the cone.
This area is certainly less (if D < 4/2nP) than the area of the hemi-
sphere of radius # shown and, even more so, less than the area of the
sphere of radius H. If this deletion does not exhaust the original sphere,
select any point from those remaining and delete the points within D
of this new point. This again will not take away more area than that of
a sphere of radius H. Continue in this manner until no points remain.
Note that each point chosen is at least D from each preceding point.
Henee all interpoint distances are at least D. Furthermore, this can be
continued at least as many times as the ratio of the surface of a sphere
of radius v/nP to that of a sphere of radius H, since each deletion takes
away not more than this much surface area. This ratio is clearly

(vnP/H)"™

By simple geometry in Fig. 6, we sec that H and D are related as fol-
lows:

sin 5 =5 AT
Hence
H = A/nP sin 2 sin™* ﬁi)ﬂ::- (75)
2P

Substituting, we can place al least

D
/ — i D ain L —
My (::111 2sin™ 5 \/nP)

points at distances al least D from each other, for any D £ /2nP.
If we have M p points with minimum distance at least D, then the proba-
bility of error with optimal decoding will be less than or equal lo

To show this we may add up pessimistically the probabilities of each
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point being received as each other point. Thus the probability of point
1 being moved closer to point 2 than to the original point 1 is not greater
than ®[—D/(24/N)], that is, the probability of the point being moved
in a certain direction at least D/2 (half the minimum separation).
The contribution to errors due to this cause cannot, therefore, exceed
(1/Mp)®[—D/(24/N)), (the 1/M, factor being the probability of mes-
sage 1 being transmitted). A similar argument occurs for each (ordered)
pair of points, a total of M,(Mp — 1) contributions of this kind. Con-
sequently, the probability of error cannot exceed (M, — 1)®[—D/
(24/N)] or, more simply, M ,®[—D/(24/N)].

If we set
» L D —(n—1)
"t =M, = (sin 2 sin~ )

2+/nP

then the rate R (in natural units) is
]. . o=l D -1
(1 - ?—1) log (sm 2 sin 2—\/“—13)

D ONT
Pc é ﬂ"R(I’ (W_N_) é eﬂR g/’-\?f/\r ({—-(DﬂjRN)’ (76)
™

using the well-known upper bound ®(—z) = (1 JxA/2m)e """, These are

R

with

HEMISPHERE OF
RAD\US: H

Fig. 6 — Geometry of sphere of radius \/ﬁ
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parametric equations in terms of D. It is more convenient to let

D = M\/2nP.

We then have

R—(l 1)1 ('2'—‘l_1
= n og | sIn 2 sIn V2)
Pe 1 en[ﬂ—(HP)f(M)] )
1)
A ™ =

N

The asymptotic reliability, that is, the coefficient of —n in the expo-
nent of P, , is given by (\*P/4N) — R. This approaches

(77)

(sin%sinflengg%—lﬂ as n— ®,
Thus our asymptotic lower bound for reliability is (eliminating \):

. P
2N

As R — 0 the right-hand expression approaches P/(4N).

This lower bound on the exponent is plotted in the curves in Section
XIV and it may be seen to give more information at low rates than the
random code bound. It is possible, however, to improve the random
coding procedure by what we have called an “expurgating” process. It
then becomes the equal of the bound just derived and, in fact, is some-
what stronger over part of the range. We shall not go into this process
in detail but only mention that the expurgating process consists of
eliminating from the random code ensemble points which have too close
neighbors, and working with the codes that then remain,

- Rk (78)

E = (sin 4 sin™ &)
2

XII. LOWER BOUND ON P, IN GAUSSIAN CHANNEL BY MINIMUM DISTANCE
ARGUMENT

In a code of length n with M code words, let my(z = 1, 2, --- |, M,
s =1,2, -+, n) be the sth coordinate of code word 7. We are here as-
suming an average power limitation P, so that
1 2
—— Mis = P. 79
nM ; - (79)

We also assume an independent gaussian noise of power N added to each
coordinate.
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We now caleulate the average squared distance between all the

M(M — 1)/2 pairs of points in n-space corresponding to the M code
words. The squared distance from word 7 to word j is

Z‘: (mys — m:’l)Q-

The average D? between all pairs will then be

]

o 2

= VYV YE YV TR Mis — Mys) -
b M(M =1y 2 ¢ )
Note that each distance is counted twice in the sum and also that the
extraneous terms included in the sum, where 7 = j, contribute zero to it.
Squaring the terms in the sum,

D= (E Mis — 2 Z E Mismjs + Z Mia)

ﬂf(ﬂf ige igs

_ 1 , R e
= grar = B 2 = 2 2 ()] o
1
<_
= 3r = 1)2MPnM
7R < 2nM P
=M -1

where we obtain the third line by using the inequality on the average
power (79) and by noting that the second term is necessarily non-
positive.

If the average squared distance between pairs of points is

=(2nMP)/ (M — 1),

there must exist a pair of points for whose distance this inequality holds.
Tach point in this pair is used 1/M of the time. The best detection for
separating this pair (if no other points were present) would be by a
hyperplane normal to and bisecting the joining line segment. Either
point would then give rise to a probability of error equal to that of the
noise earrying a point half this distance or more in a specified direction.
We obtain, then, a contribution to the probability of error at least

o L 1 2nM P
. ’ \ 3 = - ———
Pr {nome in a certain direction = 5 /‘/ﬂ{ — 1}

i [~/ e )

1
M
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This we may assign to the first of the two points in question, and the
errors we have counted are those when this message is sent and is re-
ceived closer to the second message (and should therefore be detected
as the second or some other message).

Now delete this first message from the set of code points and consider
the remaining M — 1 points. By the same argument there must exist
among these a pair whose distance is less than or equal to

nP(M — 1)
V=9

This pair leads to a contribution to probability of error, due to the first
of these being displaced until nearer the second, of an amount

1 q{_ (M — 1)nP
M (M — 2)2N |’
This same argument is continued, deleting points and adding contribu-

tions to the error, until only two points are left. Thus we obtain a lower
bound on P, o as follows:

. MY T WP A = 1
0 > _ ne o h | — —_—
.[cnpt. = ﬂ[l:(l)( 1/2Nﬂf _ 1) +q( ZN 1?‘[ - 2)

vy

To simplify this bound somewhat, one may take only the first 2/ /2 terms
[or (M + 1)/2if M is odd]. Since they are decreasing, each term would
be reduced by replacing it with the last term taken. Thus we may reduce
the bound by these operations and obtain

1 M aP
Peoptgicp(_/‘/mw)' (82)

Tor any rate B > 0, as n increases the term 2 /(M — 2) approaches 1
and the bound, then, behaves about as

1 nP
2‘1)(_//21\],).

1 (PN
anP )

N

It follows that the reliability Z < P/(4N) = A®/4. This is the same
value as the lower bound for £ when B — 0.

(81)

This is asymptotic to

2
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XIII. ERROR BOUNDS AND OTHER CONDITIONS ON THE SIGNAL POINTS

Up to now we have (except in the last section) assumed that all sig-
nal points were required to lie on the surface of the sphere, i.e., have a
mean square value 4/nP. Consider now the problem of estimating
Py op(M, n, /P/N), where the signal points are only required to lie
on or within the spherical surface. Clearly, since this relaxes the condi-
tions on the code, it can only improve, i.e., decrease the probability of
error for the best code. Thus P’.ope = Peopt -

On the other hand, we will show that

’ P P
P ot (JM, n, N) =z P,apt (ﬂ'f, n+ 1, N) . (83)

In fact, suppose we have a code of length n, all points on or within the

0.14

N S |

0.06 0.08 0.10 T ooa2
Roe
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n sphere. To each code word add a further coordinate of such value that
in the n + 1 space the point thus formed lies exactly on the n 4+ 1 sphere
surface. If the first n coordinates of a point have values x;, 23, - -+ , xa
with

the added coordinate will have the value

Ty = /‘/(ﬂ, + 1)P — ixig'

=1

This gives a derived code of the first type (all points on the n + 1
sphere surface) with M words of length n + 1 at signal-to-noise ratio
P/N. The probability of error for the given code is at least as great as
that of the derived code, since the added coordinate can only improve

2.00¢

1.60 ]
1.40 \
A
1.00¢

0.80 \

\\A:E

0.60 ¥,
\
0.40 i N"\
& =
0.20 P! \k
\\
0 O Roo
0 0.20 0.40 0.60 0.80 1.00 1.20 1.40
| I I 1 1 L 1 RIDD
0.20 0.40 0.60 0.80 1.00 1.20 1.4
1 1 1 1 1 1 R o
0.20 0.40 0.60 0.80 1.00 1.20 1.40 !
L 1 1 1 1 1 L qd
0.20 0.40 0.60 0.80 1.00 1.20 1.40
1 1 1 1 1 1
0.40 0.60 0.80 1.00 1.20 T
1 1 1 1 |R2
0.40 0.60 0.80 1.00 1.20

Fig. 8 — Curves showing E, vs. different values of B for A = 1 and 2.
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-'_'—"-O——(L
0 0.20 0.40 0.60 0.80 1.00 1.20 1.40 Roo
1 L 1 1 1 1 L
0.20 0.40 0.60 0.80 1.00 1.20 140 00
1 1 1 1 1 1
0.20 0.40 0.60 0.80 1.00 .20 1.a0 Rio
1 L 1 L 1 1 1 R a
0.20 0.40 0.60 0.80 1.00 1.20 1.40
1 1 1 1 1 1 R
0.40 0.60 0.80 1.00 1.20 1.40 3
1 1 1 1 1 Ra
0.40 0.60 0.80 1.00 1.20

Fig. 9 — Curves showing E;, vs. different values of R for A = 3.

the decoding process. One might, for example, decode ignoring the last
coordinate and then have the same probability of error. Using it in the
best way would, in general, improve the situation.

The probability of error for the derived code of length n + 1 must be
greater than or equal to that of the optimal code of the length n + 1
with all points on the surface. Consequently we have (83). Since
P.opt(M, n, v/P/N) varies essentially exponentially with n when n is
large, the effect of replacing n by n + 1 is essentially that of a constant
multiplier. Thus, our upper bounds on P, o are not changed and our
lower bounds are multiplied by a quantity which does not depend much
on n when n is large. The asymptotic reliability curves consequently
will be the same. Thus the E curves we have plotted may be applied in
either case.

Now consider the third type of condition on the points, namely, that
the average squared distance from the origin of the set of points be less
than or equal to nP. This again is a weakening of the previous conditions
and hence the optimal probability of error, P”. opt , is less than or equal
to that of the previous cases:

” P ’ P P
P eopt(ﬂ-{) n, N) = Peapt (M) n’ﬁ) = Peopt (ﬂlr n, N) (84)
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&g

Fig. 10 — Curves showing E, vs. different values of B for A = 4,

Our upper bounds on probability of error (and, consequently, lower
bounds on reliability) can be used as they stand.

Lower bounds on P”, ., may be obtained as follows. If we have M
points whose mean square distance from the origin does not exceed nP,
then for any a(0 < a = 1) at least M of the points are within a sphere
of squared radius nP/(1 — «). [For, if more than (1 — «)M of them
were outside the sphere, these alone would contribute more than

(1 —a)YMnP/(1 — a)

to the total squared distance, and the mean would then necessarily be
greater than nP.] Given an optimal code under the third eondition, we
can construct from it, by taking oM points within the sphere of radius
VnP/1 — a, a code satisfying the second condition with this smaller
number of points and larger radius. The probability of error for the new
code cannot exceed 1/« times that of the original code. (Each new code
word is used 1/a times as much; when used, its probability of error is at
least as good as previously.) Thus:
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1

E*Peopt
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XIV. CURVES FOR ASYMPTOTIC BOUNDS

(aﬂf,n + 1, /‘/
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Curves have been caleulated to facilitate evaluation of the exponents
in these asymptotic bounds. The basic curves range over values of
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Tig. 11 — Curves showing E, vs. different values of R for 4 = 8 and 16.



654 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1959

2.80

7

2.40 "

vl

ReriT

2.00 "C/
? vl

// P
//

1.60
C!RC

v

1.20

/
0.80— /
/

0.40 /

Fig. 12 — Channel capacity, C, and critical rate, B, , as functions of 6.

A =11 11 2 3,4,8, 16. Figs. 7 through 11 give the coefficients
of n and E;, as funetions of the rate R. Since Ey strictly is a function of
8, and the relation between # and R depends somewhat on n, a number
of slightly different R scales are required at the bottom of the curve.
This, however, was considered a better means of presenting the data
than the use of auxiliary curves to relate £ and 6. These same curves
give the coefficient of n in the upper bounds (the straight line part to-
gether with the curve to the right of the straight line segment ). The point
of tangency is the critical R (or critical 8). In other words, the curve and
the curve plus straight line, read against the n = oo scale, give upper
and lower bounds on the reliability measure. The upper and lower bounds
on E for low R are also included in these curves. The upper bound is the
horizontal line segment running out from B = 0, £ = A*/4. The lower
bound is the curved line running down from this point to the tangent
line. Thus, the reliability ¥ lies in the four-sided figure defined by these
lines to the left of R, . It is equal to the curve to the right of I, . Fig. 12
gives channel capacity C and the eritical rate R, as functions of 8. For
A very small, the E,(R) curve approaches a limiting form. In faect, if
8 = (7/2) — €, with € small, to a close approximation by obvious expan-
sions we find

e

2 2

Eu(R) ié—Ae-}-% and R =

€
2 2’
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Fig. 13 — Plots of E.(R)/A? against R/A*,

Eliminating ¢, we obtain

EuR) .1 _ /2R
Az 2 A

Fig. 13 plots EL(R)/A* against R/A”.
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