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The equilibrium delay distribution is found for a single-server queueing
system with Poisson input, random service and constant holding time. Curves
are presented for various occupancy levels, and these are compared with their
queued-service constant-holding-time and random-service exponential-hold-
ing-time counterparts.

In many situations involving waiting lines — for example, when
customers are being served at a bargain counter in a crowded store —
the ideal queue discipline (service order) of first-come first-served is
not achieved. Instead, the service order tends to be at least somewhat
random, and the probability of long delays is thereby increased over
what it would be for the strict first-come first-served discipline. Un-
fortunately for the analyst, when the queue discipline is somewhere
between order-of-arrival and random — as is often the case in practice —
the problem of ealculating the delay distribution seems to be intractable.
If the service order is assumed to be actually random, however, then
this problem can sometimes be solved, and the delay distribution thus
found is useful as a kind of bound on the distributions to be expected
in those cases where the queue discipline deviates from order-of-arrival
service toward randomness.

The term “bound” as used here does not mean a bounding function
in the strict sense. Actually, the delay distributions for models which
differ only in queue discipline will cross each other, and hence no individ-
ual distribution can be a true bound for a family of such distributions.
However, the longer delays are generally of more interest in waiting-
line problems than are the shorter ones, and it is true that, other things
being equal, the probability of sufficiently long delays is greater for
random service than for order-of-arrival service.
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Although the assumption of random service does not provide this type
of bound in all situations, as would the assumption that the service order
is last-come first-served, it is clearly more realistic than the latter
assumption in many cases and will provide a closer bound, or approxima-
tion, to the actual delay distribution in these cases.

In addition to its usefulness as a boundary case, a queueing model
which involves random service and constant holding times is of direct
interest in certain telephone switching applications. For example, it is
approximated, under some circumstances, at the marker connectors of
the No. 5 Crosshar system, and it may have further applieation in
electronic switching systems.

Of all possible holding-time distributions, the exponential and constant
distributions have been studied most intensively in connection with
queueing systems. The delay distribution was first obtained for a queue-
ing system with constant holding times at least as early as 1909 by
Erlang (Ref. 1, pp. 133-137). A solution to the delay problem for ex-
ponential holding times was published in 1917 by the same author (Ref.
1, p. 138-155). In both of these eases the service was order-of-arrival
(queued) rather than random. The first attempt to obtain a delay dis-
tribution when the service order was random was published in 1942 by
Mellor,? but this was not completely correct. A correct formulation of
a random-service problem was obtained in 1946 by Vaulot,! the solution
to which was given by Pollaczek.! The same problem also was solved
by Palm.® A method for computing the delay distribution was published
by Riordan in 1953.° The random-service problem solved by Vaulot
and Pollaczek involved an exponential holding-time distribution. The
present study is apparently the first attempt to combine the queue
discipline of random service with holding times which are constant.

The model considered here is characterized by the following:

i. Random input — the probability that a call will arrive during any
infinitesimal interval of length di is proportional to dt¢ within infinitesi-
mals of higher order, and is independent of the state of the system,
arrival times of previous calls or any other conditions whatever. It is
equivalent to say that the call arrivals constitute a Poisson process.

ii. Constant holding times — the service time of each call is the same
constant, taken here to be unity.

iii. Random service — if there are n calls waiting for service at the
instant of a completion of service, the probability that any particular
one of the calls will be served next is 1/n. The server is never idle when
there are calls waiting to be served.

iv. No defections — all ealls wait in the system until they are served.
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v. Statistical equilibrium — the distribution of the number of calls
in the system is stationary, i.e., independent of time. Under the above
assumptions, this will be the case when the arrival rate is less than one
call per service interval and the system is given enough time to ‘“‘settle
down.” Mathematically, the condition is assured by the assumption
that the initial distribution of the number of calls in the system is the
equilibrium distribution.

The over-all delay distribution is obtained below by decomposing it
into a weighted sum of conditional delay distributions, depending on the
state of the system at the epoch (instant) of the first departure (comple-
tion of service) following the arrival of the call. It suffices to define the
state of the system at the departure epochs as the number of calls re-
maining in the system. (The ecall just completing service is not counted.)
Each delay consists of two parts. The first part of the delay is the time
from the arrival of the eall in question until the first departure epoch
following the arrival. The second part is the time from this departure
epoch until the call in question gains service. The first part has a con-
tinuous distribution over the interval [0 — 1]; the second part is dis-
tributed over the nonnegative integers.

Thus, in Fig. 1 the call that arrives at time aq suffers a delay di — a2,
which may vary from zero to a full holding time, until the first
departure after its arrival. At time d; the eall that arrived at ap will
surely gain service, since it is the only call in the system at that time,
and hence the integral part of the delay for this call will be zero units of
time with probability one. In contrast, the call which arrives at a; will
have to compete for service at d» with another call, and hence the integral
part of its delay will have a probability of one-half to be zero and an
equal probability to be greater than zero. In general, the integral part
of the delay will have a (discrete) probability distribution that depends
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Fig. 1 — Number of calls in the system as a function of time.
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on the number of calls in the system at the first opportunity that the
call in question has to gain service. The determination of this probability
distribution is the major portion of the task of evaluating the over-all
delay distribution.

It might be pointed out that the equilibrium state probabilities are
the same whether they are considered over the whole process or only
over the set of discrete instants of time consisting of the departure
epochs. This is shown by the fact that the generating function for the
state probabilities given by Kendall,” which refers to the departure
epochs, is the same, when specialized to constant holding times, as that
of Crommelin® specialized to one server; and that the latter refers to
the entire process.

What is needed now is the probability that a call, conditional on its
being delayed, will be one of n calls remaining in the system at the first
departure epoch after its arrival. It turns out that the latter probability
is the same as the unconditional probability of n — 1 calls in the system,
as shown by the following argument.

An arriving delayed call will be one of n calls in the system just after
the next departure following its arrival in one of n + 1 mutually exelu-
sive ways: there were k& calls in the system at the last previous departure
epoch before the arrival of the call in question and n — & other calls
arrived during the service interval, & = 1, -+, n; or there were zero
calls in the system at the last previous departure epoch and n — 1 other
calls (besides the call being served) arrived during the service interval.
If Pr{n | A} represents the desired probability and P.(\) represents the
unconditional probability of % calls in the system when X is the arrival
rate,

Prin |A} = [Po\) + PN pn — L,A) + -+ + P.(A) p(0N), (1)
where p(k,\), is an individual Poisson term, i.e., the probability of &k
arrivals during a service-time interval. However, (1) is exactly Crom-
melin’s equation for P, in the one-server case. Therefore

Prin |A} = Pus(N). @)

With the dependence on A suppressed hereafter, let the conditional
probability that the delay is not greater than ¢, given that the delayed
call is one of n calls waiting for service at the first post-arrival departure
epoch, be denoted G(¢|n). Let the resultant delay distribution for
delayed calls be denoted F(f). Then

F@) = 3 Pea G| (3)

[+ remains to evaluate G(¢ | n).
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Owing to the queue discipline of random service, the delay suffered
by a call between the instant of its arrival and the first post-arrival
departure epoch is independent of the delay subsequent to this epoch.
Also, it is known that the initial delay of a fractional part of a holding
time is uniformly distributed over a service interval, owing to the prop-
erty of random arrivals. Furthermore, condltlomng on the number in
the system at the first post-arrival departure epoch does not affect the
independence property or the uniform distribution of the fractional
delay (as would, for example, conditioning on the number in the system
at the instant of arrival). Let the delay be represented by 7', the integral
part of T by T" and the fractional part by 7. Similarly, let the quantity
¢ be decomposed into ¢ and ¢”. Then

G(t|n) = Pr{T £ t|n}
= Pr(T" < ¢ |nl + PriT’ = ¢'|n} Pr{T” < ")

)

because of the independence of the integral and fractional parts of the
delay. Or

t/—1

G(t | n) = Z Pr {7 =i|n} + " Pr{T" =1t |n} (5)

because of the uniform distribution of 7.
It is not difficult to write a formula for Pr{7” = ¢ | n}. First,

PriT' = 0ln} = -

since, at the first post-arrival departure epoch, the delayed call is one
of n calls equally likely to be served. Also

1
PrT'=ln=(1—-—) —
(' = 1| 200
where p(j,) represents the Poisson probability of j; arrivals in a service
interval, since, if the delayed call is not served at the first opportunity,

any number of ealls from zero upward may arrive during the next com-
plete service interval. Extending this reasoning, one has for 7z > 0,

prr =i =(1-1), % I pGi)

n ceetjpzk—ntl k=1

1 p(j:) (6)
n—k+23f n—%+ZJr

1 —

Although (6) can be written down directly, it is more convenient
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computationally to use a recursive formula for the probabilities. (This
was pointed out to the author by W. 8. Hayward, Jr.) Let

PriT" = 1| n} = Qin).

Then
QU(R) = 1
n
and
Qi(n) = [1 = Qu(n)] Z p(H)Qia(n +j — 1). (M

It is elear that (6) is the solution of (7). The delay distribution, F(7),
is obtained by substituting (6) into (5) and the latter into (3). The
values of P,_; necessary for evaluating (3) are obtained recursively
from (1) and (2), together with the relation Py = 1 — A,

The results of the ealculations are shown as falling distributions of
delays for all ealls. That is, A[1 — F(¢)] is plotted rather than F(f), in
keeping with custom in the field of delay theory. The distributions are
shown in Fig. 2 for delays up to 14 holding times and, in Fig. 3 on a
compressed scale, for delays up to 130 holding times.

As an example of the use of the curves, suppose a single marker whose
holding time is 0.1 second serves calls at random and that it is desired
to limit the probability of a delay greater than 2 seconds at this marker
to 0.0001. It is required to find the permissible ocecupancy. Since a delay
of 20 holding times is involved, Fig. 3 should be consulted. On this
chart, the oceupancey for a probability equal to 0.0001 of delay {/h = 20
is found to be just above 0.60, roughly 0.61. Thus, the marker can handle
a random input averaging 6.1 calls per second.

In some applications in which service is not precisely order-of-arrival,
it may be presumed that the delay distribution will lie between those
for random and queued service. In such cases, the delay distributions
will fall in a band bounded by random service and queued-service
(Crommelin) curves. Iixamples of such bands are shown on Fig. 4. It
should be noted that the bounding curves for any oceupaney must cross,
since the average delay is independent of the queue discipline.

It is of some interest also to compare the random-service delay distri-
butions for constant and exponential holding times. It is conjectured
that a pair of such eurves for a given occupaney defines a band containing
all random-service delay distributions, for that occupany, where the
holding-time distribution is of gamma type in which the coefficient of
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variation is not greater than unity. (In particular, the x* distributions
with two or more degrees of freedom are of this type.) Several such pairs
of eurves are shown on Fig. 5. (The exponential-holding-time curves are
based on Wilkinson.?) Here, of course, the curves do not eross — the
exponential-holding-time curves always (except at ¢ = 0) lie above their
constant-holding-time counterparts.
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