Synthesis of Active RC Networks

By B. K. KINARIWALA
(Manuseript received May 28, 1959)

A basic theorem s derived for RC networks containing active elements.
It is shown that no more than one active element, embedded in a passive
RC network, is needed to realize any driving-point function. Sufficiency of
only one active element 1is shown by developing a synihesis method. A syn-
thesis technique for n-port passive RC networks is developed in order to
establish the sufficiency proof of the basic theorem. A more practical method
of realizing driving-point functions, using active RC networks, termed the
“eascade” method, 1s also presented. This method is applied to the design
of a tenth-order Tchebycheff parameter filter.

I. INTRODUCTION

Passive filters using only resistive and eapacitive elements are attrac-
tive for reasons of size, cost and reliability. Their use has been limited
because the network complexity of RC' filters (due to restrictions on
impedance functions realizable with R’s and C’s only) is greater than
that of equivalent RLC filters. This defect can be overcome by using
active elements in addition to passive RC networks. Active RC networks
are particularly attractive for achieving exacting performance at low
frequencies, where it is not practical to use either inductors or crystals.

The practicality of active networks is a direct result of the availability
of precision resistors and capacitors of small size having small drifts and
low temperature coefficients, as well as the development of reliable
junction transistors. In fact, it is not unusual to find that the active
element’s drift with time and temperature is no worse than that of a
passive element.

There are several techniques available for synthesis of transfer fune-
tions by active RC networks.!2*4® The active element used is either
a stabilized high-gain feedback amplifier or a negative-impedance con-
verter. With the feedback amplifier, one RC network is used to produce
the zeros of the transfer function and another RC network produces the
poles of the function. The number of passive elements required in this
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case tends to be rather large. The use of a converter usually leads to
bridged—T, twin-T or parallel ladder networks when there are finite fre-
quencies of infinite attenuation. There are several modifications of these
basic synthesis methods which yield simpler networks. However, the
emphasis in all of these methods is on the realization of transfer func-
tions.

This paper presents some theoretical and practical results in the syn-
thesis of active RC driving-point functions. Obviously, driving-point
impedances can be used to yield any desired transfer characteristic.
A theoretical investigation is first undertaken to show that no more than
one active element (embedded in an RC network) is required to yield
any desired driving-point function. The proof of this basic theorem is
presented in Section II. Sufficiency of only one active element is shown
by an actual synthesis method. This method involves realization of
n-port passive RC networks. The results used in Section II for this pur-
pose are drawn from material presented in the Appendices.

A more practical method of synthesizing driving-point functions is
presented in Section III. This is termed the “caseade” method, since it
involves cascading of a passive RC network with another passive RC
network through a negative impedance converter. Network functions
of rank 2 lead to particularly simple structures. Such functions are dis-
cussed in Section IV. The results obtained in this section are applied to
the design of a tenth-order Tchebycheff parameter filter in Section V.
The concluding section summarizes the results and discusses the out-
standing problems as well as suggests some new avenues of approach.

II. BASIC THEOREM

In this section it will be proved that any driving-point immittance fune-
tion* can be realized by a transformerless RC structure in which is embed-
ded only one active element. The active element may be represented as a
“sontrolled” source or as an amplifier. In any ecase, the active element
is a two-port transducer. These two ports may he considered as external
ports which are connected through an active element.

The remaining network is now purely passive. Thus, a driving-point
immittance can be represented as a three-port passive RC network with
two of the ports connected through an active element (I'ig. 1). The proof
of the basic theorem is then accomplished in two parts:

* In this paper, an immittance funetion is assumed expressible as a ratio of two
polynomials in the complex frequency variable, p = ¢ 4+ jw. The only restriction

on these polynomials, except where other restrictions are specifically introduced,
is that they have real coefficients.
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Fig. 1 — Realization of driving-point function with one active element.

i. Determination of the three-port RC' matrix from the specified im-
mittance function.
ii. Realization of the three-port R(' network without transformers.

2.1 Determination of Three-Port RC' Matrix

A driving-point admittance function y(p), where p = ¢ + jo, is the
complex frequency variable, is to be realized by the structure shown in
Fig. 1. The admittance function is chosen because it leads to a three-
port short-circuit admittance matrix, ¥, which is convenient to use in
the realization of the desired network.

In the figure, y is the admittance as seen from the terminals 3-3", u is
the gain of the active element and Ty, is the current transfer function
of the passive RC network between terminals 1-1" and 2-2’. Then, by

Blackman’s equation,’
1 _ T 0
Y= Un (—“%) (1)

where yy; is the admittance seen at 3-3’ when the active element is
placed in a reference condition of zero forward transmission, uTis is the
loop-current transmission when zero admittance is introduced between
terminals 3-3' and pT,” is the loop current transmission when infinite
admittance is introdueed between 3-3'.

For convenience and without loss of generality, it is assumed that the
amplifier has zero input and output impedances. The amplifier is thus a
current-controlled voltage source (Fig. 2). Thus, ys; is the short-circuit
admittance at port 3-3” and pT'1.” is the loop current transmission when
all ports are short-circuited, where

.uTlgw = meym 3 (2)
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Fig. 2 — Current-controlled voltage source.

and Ty, the loop current transmission when port 3-3’ is open-circuited,

may be written as
0 Y3
el = Ry, I:ym (—) — yujl- (3)
Yaz

Substituting (2) and (3) in (1),

_ YizlYm _ )
Y=y : R,,‘( Yaa yl") (4)
% 1+ Ruyn ’

Let y be the admittance given as a ratio of two polynomials. Express
the numerator and denominator as differences of two polynomials:

_N_Nl-—Ng -
y_-ﬁ—m’ (5)

The polynomials N; and D; must have only negative real roots. Fur-
ther, N; and D, are so chosen that N,/D; is an RC driving-point admit-
tance. The reasons for these requirements will become clear later. It is
also desired that the degree of N» does not exceed that of Ny by more than
one and that the degree of D, does not exceed that of D; by more than
one. In Appendix A it is shown that, given N and D, it is always possible
to find the polynomials Ny, N,, Dy and Ds satisfying these requirements.

It is now possible to rewrite (5),

L
M N,
Gz by v
D,
and, comparing with (4),
N,
Y Dy’



SYNTHESI® OF ACTIVE RC NETWORKS 1273

D,
_Rmym = 5;;
Yales N (7)
Rm — Y2 ) = 5+
( Yss Jl) Ny
or
N1Ds — N.D
—Rmymyga = ;“.

Dy?

The previously mentioned requirements on the polynomials Ny, Dy,
ete. are seen to be necessary if the identifieations in (7) are to be made.
The first equation in (7) gives the requirements on N;/Dy, the second
equation gives those on the degrees of D, and Dy, and so on. Since these
requirements are already met, one obtains from (7) some of the elements
of the short-circuit admittance matrix Y of the three-port RC network;
ijys is completely determined, whereas s and the product 31312 are deter-
mined within a constant multiplier.

Iiquation (7) gives all the constraints on the elements of the ¥ matrix
imposed by the admittance function. Other elements of the matrix can
be chosen arbitrarily. These remaining elements of the ¥ matrix, R,
and the identification of ¥ and y.3, must be so determined that ¥ is re-
alizable without transformers. In order to determine these quantities, it
is necessary to have a knowledge of the conditions under which the net-
work can be realized without transformers.

2.2 Realization of Three-Port RC' Nelworks

Since synthesis of three-port networks is a special case of general
n-port synthesis, a synthesis technique for n-port RC networks is de-
veloped below. The results obtained are then applied to the three-port
case.

2.2.1 Synthesis of n-Port RC Networks

The synthesis method consists of generating an auxiliary (m 4+ n)-
port® matrix representing a purely resistive network. When this net-
work is terminated at its m-ports in appropriate capacitors, the desired
n-port RC network is obtained (Tfig. 3). It is assumed that the termina-
tions are unit capacitors. If desired, the values of these capacitors are
changed by a simple sealing of impedances at the appropriate ports.

* m represents the number of capacitors in the RC network,
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Fig. 3 — (m + m)-port resistance network terminated in m capacitors.

The short-circuit admittance matrix ¥ of the RC network may be ex-
pressed as

Y=I€p—}—Km——ZI{,( ! ) (8a)
¥ D + o

where K, K. and K, are (n X n) matrices of residues. It is shown in
Appendix B that it is preferable, though not necessary, to have K = 0;
ie., the matrix ¥ has no pole at p = . Furthermore, it is always
possible to determine ¥ from the given driving-point admittance such
that there is no pole at p = « (see Appendix A). Consequently, it is
convenient to consider

Y=Kw—2y:1{,( 1 ) (8h)

p'J['U'v

Let the short-circuit admittance matrix for the purely resistive (m + n)-

port be
An Am n
G = )
Ay A |m (9)
n m

where A ;; are matrices of appropriate order. It is desired to determine G
such that, when the m-ports are terminated in unit capacitors, the ma-
trix Y is obtained. It is shown in Appendix B that

An = I(m 3

Ap =M Ay = M = transpose of M (10)

bl

Agz = .S.
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where

. M =[M,M, ] (11)

and M, is defined by
K, = M.M,; (12)

M, has n rows and m, columns. Thus, M has n rows and m = »_,m,
columns. It is seen from (9) that m determines the number of capacitors.
S is a diagonal matrix defined by

_CFlI[ 0 0 0
0 o, 0 0
0 0 ofs O

S = 0 0 0 (13)

o o © o o o

o o0 0 00 0

where [; is a unit matrix of order m; .

If it is desirable to obtain a network with a minimum number of
apacitors, it is necessary to obtain a minimum m. This is accomplished
by having each m, a minimum number. A minimum m, is obtained if

A;][y = [l'uyl y ﬂIwﬂ; ﬂ-[ﬂh ”']’ (]4)

where A1.; are determined by expressing the quadratic form of K, as
sum of squares,

T KX = 2 (XM,)" (15)
Fach M,; is a column vector. It is seen that, if K, is of order » and rank
8, , then M, has n rows and m, = §, columns. The matrix M is then ob-
tained by using (11). The minimum number m of capacitors is seen to
be the sum of the ranks of matrices of residues in the finite poles.

The (m + n)-port G matrix is thus determined by (9) and (10). The
(m 4+ n)-port resistance network must be terminated at its m-ports in
unit capaeitors to obtain the desired n-port RC network.

If the matrix G can now be realized without ideal transformers, then
terminating the resistance network in capacitors at appropriate ports
will yield the RC network without transformers. Synthesis of resistance
networks is considered below.
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Fig. 4 — A typical unit in the realization of n-port resistance network.

2.2.2 Synthesis of n-Port i Networks

Tt is generally known and easy to show that a resistance network need
have no internal nodes.* It follows that an n-port R network can always
be realized as a completely connected graph having only the 2n external
nodes. Necessary and sufficient conditions for the general n-port R net-
work are not yet obtained. However, conditions for a restricted class of
networks are obtained here.

Consider a symmetrical balanced structure constructed by introducing
symmetrical lattices between each set of node-pairs (Fig. 4). If all node-
pairs are short-circuited and a one-volt signal is introduced between one
pair of terminals (say ¢-'), then from the balanced structure it is seen
that the current drawn by the network is determined solely by struc-
tures directly connected to terminals 7-7’. Short-circuit admittance seen
at 7-7' is the sum of the short-circuit admittances of the lattices connected
directly to i-i’. Furthermore, the short-circuit transfer admittances be-
tween terminals 7-¢' and j-j’, for all j, are determined only by the lattice
structure between each set of node-pairs. Thus,

gi = 2, A, (16)

Fisli
where A;; is the short-circuit admittance of the lattice between node-
pairs ¢-¢' and j-j, and g,; is the short-cireuit admittance seen at i-i'. Also,
di; = BI‘J’: )
where Bj; is the short-circuit transfer admittance of the lattice between
node-pairs i-i’ and j-j', and g;; is the short-circuit transfer admittance
between terminals 7-2' and j-j'.
Since for any lattice A,; = | By, |, (16) may be written as

i = 2;, | gii |- (18)

* One way to show this is by repeated application of the results of Rosen.?



SYNTHESIS OF ACTIVE RC NETWORKS 1277

The conditions of (18) are shown to be necessary for the structure of
Fig. 4. If any additional branches were placed between terminals ¢ and
7', the conditions of (18) would still be valid.

Sufficiency of the above conditions is proved by realization of the net-
work as follows, If S;; and €';; are series and cross-nrm admittances
respectively of the i—j lattice,

A= 3 (8 + Ciy)
gii = By =3 (=Si+ i)
Let A;; = | Bi;| = | gij |- Then,
Cij = [ gii| + gii

, (20)
Sii = lgis| — gi5)

(19)

It is seen that C';; and S;; are non-negative, and therefore realizable.
Any excess admittance determined by

Gii — E lgii |
J#i

is then introduced between terminals 7 and 7', This proves the sufficiency
of conditions (18). A matrix ¢ that satisfies the conditions of (18) will
be called a “dominant diagonal” or D matrix.

Necessary and sufficient conditions for the existence of balanced R
network are that the short-circuit admittance matrix be a D matrix.

2.2.3 Three-Port RC' Networks

In the case of three-ports for active networks under consideration, it
will be shown that it is possible to find a matrix ¢ which is 0 D matrix.
It is also desirable to obtain the three-port RC' network with & minimum
number of capacitors.

If the case n = 3 is considered and the minimum number of eapacitors
is desired, then m, = 1 and K, should be expressible as

K, = MM,, (21)
where 3, is a matrix with three rows and one column. If K, = || 1., ||

it is shown in Appendix C that, from (7),
Fig k™ — k®hs” = 0, for all ». (22)

[Furthermore, since y,; and y=» are not specified, they may be chosen so
that the K, , for all », are positive semidefinite matrices of rank 1. Hence,
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the representation in (21) is possible with

I‘,la(vm . o
. ¥ )
IVW s kia ', ks
33
. (12
K ku") "'23 ’ k%m ] (23)
b 1
kaa(v)
k13( k‘za(") kaam

)
1 () (») (v
M, = :[:\/m ess'”, Koz, Feaa],

and relation (22) is assumed to be valid.
The elements of interest in G are

ku“= ke klam
kexu kao™ If'::tm

|
I
1
i
1
k™ kg” ke £ ViEg® % Vft?:mmé V legs™
i
!
i
I

G = o 0 0
0 ae 0
0 0 1T Om

The first two rows of G can be made to satisfy the dominant diagonal
conditions, since the diagonal terms may be chosen arbitrarily. The rows
having o, for diagonal terms can also be made to satisfy the same con-
ditions by multiplying appropriate row and column by 4/C, . This effec-
tively changes the termination from unit capacitor to one having value
¢, . To make the third row satisfy the same conditions, R, must be
chosen large enough, thereby reducing the magnitudes of the residues of
yia and yu [see (7)]. Further, the freedom in the choice of P; and @
[see (5)] ean be used to make the diagonal term in the third row greater
than the sum of magnitudes of the remaining terms.

It is seen that the three-port RC matrices arising from the active net-
works under discussion can be realized without transformers.

A much simpler way of proving the basie theorem becomes obvious at
this point. From discussion of n-port R networks it is seen that n-port
RC networks are realizable if the matrices of residues in various poles
and Y (0) are all D matrices. For example, the ¥ matrix may be written
as

Y==K+ 2 K/ (25)
» P+0'v
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where Ky = Y(0) and K, = K,/a,. If K is a D matrix, it is realized by
resistors. Each remaining term p(K :) /p + @, is realized in the same man-
ner as the R networks, except that each branch would be a resistor and a
capacitor in series. The networks are all connected in parallel to obtain
the n-port RC network.

T'rom (7), it is seen that 7, and ¥»» are unconstrained and hence can
be chosen such that the matrices K, and K, have the diagonal terms in
the first and second rows greater than the sum of the magnitudes of the
off-diagonal terms of the corresponding rows. The third rows can be made
to satisfy these conditions by an appropriate choice of R, . A large
enough value of R, can always be chosen to make the residues of i3
and ys; sufficiently small [see (7)].

Thus, there are two alternative ways of proving the basic theorem.
Comparing the two as synthesis methods, the second way is much sim-
pler, but uses a rather large number of resistors and capacitors. The first
method uses a minimum number of capacitors but still a large number
of resistors. It also offers a choice as to the number of capacitors desired.
However, it is not a practical method because of the large number of re-
sistors required. The first method could turn out to be practical if it
were possible to realize the R networks with much fewer resistors.

A much more practieal way of designing active RC impedances is next
undertaken.

IIT. CABCADE SYNTHESIS

In active networks, negative impedances are admissible and can be
incorporated into a realization technique with relative ease. A possible
way of realizing a negative impedance is with the help of a negative-
impedance converter.® A negative-impedance converter is an active
two-port which presents at either of its ports the negative of the im-
pedance connected at the other port. Consider an impedance function

N _Ni— N,

D -_-Dl — DQ, (26)

Z(p) =
where N and D are polynomials in p, whose degrees do not differ by
more than one.

If it is possible to break up N and D into N,, N. and D, , D as in (26)
such that Ny, No, D; and D, all have only real and negative roots, then
it might be possible to realize Z(p) as a two-terminal-pair RC' network
terminated by either a negative resistance or a negative RC impedance.
{ Refer to Fig. 5.)

It is shown in Appendix A that any polynomial having real coefficients
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Fig. 5 — Realization of driving-point function by cascade method.

can be easily expressed as a difference of two polynomials each of which
has only negative real roots. It is easy to show that an RC' network ter-
minated in a negative resistance cannot produce complex poles of the
driving-point impedance function. The poles of Z(p) are the zeros of
(220 — R), where z. is the open-circuit impedance of the RC two-port
and — R is the termination at end 2. It should be obvious that any re-
sistance (positive or negative) added to an RC' impedance merely shifts
the zeros along the s-axis without moving them off the axis. If the ter-
mination is —Z, , a negative RC impedance, then the poles of Z(p) are
the zeros of (zs — Z.). It is seen from Appendix A that a difference of
two RC impedances can indeed produce the desired complex zeros.

3.1 Realization Problem

Consider an impedance function

Z(p) = , (27)

Cl=
I
o ol =

where B is a polynomial having only negative real roots. Then, as per
Appendix A,
Py P;

P, P
Q)

P, P

Z(p) = where ;P = B (28a)

Py P
PP P o
=_t-1 -2 28b
Qs P .

QP

FFor an RC two-port terminated in a negative impedance,
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1
u—qz_z’“ (29)

Z(P) = Zu P

where z1; , 222 are the open-circuit impedances of the RC two-port, ys; is
its short-circuit admittance and — Z, is the terminating impedance. Com-
paring (28) and (29):

W P
1 = 0
_
Zm = 0
(30)
1 _ B
Yoa Py’
P
ZL = le.

Without loss of generality, we will assume that Z(p) has only complex
zeros and poles. It should be noted that Py, P;, @, @ have only nega-
tive real roots. As shown in Appendix A, Z, is necessarily an RC imped-
ance funetion and —Z;, is realized by means of a negative-impedance
converter. It remains to be shown that 21, , 222, 422 represent a two-port
RC network. From (30),

1 _ !)1 211222 212
2 jjl Zn
and
2 = ﬂ(éi_—@l (31)
N
Since 22 must be a rational function (P1Q; — Pi);) must be a perfect
square.

Then, to sum up, the necessary and sufficient conditions for physieal
realizability are that:
1. zn and z» represent RC driving-point impedances;
il. (P1Qy — Pi@y) be a perfect square;
iii. residue condition be satisfied at all the poles.*

* For RC networks, the statement includes the point p = =, where the func-
tions may be nonzero.
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The condition iii is always satisfied. The residue condition is
Fuks — ki2' 2 0, (32)

where k;; represents the residue of z;; in a given pole. The residues of
z11 and 2z may be written as

I i_ 1.31(——0',:)

" Q(—ai)’ (33)
I i _ Q:«(_ﬂ'i)

2 (=)’

where ¢; is any root of @, and (), is the derivative of @, with respect to
p. The residue of 2y is

f' = \/Pl(—ﬂf)Qﬂ(_ffi) — O(=a)Py(—ai) (34)
Qi —oi)
But
O(—e:) =0,
and so
Fu'ke' — (k') = 0. (35)

Thus, the residue condition is always satisfied with an equal sign at all
the poles. From (30) and (31) it is seen that the requirements at in-
finity are also met.

In reference to condition i, consider the location of the roots of Py,
P., ete. as shown in Fig. 6. As already pointed out, P,/P; is an RC im-

P P R Py -
i M T T ()
! I I
I | |
| | |
bR ! P
- o—1 o
: > [ (b)
: I
Py | Ps
—o—1 O— o
—_— —_— (c)

Fig. 6 — Adjustment of the roots of Ps and Py so that Py/P, represents an kC
impedance function: (a) roots of P, and Py; (b) roots of Py; (c) roots of Py .
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pedance function. Hence it will have alternating roots in the correct
order. This is shown as (a) in the figure. P;/P; may or may not have the
desired alternation. This can be corrected by adding the same con-
stant to Pi/Ps and Py/P;y [see (28a)]. Such addition of a constant will
move the roots of P; closer to those of P, and move the roots of P;
closer to those of P, . This can always be done such that P;/P, will have
the desired alternation. In a similar manner, @3/, is corrected such that
P;/Q, also has the required form. In the case of an impedance Z of rank
2, the above corrections can generally be done so as to make (P,Q; —
P3Q,) a perfect square. If and when this is not possible surplus factors
might have to be added to Z(p) to obtain a rational 2 .

It is not at all necessary to make all the ratios (P,/Q, , Q3/Q1, P3/P1)
have the desired alternation. It is obvious that, if z(P,/Q:) and
200(Q3/Q1) are RC impedances and 2. is a rational function satisfying the
residue conditions, 1/ys. or P3/P; will necessarily have the proper form.
Furthermore, if zj5 is a ratio of two polynomials, the residues in its poles
(real and negative) will be real and (J')* will always be positive. If
zs» is an RC impedance function, its residues are necessarily positive.
From (35), it is seen that z;; will automatically have positive residues;
i.e., it must be an RC impedance. Thus, in order to realize the RC two-
port one need only make zy; or 22, an RC impedance and (PQ; — P3Q))
a complete square.

It is shown in Appendix D that, if Z has only complex poles, then z.
is always an RC impedance and remains so under the addition and sub-
traction of a constant in the denominator.* Thus, in such a case all that
is needed is to make z;» a rational funetion. An illustrative example is
considered to show how z;» can be made rational by the addition and sub-
traction of an appropriate constant in the denominator of Z.

Lzample:
P tp+1
Z(p) :p"+p+1: (p+ Dip+2)
PP+ 2 Pt+p+2
(p+ ip+2)

p+2 3
_ptl p+2
p+3_ 4
p+1 p+2

* This proof was developed by J. M. Sipress.



1284 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1959

3 _p+2
_p+2p+2 p+1
p+3_4 _pt+2
p+3 p+1

In this case, PiQs — Pi@Q; is to be made a perfect square. It is seen
that Q;/Q; has the proper alternation. Now, add a constant K to

(p+3)/(p+1)
and 4/(p + 2). Then,
PQs — PQu = (p + 24 + K(p + 2)] — 3[K(p + 1) + p + 3]
= Kp'+ (K + 1)p + (K — 1).
Tor this to be a complete square,
3K — 6K —1=0
and

2
A=1+‘\73.

The open-circuit impedances of the two-port are

P+ 2

T EFDpFL F2
oo = K(p+2) +4
TU(K+D(p+1)+2°
K 1
- Pt 2}1\1
a = VK K+rDp+1) +2

It is seen that these satisfy all the required conditions. It should be
noted that adding the constant K to and subtracting it from the numer-
ator alone instead of the denominator alone of Z(p) will not yield a ra-
tional zp . This is an obvious consequence of the fact that the introduc-
tion of K in the numerator alone is an attempt to make z;; nonvanishing
at infinity, whereas zs» vanishes at infinity.

Realization of the RC two-port can be easily accomplished when there
is only one term in the partial-fraction expansion of each z; " Only one
ideal transformer is present in such a case, and this is removed by means
of impedance-sealing of the relevant part of the network. When several
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poles are present in the impedances z;; , such a realization procedure re-
quires several ideal transformers, which eannot be eliminated in the
above manner.

In such cases, one ean make z;;, and 2. satisfy the conditions of Fial-
kow and Gerst” by introducing one ideal transformer. The network is
then realized without transformers and appropriately scaled to remove
the ideal transformer that was introduced above. Such a realization
would not give the desired z. . To obtain this desired z.., positive or
negative elements are then added in series at the load end of the net-
work. Negative elements are then realized together with the load through
the negative-impedance converter.,

3.2 Surplus Factors

As seen above, it is possible in simple cases to make (P1Q; — PyQ,) a
perfect square by the use of an appropriate constant. However, this is
not always possible. It will now be shown how (P1Q; — Ps@Q,) can always
be made a perfect square by introducing surplus factors in the original
expression for Z(p). A new formulation is necessary so as to have z.
present explicitly in the expressions. Sueh o formulation can be obtained
by writing Z(p) in the following manner:

Z(p) =24 — e

g
P e
@ a_n
0 P
[from (30) and letting z1. = ¢/(]
g‘.!
_ P Qe ‘
= Q_l ——D. (36)
h P>

This equation follows because (—D = Py@Qs — (WPy), as ean be seen
from (28a). Then,

D g P

2y = D@
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and
_ DPy + sz-z

N o

or
¢’P. = NQi — DP;. (37)

This equation must be subject to the constraints that (P/@Qy)(211) be
an RC impedance. A further constraint requires @,/ P: to be also an RC
impedance. This is seen to be satisfied in (28a) since roots of Py and P,
alternate. From a different viewpoint, it is seen from (36) that —D/QP;
must give a difference of two RC impedances having ¢ and P, for their
denominators. So the roots of @y and P, must alternate. The sign of
(Qs/Qy) is positive, and so the nearest singularity must be that of P, .
Therefore, Q;/P: must be an RC impedance. If (37) is satisfied and
P./Q; and Q,/P; are RC impedances, then z;1, za and Z, will all be RC
impedances. If g is also a polynomial, then the impedance Z is physically
realizable. The conditions for physical realizability can then be written
a8

92P2 = NQl —_ DI";
and (38)

Q1

Q
P,

are RC impedances.

It is important to note that (37) contains N and D, which are already
known. Choice of P, is arbitrary. Freedom in the choice of Py is not ex-
plicit in (37). However, this freedom can be assigned to €, since
—D/Q.Ps gives 2z and Z, . Thus, @ and P can be considered to be ar-
bitrary instead of P; and Py . Further, one can consider that P and @,
are arbitrary in (37). This follows since, if (38) is satisfied, it does not,
matter whether P» and Q, are chosen independently and P, is determined
from (37) or if P, and @, are chosen and P, determined from (37).

Assume for the moment that it is somehow possible to find Py, @,
P, which satisfy (38). It will be shown that it is possible to make ¢° a
complete square by introducing surplus factors. Once this point is elari-
fied, it will be shown how Py, @ and P, can always be chosen to satisfy
(38), N and D being still assumed to have only complex conjugate roots.
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This restrietion will be removed later without altering the arguments
presented here. For convenience in discussion, Z(p) is chosen to be of
rank n = 2. Similar results are obtained for any n.

Consider Z(p) of rank n = 2 (i.e., N and D of degree 2). IFrom (28),
Py, @y and P are of degree 1. These are determined such that (38) is
satisfied. Now g? may or may not be a perfect square. If g2 is a perfect
square, the problem is solved and the network can be realized. If ¢* is
not a perfect square, surplus factors A7 are introduced in Z(p), making
N’ = NM and D’ = DM of fourth degree. New polynomials Pi, Qr and
P5 of second degree are required [see (28)] and are somehow determined.
Then (37) may be written as

g°'Py = M(NQ, — DP}). (39)
In place of (39), consider
(NQ: — DP\) = P:R. (40)

If (40) is =atisfied subject to the constraints of (38), where R is any
remainder polynomial, one merely multiplies both sides of (40), by
M = R to give (39). Thus, it is seen how ¢° ean be made a complete
square by the introduction of an appropriate surplus factor M. All that
remains to be shown is that (40) can be satisfied subject to the con-
straints of (38). This is no different from the problem of finding P ,
Q1 and P, satisfying (38), which was assumed somehow possible. It will
now be shown that it ¢s possible to find polynomials P, , @, and P,
such that

(.-‘VQ[ - DPI) = JD::H, (4011)
subject to the constraints

P

Q| .
) are RC' impedances. (40b)
1

;-a;J

As discussed previously, P, @, of appropriate degrees are chosen
arbitrarily such that P,;/Q, is an RC impedance. The roots of P, and Q,
of second degree are shown in Fig. 7. No singularity is chosen at the origin
for reasons that will soon become clear. Symbol [ refers to the function
N@Q, and 11 refers to (—DPy). The supersceripts of I and /71 represent the
corresponding signs of the values of the funections in the designated re-
gions on the real axis. The shaded areas in the figure show regions where
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Fig. 7 — Determination of roots of P when roots of P, and @, are known.

both funetions have the same sign. The two shaded areas shown are of
opposite signs. Therefore, there must be at least one zero of the funetion
(I 4+ II) in the region between these two areas. Such a zero in this re-
gion is assigned to Ps . Another zero of P is required to the right of all
the four roots so as to satisfy (40b). This is easily accomplished by mak-
ing 2z = Z at some point to the right of the other roots. This gives the
other root of P» shown dotted in the figure. Thus (40a) and (40b) are
completely satisfied.

The relevant steps involved for Z(p) of rank n are:

1. Choose P, and Q, each of degree n, so that P;/@, is an RC imped-
ance.

2. Tvaluate Z(p) at some point on the negative real axis closer to the
origin than the root of @ nearest to the origin,

3. Make Z(p) = zin = Pi/Q at this point by merely multiplying 2y,
by an appropriate constant.

4. Determine P.R by finding (NQ, — DP;), and find the roots of P.R.

5. Assign the appropriate roots to P» from steps 3 and 4.

6. Determine R from steps 4 and 5 and find ¢ = R*, N' = NR and
D’ = DR.

7. Express (—D'/@Q,P,) in partial-fraction form to obtain

(Qs/Ch — Pu/Py).

8. All the polynomials are determined and the relevant impedances
are obtained from (30) and noting that z;. = ¢/@1 .
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vanishes at infinity, whereas z;; and z» do

not. A sufficiently large constant is added to z. and Z, such that the
two-port impedances satisfy the residue condition at infinity.

FExample:

Z(p) =

(p+3)(p+5) _

N _p+p+1

D pP+tp+2
- (p" 4 8p + 15)

1. zu(p) = I(U

(p+2)p+4)

“(pt+ bp + 8)

2. Z(—1) =1
3. am(—1) = Ko § = Z(—1) = &,
I\’D = T:%v
Py =3(p" + 8p + 15),
Q1 = 16(p" + 6p + 8).
1. NQ, — DP, = P,R = 13p" + 85p° + 165p" + 131p + 38
= (p+ 1)(p+ 3.80)(13p° + 21.38p + 9.76).
5. Py = (p+ 1)(p+ 3.89).
6. R = 13p° + 21.38p + 9.76,
g = R,
N’ = NR,
D' = DR = (p" + p+ 2)(13p" + 21.38p + 9.76).
-D 1 0318 | 2716.72
k P, 1ﬁ(l% + p+ 1 * p+ 386)
1 (20.104 , 2804.81
+ﬂ{p+2+p+4)
1 45 1.5
L= — (3 — ,
S 2u lﬁ( +p+2+p+4)
1 9.5 66.12
(0 5+ )
1 20.1 , 2804.81
# ?(&+p+2 p+4)
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1 0.318 2716.72
Z, = 13 + K e
g ]G( +“+p+1+p+3.89)’
where K, is chosen large enough so that K, = 189 The complete net-
work is then realized.

3.3 Elimination of Redundant Elements

Introduction of surplus factors as proposed in the last section will in-
troduce redundant elements in the realization. A possible formulation
which may avoid the redundant elements is briefly presented here.
If the roots of g are given by p = p;, then, from (36),

Z(p:i) = ZIL(P.‘)
and (41)

d _
@ s A

Fquation (41) assures that g is a polynomial. The frequencies p; may
be arbitrarily selected and (41) may then be solved. Then P can be
determined from (37) such that it satisfies the last restriction of (38).
There is considerable freedom in the solution of (41), and this freedom
may be used to satisfy the restrictions on Pa.

The difficulty encountered in the solution of (41) stems from the na-
ture of the simultaneous equations involved. These equations are non-
linear and cumbersome to solve. It is not possible to state whether the
method outlined above has a solution or not. It merely indicates a possi-
ble direction for further work on this subject.

for all 7.

y

P=pi

3.4 Restrictions on Impedance Functions

It has been assumed that the driving-point impedances have only
complex conjugate poles and zeros. The only use made of this assumption
was the consequent positive sign of the impedance function on the nega-
tive o-axis. This fact ensured that, for N/PsPs and D/PsP4, the residues
in the negative real poles (arbitrarily chosen) had alternating signs in
the alternate poles. Thus, the method is applicable to the realization of
any driving-point impedance (having poles and zeros anywhere in the
complex plane) as long as the impedance function is positive on some
interval of the negative ¢-axis. If no such interval exists, then the nega-
tive of the desired impedance is realized and a second converter is used
to obtain the required impedance function.
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Functions that are negative on the entire negative real axis fall in two
classes: (a) total number of poles and zeros on the positive s-axis in-
cluding the origin is even, with the function having a negative multiplier
and (b) total number of poles and zeros on the positive ¢-axis including
the origin is odd, with a positive multiplier. In both these cases, there
are no odd-order zeros or poles on the negative s-axis excluding the origin.
A second converter is needed in both the above cases, with the possible
exception of the case when there is an odd-order pole at the origin with
no other odd-order zeros or poles on the whole ¢-axis. In such a case, a
simple pole at the origin is removed if the residue in this simple pole is
positive, and the remainder funetion is checked to determine if it is posi-
tive or negative on the negative real axis. If it is positive, the realization
is carried out on the remainder function and a capacitor corresponding
to the removed pole is added in series. If the remainder function turns
out to be negative on the negative real axis, a second converter seems to
be needed.

In some cases, a pole at the origin can be handled in the following man-

ner:
!’1_25—|
7=£:lp_‘-‘ Py
pD PQt_QaJ
P, Py
i Py Py
1 P, P,
"NGre)-G+%)
L\p P p P
(42)
_1| nT R
Pl o
_ppg pP4
Po_ DPs
| P Py
P, Py

Equation (42) is now used to determine the value of K for which z,,
is a rational function. In the next section, such a development is applied
to the synthesis of functions of rank 2.

The only other restriction on the impedance function is that the de-
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grees of the numerator and denominator polynomials do not differ by more
than one. This ensures that the degrees of the polynomials Py, P.,
Q1 , Qs , ete., lead to physical expressions for z; . It should be noted that
the impedance function is not required to be positive-real, nor are the
poles and zeros required to be in the left-half plane.

IV. NETWORK FUNCTIONS OF RANK 2

The eascade synthesis method will be applied to the realization of
transfer funections of rank 2 (i.e., the numerator and denominator poly-
nomials of second degree). Ifunctions of rank 2 are by far the most im-
portant funetions from sensitivity considerations. Funetions with a single
pair of complex poles are less sensitive to changes in the converter con-
stant than are functions with more than one pair of complex poles.’
Consequently, it is preferable to realize a function of rank n in sections
of rank 2 and cascading these sections through isolation sections such
as emitter followers.

Synthesis of driving-point functions can be adapted in several ways
to the realization of transfer functions. Consider the realization of open-
cireuit voltage transfer function. Only two particularly simple but ex-
tremely important cases will be discussed here.

Case 1
In some instances, the input impedance may be chosen to be
N _E .
Z(p) =5 =7 (43)
0

and synthesized so that the resulting network has a shunt resistor R
across the input terminals. Conversion from current source to voltage
source I, = RI, yields the desired transfer function [IYig. 8(a)] within
a constant gain multiplier

E, 1N
E-RD (44)
Case 2
In other instances, Z(p) may be chosen such that
E, N
VA =—=— 45
®=7=5 (45)

and synthesized so that the resulting network has a shunt capacitor, C,
across the input terminals. A source conversion I; = Io/pC yields the
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Lo R
— 1 i AA A
+ & + 1 :+
| | !
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1
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z(p)_I_c_ pD (b) = D

Fig. 8 — Adaptation of driving-point synthesis to voltage transfer funection
synthesis: (a) case 1; (b) case 2.

desired transfer function [Fig. 8(b)]:

K, N .
L'_';_CB' (46)

The above two eases play an important role in the realization of trans-
fer functions of rank 2. Consider the realization of open-cireuit voltage
transfer function of the form

P +ap+b
pP+ep +d

It is assumed that 7'(p) has complex conjugate poles and zeros in the
left-half plane. Similar developments ean be carried out for other cases,
but they are not discussed here.

It is shown in Appendix E that d must be greater than b if the ration-
alization of z;s is to be acecomplished through the addition and subtraction
of a constant, K, in the denominator of (28a). In this case, the driving-
point impedance, Z(p), may be synthesized so that the resulting net-
work has o shunt resistor across its input terminals. Consequently, the
transfer function of (47) may be realized as discussed above if d is greater
than b. The strueture is shown in Fig. 9(a).

If d is less than b, the addition and subtraction of a term of the form
K/p in the denominator of (28a) will permit the rationalization of z, ,

T(p) = Ko (47)
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R1' R2 R4
VW 2 A scs ocs
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0CS = OPEN-CIRCUIT STABLE SIDE

Fig. 9 — Realization of transfer functions of rank 2: (a) d>b; (b)yd <b.

and the driving-point impedance Z(p) = [T'(p)/p] may be synthesized
so that the resulting network has a shunt capacitor across its input ter-
minals. The proper source conversion yields the desired transfer funetion
for d less than b. The structure for this case is shown in Fig. 9(b).

V. DESIGN EXAMPLE

The results obtained in Section IV for the realization of transfer func-
tions of rank 2 by the cascade method will be applied to the design of a
practical filter. Bandpass filters with high selectivity are of great im-
portance in frequency-multiplexing schemes. A typieal bandpass filter
frequently encountered in such systems is selected as a design example.
The over-all transfer function is represented as a product of functions
of rank 2, and each of these is realized as discussed in Section IV. Each of
the sections is a simple ladder structure regardless of the positions of the
zeros and poles.

The specifications on the filter are as follows: the pass band extends
from 12.33 to 15.25 ke, and in this range the transmission characteristic
must be flat to within ==0.1 db; the stop band is symmetrieal; and, start-
ing at 11.50 ke, a minimum of 50 db of rejection must be provided.

The approximation problem is solved through the utilization of a
Tchebycheff parameter equal-ripple chraacteristic. The transmission
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function T'(p) requires five pairs of complex poles, four pairs of imagi-
nary zeros and a simple zero at the origin and infinity:
(P’ + wn’)(p" + wn’)(p* + wis’)(p" + woi’)
(P* + 200p + wur’) (P + 202 + 022") (P + 2a5p + wns’) .
(P + 20-’410 + wnaﬂ)('P + 26\be + wns ):

T(p) = K

where

wn = 2r X 10349.7 rps,
wee = 2w X 11388.7 rps,
woy = 2m X 16510.4 rps,
wy = 2r X 18167.9 rps,

27 X 143.6 rps, wa = 2m X 12273.5 rps,
ay = 27 X 492.1 rps, wee = 21 X 12695.6 rps,
ay = 27 X T67.1 rps, wp3 = 21 X 13691.0 rps,
ay = 27 X 573.2 rps, wne = 27 X 14788.6 rps,
as = 2r X 179.3 rps, wis = 27 X 15318.1 rps.

g

This transmission characteristic is illustrated in Tig. 10 and the pole-
zero configuration is shown in I'ig. 11. The transmission function is ex-
pressed as a product of second order expressions:

" » p'-! + wﬂ-lg ) ( ’P2 + “‘032 )
T = K
(p) (p2 + gﬂ'lp + wrll.2 p‘j + 2ﬂ2p + wﬂgz
( p ) ( P2 + wp’ )
P*+ 2a3p + wag P+ 2aup + was’

( » + wo’ )
'P", + 2(1'513 + (,j“ﬁ"’ ’

Each factor is selected so as to obtain a reasonably low sensitivity to
changes in element values of the network section. Each of the second-
order expressions is then realized in a separate section as a voltage trans-
fer ratio. The last two factors belong to Case 1 and are realized to yield
structures of the form shown in Fig. 9(a). The first two factors belong
to Case 2 and are realized to yield structures of the form shown in Fig.
9(b). The middle factor has a zero at the origin and would either require
the use of surplus factors, or perhaps two converters, as discussed above.
However, the @ of the poles of this factor is rather low. Consequently,
for the sake of convenience, this factor is realized with a simple series
RLC circuit with a ferrite coil. Design of one section is considered below
as an illustration.
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Fig. 10 — Design example — filter characteristic.
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Fig. 11 — Design example — pole-zero configuration (not drawn to seale; pole
and zero positions normalized with respect to 2r).
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Consider the factor

p2 + l’-dm2
p2 -jf_ 201519 + wﬂ52

normalized with respect to frequency with a scale factor of 10%:

P+ 0423

2(P) = S 0033p + 0926
Choose
o1 = 0,
a2 = V0423 = 0.650.
Then
Py = p,
Pi = p + 0650,
Py = p + 0650,
Py =2 X 0650 = 130,
G =0+ K+,
0 — Kp 4 (L K0423 — 0.023 X 0.65 + 0926

0.650

The value of K for (P;Qs — Q1P;) to be a complete square is found to
be K = 1.455. Impedances 2y , 212, 2o and Z;, are now obtained and the
network realized. In order to ensure that there are no transformers pres-
ent, 1t 1z sufficient to make at p = «

zn(2) = zp(®) = (=),

The above requirement for no transformers is obvious in view of the
structure of IMig. 9(a). This requirement is satisfied very simply by the
appropriate scaling of the impedances involved. Consider

o
K*Zlgn

Z = Zn — e
K *23«3 — I{*ZL

Here a seale factor K* is introduced to satisfy the above condition of no
transformers,

The new impedances are z;; , A/ K* 212 , K*z0 and K*Z,, . It should be
observed that K* = 1/K. The network is now realized to yield the de-
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sired impedance function. The transfer function is obtained by the source
conversion; either the whole or part of the shunt resistor may be used
for this purpose. The actual values of the elements are obtained by in-
troducing appropriately the frequency scale factor of 10°. An impedance
seale factor of 5 X 10® is then introduced to obtain element values which
are practical. The element values of all the four active sections are given
in Tables I and II. Table III gives the values for the series RLC circuit.

It is indeed possible to prepare tables which directly yield the element
values in terms of the coefficients of the numerator and denominator
polynomials. Such tables have been prepared and used to design filter
sections with a considerable saving in time.

TasLE I — ELEMENT VALUES IN OHMs AND MICROMICROFARADS
ror Two SEcTIONS OF THE DESIGN ExXAMPLE—d > b

2 wp® 2 2
T(p) K P + won : s 2 + woq
P+ 2agd + wng? P+ 2a4p + wne®
RV 36755 4166
R1” 2661 2528
R2 17314 17020
R3 11412 8442
R4 3410 2790
c2 2227 2466
c4 4453 4934

TapLE II — ELEMENT VALUES IN OHMS AND MICROMICROFARADS
FOR Two SecrioNs oF THE DESIGN EXAMPLE —d < b

2 woa? 2 wpy?
() P P+ wos K 7+ wn
7%+ 2a2p + wnd? P+ 2a0p + wa®
R2 7350 6601
R4 3650 3275
c1’ 1769 247 .4
c1” 2915 3416
C3 873 797
c2 433.5 525
C4 2613 2644

TasLE III — ELeMeNT VaLues 1N Oums, MILLIHENRIES

AND MICROMICROFARADS

. P
i K, —P
T TPt 4 2asp + wa®
R 375
I 52.25

i 2438.20
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mitter follower.

The above filter sections are then cascaded through isolation sections,
which are emitter followers, The negative-impedance converter used in
the experimental model is of the type proposed by Larky.!! Circuit designs
of the emitter follower and the converter are shown in Figs. 12 and 13.
Note that converters are short-circuit stable at one port and open-cireuit
stable at the other port. Care must be taken to connect them properly
so that the system is stable.

The experimental model is constructed on five 2 X 3 inch cards, with
one filter section and an isolation network on each. The complete filter

ocs ANA fv\/\, 253
A,
(r% :
<
£+ l PNP AL-
o T — T T+ o]

Fig. 13 — Negative impedance converter.
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can be placed in a 5} X 4 X 2} inch can. Pictures of the filter are shown
in Figs. 14 and 15.

The passhand transmission characteristic of the experimental model has
the five ripples and is flat to within the specified £0.1 db. The charac-
teristic stays flat to within 0.15 db over a 10°C temperature variation.

VI. CONCLUSION

It is shown that any driving-point function can be synthesized using
passive RC networks and one active element. The active element is as-
sumed to be s current-controlled voltage source. A good approximation
to such sources is practically possible. The synthesis technique involves
synthesis of n-port RC networks and n-port R networks. Sufficient con-
dition for synthesis of n-port R networks without transformers is shown
to be the dominant diagonal matrix. Synthesis of n-port RC networks is
considered in the Appendices. It is shown that this problem can be re-
duced to the synthesis of (m + n)-port R network.

The above method of synthesis of driving-point funetions leaves much
to be desired. The major objection is the balanced structure and the large
number of passive elements resulting from the synthesis of (m + n)-
port B network. It should be obvious that the realization of the K net-

Fig. 14 — Front and rear views of one filter section.
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Fig. 15 — Complete bandpass filter.

work with a minimum number of resistors would render this method
quite practical.

A more practical synthesis method for driving-point functions is con-
sidered next. The caseade method uses the negative-impedance converter
as an aetive element. This method is adapted to the synthesis of voltage
transfer functions. Particularly simple structures result when funections
of rank 2 are to be realized. A rather elaborate filter is designed using
these ideas. An experimental model of such a filter has been built and
tested and the results are reported.

Further work on active networks is indicated in several directions.
Theoretical investigation may be undertaken to determine the minimum
number of active elements required to realize an arbitrary two-port
matrix. The use of active elements with RLC networks may yield net-
works with fewer elements. Possibility of using several active elements
scattered through the network to yield more stable characteristies may
bear some investigation. It is indeed not farfetched to envisage a day
when the use of active elements in network design will be viewed with as
much equanimity as the use of passive elements is viewed today.
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APPENDIX A
Given F = N/D, it will be shown that this may be expressed as

N1 - Ng
= : 4
F =5 (48)
where N1/D; is an RC admittance and the degrees of N, and D, are
equal to the degrees of Ny and D, respectively.
Choose N, and D; of the same degree such that N,/D, is an RC ad-

mittance. Then
Nz = N1 - N,
Dﬂ = D[ - D.

(49)

Degrees of N2 and Da can always be made equal to the degrees of Ny
and D, , respectively, by a proper choice of the degrees of Ny and D;.
Thus, the polynomials Ny, Dy, N2, D, are all of the same degree, say
ni . This fact ensures that N1/ Dy, No/Nyand D./ D, have the desirable
property (see Appendix B) of having no poles at infinity. Obviously, the
degree n, should not be less than n, the higher of the degrees of N and D.
It will now be shown that, given a polynomial N, it can always be
written as a difference of two polynomials having only negative real
roots. This development can in many cases be used to obtain the desired
result above. The development is of greater interest in the cascade
synthesis method.
Form a function
F(p) = T—N——! (50)
vIII: (’P + O'V)

where ¢, are real positive numbers and n is either equal to or exceeds by
one the degree of N. The residue of the function /'y in any of the poles
is seen to be real. So,

Fp) = Ko+ DAL 3

| K|
. 51
Tpte Tpto (51)
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In (51), the part with positive residues represents a passive RC' imped-
ance, and so the zeros of this part must be negative real. The part with
negative residues is simply an RC' impedance with a negative sign and so
it must also have negative real zeros. Then

Py _ P
P, Py
where all the polynomials P,, P,, P;, P, have negative real roots.
Further,

Fl('t”) = (52a)

P1P4“P2P3_P1P4—P2P3

Fl(P)= =
P,P L (52b)
o Il(p+av)
and
N=P1P4—P2P3=N1—N2, (53)

where N, and N have only negative real roots, as was to be shown.

In a similar manner, the polynomial D can be expressed as D = D, —
D, , where D, and D, have only negative real roots. With a proper
choice of o,, it may be possible to make N;/D; an RC immittance fune-
tion. No attempt has been made to determine under what conditions
the above is possible, since such a general statement does not seem to
be of great importance. The difficulty involved in determining the proper
o, for a specific problem would govern whether one should apply this
method or not.

In (50), if all @, are selected on intervals of the negative real axis
where N(p) has the same sign, then the residues of F, will have alter-
nating signs at alternate poles. This is easily observed by considering a
polynomial N having only complex conjugate roots as shown in Fig. 16.

ZEROS OF N r=-_n TJ“’
|

g -o; -0 -0

Fig. 16 — Residues with alternating signs in alternate poles.
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Along the g-axis the sign of the function F1(p) changes on passing a pole
but not between the poles. Hence, the residues in these poles have al-
ternating signs at alternate poles. Moreover, if the o, are selected on
intervals of the negative s-axis where N (p) has a positive sign, then the
residue of F, in the pole closest to the origin, say oy, has a positive sign
and P;/Ps is an RC impedance function.

The results of interest in the cascade method are:

i. From (50) and (51) it is seen that a difference of two RC impedance
functions can produce any desired complex zeros.

ii. With a proper choice of o, , it is observed that Py/P. is an RC
impedance funetion.

APPENDIX B
n-Port RC' Networks

Assume that it is possible to find a minimum number, m, of capacitors
in the desired RC n-port network. The network can then be modified to
a (m 4+ n)-port terminated in its m-ports in capacitors (I'ig. 3). The
(m 4+ n)-port network is purely resistive and can be investigated to de-
termine if ideal transformers can be avoided. This will not give a eom-
plete class of networks without ideal transformers; it will give only a
subclass of networks with a minimum number of capacitors and no
transformers. In order to obtain the complete class of networks m must
be made greater than the minimum number. It will be seen later how the
value of m ean be chosen to give the desired number of capacitors.

The problem may be stated as follows:

A short-circuit admittance matrix ¥ of order n representing a n-port
RC network is given. It is desired to find a conductance matrix G repre-
senting a resistive network such that, when this network is terminated
at its m-ports in certain eapacitors, the n-port RC network Y is obtained.

Let
a Ay Ap|n
" A0 Aw]m’ (54)
n m

where the A,;’s are matrices. When the m-ports are properly terminated
in capacitors, the resulting (n X n) matrix is required to be Y. For con-
venience, the terminations are assumed to be unit capacitors. Any trans-
formers that appear at these m-ports are eliminated by a simple scaling
of these capacitors. Then,

V= Ay — Apfda + Ip| " A, (55)
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where

= unit matrix,
transpose of A,
A, since G is symmetrical.

i—-l‘ Tl
|

I

12

The short-cireuit admittance matrix ¥V of the £C network may be ex-
pressed as

= Kp + Ko — Z K, ( ) (56a)
P+ o,

where K, K., and K, are (n X n) matrices of residues. IFor a passive net-
work, these matrices are positive semidefinite. At p = 0, Y(0) must also
be positive semidefinite for physical realizability. It is desired to identify
the expression of (55) with that of (56a). The only way to do this is
by making A, = Kp + K. . This, of course, does not keep (¢ purely
resistive. An alternative approach is to let ¥ = Kp + Y, and then
identify ¥ with the expression in (55). Then, the network corresponding
to Kp is added in parallel to the network corresponding to V. As will
be seen below, the networks obtained are balanced structures and no
transformers are needed when the structures are connected in parallel.
Even though Y in (56a) can always be realized in this manner, it is not at
all desirable, since the realization of Kp requires a large number of addi-
tional capacitors. This whole difficulty can be avoided by considering
the open-circuit impedance matrix Z and earrying out a c[cvelopment
analogous to the one below. No pole at infinity is present in Z and the
above difficulty does not arise. The other possible way of av m(lmg the
additional capacitors is to make K = 0. It is seen in Appendix A that it
is indeed possible to do so when 1} is obtained for the active network prob-
lem under consideration. I'urthermore, since sufficient conditions for
realizability of resistance networks without transformers are obtained
in terms of the short-circuit admittance matrix G, it is desirable to make
the development here in terms of V. Assuming that K is made equal to
zero, Y may be expressed as

V = K, — Z A,( T m) (56h)

where K., K, and Y (0) are positive semidefinite,
Tt is now necessary to put (56b) in such a form that it is readily identi-
fied with (55). Let

K, = MM, , (57)

where 3, has n rows and m, columns. It is then possible to write
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1 1 -
Y =M, M,,
K (p + U’) [p + o’r}m,
yu + Ty _|m,

is a diagonal matrix of order m, and elements

(=)

where

Let
[ io) -
Then
ZK,( 1 ): M, D, M,
v p+oa
and
> M, Dy, M,
D, 0 0 0 0] [M]
0 D. 0 00 M.
= [My, M, ---]] O 0 D, 00 = MHM,
0 0 0 0
o o o o L
where
M =[M,M,,- -]
and
D, 0 0 0
. 0 Dn. 0 0
0 0 D, 00

(58)

(59)

(60)

(61)

(62)

(63)
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The columns in M and the order of A are both given by
m= ) m,. (64)

It is seen from (54) that m also determines the number of capacitors.
Thus, m can be arbitrarily chosen by use of (57) and (64) to be any
value greater than or equal to the minimum value discussed below. It is,
however, necessary to determine G in terms of the known quantities in
(56b). Equation (56b) can be rewritten using (61):

Y = K, — MHM, (65)
Comparing it with (55),
An = K.,
Ap = M, (66)
(Ao + Ip]™ = H.

Since H is a diagonal matrix, its inverse is given simply by inverting
each term of the matrix, each term being of the form [1/(p + «)]:

H' =[Ip+ 8], (67)

where I is a unit matrix of order m and

(oI, 0 0 0 0
0 ol 0 0 0
S=|10 0 oL 00], (68)
0 0 0 0
Lo 0o o0 o0

where [; is a unit matrix of order m; . Thus,

Au = I(no
Aw =M . (69)
1122 = S J

If it is desirable to obtain a network with a minimum number of ca-
pacitors, it is necessary to obtain a minimum m. This is accomplished
by having each m, a minimum number. Consider the quadratic form of
a matrix K, expressed as sum of the squares

Y KX = 2 [XMJ,
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where each M,; is a column vector. Then

XKX = 2 X M,.M.X

= X M.MX, (70)
where
ﬂ_’[y = [ﬂfyljﬂir,z,ﬂ{y;], "']. (71)

It K, is of order » and rank 8, , then there are 8, independent terms in the
quadratic form. The matrix M, has n rows and 8, columns. This , is the
minimum number of columns in M, , since the quadratic form in (70)
must have at least 8, terms. It is thus necessary to use (70) instead of
(57) to obtain o minimum

m = Zﬁp = Zmy,
r v

since §, is the minimum value of m, .

It is easy to show that G, whose submatrices are determined by (69),
represents a physically realizable resistance network. Consider the quad-
ratie form of matrix G,

[- _.] [Au Algjl [.L’J
Q - ‘1'7?)’ J‘Iw A22 y

= fAux + zAny + §gAnr + GAwmy

= #Kox + TMy + gMx + §Sy

= #K.x — sMS Mz + [EM + SglS~'[Mx + Syl
= fK. — STMMle + [tM + SglS~'[Mx + Sy
= AV (0)]e + 257,

where z = Mz + Sy is a column matrix. From (55) and (69), Y (0)
is a positive semidefinite matrix and S7!is a diagonal matrix with posi-
tive elements. Therefore, @ > 0 for all  and z. Hence the quadratic
form is positive definite and the matrix G is physically realizable.

Tt has been shown that, given an n-port RC matrix Y, it is possible to
find a matrix G for an auxiliary (n -+ m)-port resistance network. This
(m + n)-port R network must be terminated at its m-ports in unit
capacitors to obtain the desired n-port RC network.



SYNTHESIS OF ACTIVE RC NETWORKS 1309

APPENDIX C

It will be shown that, if K, is a third-order matrix some of whose
elements are specified by (7), then y;; and y» may be chosen so that
K, is positive semidefinite of rank 1.*

From (7) it is elear that

P
Rou(thsles — Molss) = =2, (72)
O
Since @, has simple zeros, then yizy2s — 122 must have simple poles.
Substituting

w ]C,"(I’)
Yij = ki — Zm (73)

2

in the left-hand side of (72) and setting the coefficients of 1/(p + @)
equal to zero gives

by ke = ki kss™ = 0 forall ». (74)

Thus, yn and ¥ are driving-point admittances with poles o, but resi-
dues as yet unspecified. It is well known that there exists an orthogonal
transformation which transforms a positive semidefinite matrix of rank
1 into the diagonal form [k, 0, 0] with & > 0. Since the eigenvalues of a
matrix A are roots of the equation

N Ntrd 4+ IN[(tr A —trdY —detd =0, (75)

where tr means the sum of the diagonal elements, and since tr A, tr A*
and det A are invariant under orthogonal transformations, then for a
matrix of rank 1

tr A =1, tr A* = 17 and det A = 0. (76)
Then (75) reduces to
N =Nk =0

with roots (&, 0, 0). Hence &y and Ja2" must be chosen so that they
are positive and (706) is satisfied for K, . This ean be done provided (74)
is satisfied and

I = [Feys™T?

fl'g;gw’ ’

* The proof is due to Mrs. B. A. Morrison.
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and

To determine M, , observe that, under the orthogonal transformation
X = TY, where

X=fe, Y={y4, T=|tyl and 77 =T,
the quadratic form for K, becomes
3 2 3 2
XK, X = YTK,TY = ky’ = kl;g t,-lx,-] = l::l: Vk ,;’ zﬂX,-:I .
Then,
M, = & (Vk tal.
Since
TK,T = K,,
where K, is the diagonal matrix [k, 0, 0], then

TK! = KrT

and {; is seen to be the solution to the following set of equations:
3
2 Ll — kéjm] = 0 form = 1,2, 3.
=1

The result obtained is

¥, 1 v v v
M,, = 4 ‘\/-}ga—(ﬁ [ku( ), ](:23( ), ]{333( )].

APPENDIX D

It will be demonstrated that Qs/Q: is always an RC driving-point
impedance provided D(p) contains only complex zeros. Further, Qs/Q1
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as well as Q% /@) are also RC driving-point impedance functions. Poly-
nomials Q, Q; and @, are defined in (27) and (28), and Q; = @, + KP,
and Q3 = Q; + KP,[P: and P, defined in (28)]. Polynomials Q7 , and
Q3 are defined in (42), and are given by Q7 = Q;p + KP:, Q7 = Qsp +
KP,.

It follows from the definitions above and from (28) that

QP — Q:P» = D(p), (77)

where Q1/P, , Q;/P; and P,/P, characterize RC driving-point impedance
functions. Also, the order of Q! and Q; equals the order of P, and Py,
respectively. Consequently, the roots of D(p) are given by the zeros of
an expression of the form

1 — RH(p+d;£)H(p+fli) _

7 R 78
H(P-qu-)n(?’ + fu) (78)

where

Q= kT (p + du),
Q7 = Iy [T (p + dao),
Py =k II (p + f13),
Py =ka ] (p + fu).

Consider the root locus of (78) for R > 0. For some specific value of
I, the expression yields the roots, and only the roots, of D(p). Consider
the constraints that this places on the open-loop poles and zeros of the
locus, i.e., the roots of QiP; and QP , respectively, along the negative
real axis.

The open-loop root clogest to the origin must be a zero of the locus,
i.e., a root of Py, since Qi/Ps, Q3/Py and Py/Ps are all RC. The next,
or second, root is an open-loop pole of the locus. The third root must also
be an open-loop pole of the locus, since, if it were an open-loop zero,
then it would follow that for all positive values of R there must be a zero
of (77) on the negative real axis. This is not permissible, since there
must exist a positive value of R for which (78) must yield only the roots
of D(p) which are complex. Thus, the second and third roots must be
open-loop poles of the locus. The only way this can occur is if one is a
root of Q) and the other is a root of P; .

iy
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A similar line of reasoning is carried out until all the roots are used.
Hence, if the degree of P, equals that of Py, the only possible configura-
tion for the open-loop poles and zeros of the locus is that shown in Fig.
17(a); if the degree of P is one greater than that of Py, the conﬁgumtlon
is as shown in Fig. 17(b). Consequently, the roots of Q! and Q; must
alternate along the negative real axis, with the one closest to the origin
being a root of Q! . Therefore, Q3/Q1 characterizes an RC driving-point
impedance function if the roots of D(p) are all complex

Thus, Q5/Q, is simply the special case of Q/Q1 for K = 0 in the defi-
nitions above. Configurations of the roots are similar to those obtained
above and Q;/Q, is an RC impedance function.

In the ease of Q4 /Q1, the only difference is that now

QU Pi — Q5 P2 = pD(p). (79)

An expression identical to that of (78) gives the roots of pD(p) which
are all complex except for the one at origin. The root-locus is again con-
sidered and the conhgumtlon of the open-loop zeros and poles is deter-
mined. The configuration is shown in Fig. 17(c¢). The roots of Q4 and
Q! alternate along the negative real axis with the one closest to the origin
being a root of Q7 ; Q3 /Q1 characterizes an RC driving-point impedance
function.

APPENDIX E

Conditions are obtained under which it is possible to rationalize z:.
without use of surplus factors for network functions of rank 2. An addi-
tional condition to be satisfied is that the resulting two-port RC network
be a ladder structure. Consider a transfer function

. ptap+b
1(p) = Ko bt (80)

and choose the impedance functions as

_ptap+0 a1
Z(p) o (81)

or
Z(p) = 1p tap+0 (82)

pptep +d
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] t | TJ“J
! ! diaf !
d  E—— SIRA L
O x t OO AN : —
;'.r_/ : 1 ; | a
diaf, | ! daf, |
| | [
(a)
! : | e
: ! dyaf, I
——————=- 4 LA
‘ ‘; I_‘Hif\ i —
d, | ! — I T
i ‘l diaf, |
| | |
(b)
| | b
dyafy | \ dza fil
— - J| /_J—\| 1
o0—-~0—4+ t O—10+
, ! I ldy wa
diaf, : ! diafs !
| | |
(©)

Fig. 17 — Configurations for open-loop poles and zeros of the root locus
(a) when P, and P, are of same degree; (b) when degree of P is one greater than
degree of Py; (¢) when polynomials @7 and @ are used to determine the con-
figuration.

Ilquation (81) is to be congidered when an introduetion of constant K is
ufficient to rationalize zp , and (82) must be used when K /p is required.
When (81) is used,

Py=p 4+ o,
I).x:?)“l—cr-_' ag>a'1>0,
Pr=p a0 th

ags — 0J1

gs — ags + b

ogs — 01



1314 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1959

When the constant K is appropriately introduced,

(K + 1oro2 — K{n2 —ca + d

Q= (K +1)p +
g2 — 01
0 - Kp + K Daf = Koo = et
gy — 01
It is required that PiQ; — Q.P; = 0 have a double root at p = 5 < 0,

where 7 is assumed to be nonpositive so as to obtain a ladder network
when the two-port is synthesized.
Thus,

PQ; — QiPy = Kp' + p (v + Ka) + (y + Kb) =0, (83)

where
m_d—b+62(ﬂ—6_)
- g — 01
and (84)
uag(b'_‘d)—ﬂb—f—dﬂ‘
ga — 01 )
Forn =0,
(x + Ka) =z 0. (83)

Tor (83) to have a double root,
(z + Ka)' = 4K (y + Kb),

which yields

_ (20 — 4) £+ A/ (2a — 4y)* + 422(4b — az)_ (6)

K 2(4b — a*)

From (86) it is seen that K is positive if (4b — a*) is positive. It will
be assumed that all the zeros and poles in (80) are complex conjugate,
5o that introduction of K keeps 222 an RC impedance, and (4b — a*) > 0.
Equation (85) can be satisfied by a proper choice of o2, provided that
d > b.
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If d < b, (82) is used, and the polynomials Q) and @y are obtained by
introducing K /p, as in (42):

Q;’ _ pz 1 p(.K _I_U'lﬂ'z — Coi +d) 4 Kcn,
gy — 01
2
Q! = p(K 4 et d d) + Koo
gy — 01
and
PQy — Q'P; = p"(K + y) + p(Ka +z) + Kb =0, (87)

where

. da—be+ ad — d)

gy — 01
(88)
d—0> =+ o2 (G. - C)
y = .
gz — 01
Equation (87) has a double root if
(Ka + )" = 4Kb(K + y) (89)
or
K — (2ax — 4by) == \/(2ax — 4by)® + 4(4b — aﬂ);rz_ (90)

2(4b — @?)

Under the same assumptions as before, 4 — a* > 0, and so K > 0. For
7 = 0, it is necessary that

Ka + 2 >0

K+y ="
but K + % > 0 [see (89)], so (91) implies that (Ke + =) > 0. It is
seen from (88) that (Ka + x) ean be made to be positive if b > d.

The impedances 21, , 212, z2e and Z,. can be determined using the poly-
nomials determined above. The two-port can be realized by using zero-
shifting techniques. Only one ideal transformer appears, and it is re-
moved by appropriate impedance scaling. Source conversion is then
performed to obtain the desired transfer function to within a constant
multiplier. The structures obtained are shown in Fig. 9(a) for d > b,
and in Tig. 9(b) for b > d.

The above development can also be carried out when the zeros are not
complex conjugate. In this ease, however, one must consider separately
the cases when (40 — ¢’) > 0 and (4b — a’) < 0. Results can also be
obtained when some of the coeflicients are nonpositive. The case of com-

(91)
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plex zeros and poles in the left-half plane is considered above, since this
is the more important case practically.
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