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Two theorems are proved that characterize the matrices used to construct
systematic error-correcting codes. A lower bound on the number of required
check bits is derived, and it s shown that, in certain cases, this bound for
systematic codes s identical with Plotkin’s bound on the size of any error-
correcting code. A linear program whose solutions correspond directly to a
minimum-redundancy error-correcting code is derived. This linear program
can be solved by an algorithm that is essentially the simplex method modified
to produce integer solutions. Explicit solutions in closed form that speeify
the codes directly are derived for the cases when the specified code parameters
satisfy certatn restrictions. Several theorems are proved about minimum re-
dundancy codes with related parameters.

I. INTRODUCTION

This paper is concerned with the problem of transmitting binary
signals over a noisy channel. Some situations in which this problem
occurs are: when telephone lines are being used to transmit data in
binary form; when an imperfect medium such as magnetic tape or a
photographic emulsion is used to store binary data; or when operations
on binary signals are being carried out by means of circuits constructed
of devices such as relays, diodes or transistors, which have a probability
of error. It has been shown by Shannon' that it is possible to add redun-
dant bits to the transmitted messages so as to reduce the probability
of error in the received messages to an arbitrarily small quantity. Since
Shannon did not exhibit efficient codes for achieving this reduction in
error probability, considerable attention has been devoted to the search
for useful coding schemes. The usefulness of a coding scheme is deter-
mined by the number of redundant bits that must be added, by the
complexity of the equipment required for inserting the redundant bits
before transmission and for removing the redundant bits and correcting
errors after transmission, and by the error-correcting capabilities.
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In 1950, Hamming® published schemes for constructing codes for (a)
detecting the presence of an error in one out of n bits, (b) correcting
an error in one out of n bits or (¢) correcting an error in one out of n
bits and detecting errors in two out of n bits. In all these codes, it is
possible to separate the transmitted message into information or message
bits and redundant or check bits. Hamming defined codes that have
this property as systematic codes, and proved that all systematic codes
can be constructed by means of parity constraints on the transmitted
bits. He also proved that the codes that he constructed contained the
minimum number of check or redundant bits. While Hamming did not
obtain any codes for correcting more than one error, he did show that
a code for correcting e errors can always he changed into a code for
correcting e errors and detecting e + 1 errors by adding one extra check
hit that makes the over-all parity of the transmitted message always
even.

A procedure for constructing eodes for multiple errors was obtained
by Reed® and Muller." The resulting codes are commonly called Reed-
Muller codes, since they were obtained independently by both Reed
and Muller. A Reed-Muller code can be constructed for detecting e
errors whenever ¢ is a power of two (e = 27), The number of bits in the
resulting code will also be a power of two. This paper presents a method
for constructing minimum-redundancy codes for correcting or detecting
any specified number of errors.

II. THE HAMMING MATRIX

A binary word is defined s a sequence of n binary digits, x = ¥, - - -
¥, ; and the distance between two binary words is defined as d(x, y) =
(r1 @ 1) + (20 @ y2) + --- 4+ (z. @ ya),* which is equal to the
number of bit locations in which the two words differ. An e-error-correct-
ing code” is n collection of binary words for which the distance between
any two words is greater than or equal to 2e 4+ 1. If an error-correcting
code consists of all binary words whose digits satisfy certain parity-
check requirements, the code is called a systematic error-correcting code.
For example, the collection of six-bit binary words that satisfy z; @
L @r=01®x ®a=0andr @ as @ s = 0 forms a one-error-
correcting code. The problem of obtaining a systematic error-correcting
code is equivalent to that of finding a set of parity-check requirements
that will generate a set of words with the required distance property.

The parity-check requirements can be specified by a matrix of zeros
and ones in which the jth column corresponds to the jth bit of the

* The symbol @ represenis addition modulo two.
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binary code words and the ¢th row corresponds to the ith parity check.
The entry in the ith row and jth column is one if the jth bit is involved
in the dth parity check and is zero otherwise. This matrix will be called
a Hamming mairix, and its elements will be represented by the symbol
h;;. This is the Hamming matrix for parity rulesay @ x @ a; = 0,
Lo @ Ty @ Ty = 0, Xy @ s @ a5 = 0:

Tl T2 Tz X4 Ty Tp

001 1 10
01 0 1 0 1]|=[h.
1 00 0 1 1

The first problem considered in this paper is that of characterizing
Hamming matrices by determining the necessary and sufficient condi-
tions that a matrix of zeros and ones he a Hamming matrix for a code
with minimum distance d (between any two code words).

In the following, the binary code words will be represented by column
matrices,

@
Ly

Ln

and the Boolean product of two matrices with elements a,; and b;; will
be defined as a matrix [¢;;] = [a:;] o [b:;] with elements ¢;; = Z @by
k

(modulo 2).
FExample 1:

r0101éi-’01
{0110c10—11
101100J01

Definition: A matrix of zeros and ones with & rows and »n columns is
the Hamming matriz for a code of minimum distance d if and only if
dix, y) = dforall x and y (x #= y) for which [H]ox] = 0] and [Hley| =
0], where 0] represents a column matrix of & zeros.

Definition: The weight of a matriz, wla;), is equal to the number of
entries of the matrix which are ecual to one (for matrices of only zeros
and ones).

Lemma 1: d(0, x) = wx], where 0 represents a sequence of n zeros,

Definition: The sum (modulo 2) of two or more columns of a matrix
is the column matrix with each element equal to the sum modulo 2 of
the elements in the same row of the ecolumns being summed.
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Lemma 2: If d(z, y) = dy, then y] = » ® 2|, where w[z] = d,.

Theorem 1: H is the Hamming matrix for a code of minimum distance,
d, if and only if [H]ez] # 0] for all 2] (2] # 0]) for which w[z] < d.
Proof: Tirst suppose the f is a Hamming matrix for a code of minimum
distance d and that w(z] < d; then [H]o0] = 0] and d(0, z) < d, so that
[H]ez] cannot equal 0], by the definition of a Hamming matrix. Next
suppose that [H1ez] # 0] for all 2] (z] # 0]) for which w[z] < d, and
d(x, ¥) < d. Then y) can be expressed as & @ 2|, where w(z] < d; and
[Hley] = [Hlox @ 2] = [H]ex] 4+ [Hlez]. Thus, if x is a code word, [Hlez] =
0], ¥ cannot be a code word, since [Hley] = [H]oz] + [H]ez] = 0] +
[H]ez] # 0]. This shows that, if [H1ez] # 0 for all 2] with w[z] < d, then
d(z, y) must be equal to or greater than d for all x and y with [H]ex] = 0
and [H]ey] = 0.

Corollary 1: H is the Hamming matrix for a code of minimum distance
d if and only if no set of d — 1 or fewer columns sums to the all-zero
column.

Proof: If d — 1 or fewer columns sum to zero there is a corresponding z
with w[z] < d such that [H]ez] = 0].

This theorem makes it possible to attack the problem of finding a
systematic code with the specified d by constructing a matrix satisfying
the given conditions. However, no satisfactory procedure for construct-
ing such a matrix directly is known, and the construction procedure to
be developed here is based on Theorem 2, which characterizes the parity-
check matrix, a submatrix of the Hamming matrix.

III. THE PARITY-CHECK MATRIX

Hamming showed that a Hamming matrix can always be put in the
form of a & X % unit matrix (matrix with ones on the main diagonal
and zeros elsewhere) and a & X n — k arbitrary matrix called the parity-
check matriz (see Ref. 2, Section 7). This form of the Hamming matrix
will be called the standard form. In the following it will be assumed that
the Hamming matrices are always in standard form.

It is customary to use the term redundant bits or check bils for the
bits of the code words which correspond to columns of the unit matrix
part of the Hamming matrix. The remaining n — k = m bits are called
information or message bits. This usage derives from the fact that each
of the check bits oceurs in only one of the parity checks, and therefore
the values of each check bit can be calculated directly from the values
of the information bits, independent of the values of the other check
bits. If the elements of the parity-check matrix are denoted by p.;,
the check bits (w;) are obtained from the message bits (x;) according
to the following expression:
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u; = 2 pijx; (modulo 2). (1)
j=t

A systematic error-correcting code is thus completely specified by the
parity-check matrix. The main object of this paper is to present methods
for obtaining parity-check matrices corresponding to systematic codes
that have a specified minimum distance d between any pair of code
words and requiring the minimum number of check bits.

The following is an example of a systematic code of minimum distance
3 (one-error-correcting code) having two message bits and three check
bits.

Ezxample 2:
11
Matrix: P={(1 0f;
01
=z @,
equations: Uy = 2,
U3 = T2 ;
Uy U2 Uz X1 To
00 00O
code; 101 0 1
11 010
01111

The method to be used for constructing parity-check matrices depends
on the following theorem.

Theorem 2: P is a parity-check matrix for a code of minimum distance
d if and only if:

i. the weight of each column of P is greater than or equal tod — 1;

ii. the weight of the sum (modulo 2) of ./ columns is greater than
or equal tod — J.
Proof: Tirst, suppose that the conditions of the theorem are not satisfied,
and consider the Hamming matrix made up of a unit matrix and the
given P matrix. If there is a column of P with weight w;, < d — 1, then
the sum of this column and w; of the unit ecolumns (one unit column for
each one entry of the column of P) will be equal to zero. Since the total
number of columns involved in this sum is w; + 1 < d, the conditions
of the Corollary 1 are violated and P ecannot correspond to a code of
minimum distance d. Similarly, if the sum of J columns has weight
w,; < d — J, these J columns of P plus w; unit columns will sum to the
all-zero column. The total number of ecolumns summed is J + w; < J +
d — J = d, again violating the conditions of the Corollary 1. Thus,
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unless conditions i and ii are satisfied by P it cannot be the parity-check
matrix for a code of minimum distance d.

Next, suppose that conditions i and ii of this theorem are satisfied,
and consider which combinations of columns will sum to the all-zero
column. No combination involving only unit columns ean sum to zero,
since these are linearly independent. As discussed in the preceding
paragraph, any combination involving only one of the columns of the
P matrix will contain w; + 1 = d eolumns, and any combination involv-
ing more than one of the columns of the P matrix will contain J + w, =
J + d — J = d columns. Thus, any combination of columns that sums
to the all-zero column must involve at least d columns. The conditions
of Corollary 1 are satisfied and P corresponds to a code of minimum
distance d.

In this paper the construction of error-correcting codes will be based
on finding matrices which satisfy the conditions of Theorem 2. The
matrices will be obtained directly from the solutions to a set of linear
inequalities.

IV. FORMATION OF LINEAR PROGRAM

In order to check that a given matrix P satisfies the conditions of
Theorem 2, it is necessary to form the sums modulo 2 of all pairs of
columns of P, compute the weights, and compare the weights with
d — 2; then this must be repeated for all triples of columns, comparing
with d — 3; all quadruples of columns, comparing with d — 4, etc. A
systematic procedure for doing this can be given in terms of the following
definition.

Definition: P, (J = 1, 2, ---m) is the matrix formed from P by
taking, as the columns of P, , the sums of all possible combinations of J
columns of P (P, is identieal with P).

Example 3: P is the parity check matrix for a code of minimum dis-
tance 3 since the weight of each column of P is at least 3 — 1 = 2, and
the weight of each column of P;is at least 3 — 2 = 1:

0 1 1 1 1110 00 0 0 01 1

1 01 1 10 01 10 0O 010 1

1 1 0 1 01 0101 01 0 0 1
(a)P (b) P (e)Ps (d) P4

A method for checking a matrix P is to form P., P;, --- and then to
verify that the weight of each column of P, is at least d — J. While
this method is quite satisfactory for verifying that a given matrix
satisfies the eonditions for a parity-check matrix of a code of minimum
distance d, it is of little use for the more important problem of construct-
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ing a matrix satisfying these conditions. For this reason, a modified
method for testing a matrix will be presented as a preliminary to the
discussion of methods for constructing parity-check matrices.

In any k& X m parity-check matrix there are only 2™ — 1 different
rows that can occur, since the all-zero row never appears in such a
matrix. This does not mean that the total number of rows eannot be
larger than 2" — 1, since the same row may appear more than once.
I'or any given m, it is possible to compute the rows of Py, Py, -+, P,
that correspond to each possible row of P. Any specific P matrix with
m columns can then be tested by selecting the appropriate P, rows,
taking into account any multiple oceurrences of rows in the P matrix
being tested. This procedure ean be stated more precisely in terms of
the following definitions.

Definition: P™ is the matrix having m columns (and 2" — 1 rows) in
which each possible m-bit binary word, except the all-zero word, appears
exactly once. The rows are ordered in the following fashion:

First, all the rows containing a single one are written down. These
rows are ordered so that, when the rows are interpreted as binary
numbers, they occur in decreasing arithmetic order (this means that
the first m rows form a unit matrix). Next, the rows containing exactly
two ones are written down, with these rows arranged so that they occur
in decreasing arithmetic order. This procedure is repeated by writing
down the rows with three ones, four ones, ete. until finally the row with
m ones is written down. Within each set of rows that all contain the
same number of ones, the rows are arranged in decreasing arithmetic order.

Example 4:

1 00
010
0 0 1
P=l110]| P =
1 0 1
01 1
[ 11 1

— e (O e e D = OO~ OO0 =0
- OO, OO+~ OQ
e el = B = Nl == R == = e B e R e

[ =T = S S i e W e i e R e Rl e B e IS
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By making use of this definition of P", a concise specification of any P
matrix having m columns can be given by listing which rows of P"
oceur in P.

Definition: If P is a parity-check matrix having m columns, then
2(P),i=1,2 ---2" — 1, is equal to the number of times that the
ith row of P™ occurs in P. Usually z;(P) will be written simply as z;
when the appropriate P is clear from the context.

Example 5:

ZI(P) =
ZE(P) =

~
Il
O = = O =
Q= O
S = -0
™ ™
[ )
SN N
o g
e
|
- O = O 0O N =

It is now possible to state the requirements for parity-check matrices
in terms of z;(P), P™ and P,", where P,™ is the matrix formed of all
sums of J columns of P™.

Theorem 3: A matrix P with each entry equal to zero or one is a

parity-check matrix for a code of minimum distance d if and only if

[a(P) 2a(P) -+ zam (P [P 2 [d = J,d = J, - od = JI* 0 (2)

[1(P) 2:(P) - -+ zzma(P)] [P1"]

is just equal to the weights of the columns of P, since each row of P"
is multiplied by the number of times it oceurs in P [z:(P)] and then a
sum for each column is formed. Similarly, for J # 1,

[2:(P) 22(P) -+ - zam 1 (P)] [PJ"]

is equal to the weights of the columns of P,;. By Theorem 1, these
weights must be greater than or equal tod — J.

* The multiplication here is ordinary matrix multiplication. The inequality is
satisfied if, and only if, each element of the row matrix obtained by the multiplica-
tion is at least as large as the corresponding element of the row matrix given on the
right side of the inequality.
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Ezxample 6
1 10 2120
P=lo 11" =z=o0
1 1 1 23 =1
25—1
2'5=1
27—1

[222 - - z]-[P)] = [0001111]- =[333]z[d—1,d—1,d—1],

O = OO~
O - OO
— - O = OO

[2122 - - - z7]-[P5] = [0001111]- =[222] = [d — 2,d — 2,d — 2],

S == OO -
O e (D e e O
OO = -=O

(2122 - - - 27]- [P4] = [0001111] =[]z [d- 3l

== =T S

Thus, £ is the parity-check matrix for a code of minimum distance 4.
Theorem 3 is merely a restatement of Theorem 2 using different
notation. The reason for introducing this new notation is that, by means
of Theorem 3, the problem of constructing minimum redundancy codes
can be formulated as an integer linear programming problem.
Lemma 3:

am—1

k= Z Zi.
1=1
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Proof: By definition, k equals the number of rows in the matrix P and
z; equals the number of times that row ¢ of P™ oceurs in P. Since each
row of P is identical with some row of P", the total number of rows of
P just equals

2m—]

Zi.
i=l1
Theorem 4: The problem of finding a minimum-redundancy, systematic,

error-collecting code for specified values of m (the number of message
bits) and d (the minimum distance between any pair of code words)
is equivalent to the problem of solving the following linear program:

minimize:

2m_

1
k= Z Zi
i=1

subject to:

(1) z; integers, (LP)
(2) 220,
(3) [1ze - zamsy] - (P12 [d = Jyd =S,y d — ]
for J=1,2,---m
Proof: The solution to (LP) will be a set of values for z;, 22, -+, 2am_y .

These values can be used to construct a matrix P by interpreting them
as 2:(P). By Theorem 3, these values for z;(P) must satisfy (LIP-3)
and by the definition of z(P) they must satisfy (LP-1, 2). Since a
minimum-redundancy code is desired, it is necessary to minimize k.
Lemma 3 establishes the expression for & in terms of z,(P).

The remainder of this paper will consist mainly of obtaining solutions
to this linear program.

V. BOUNDS ON REDUNDANCY

In a certain sense, the formulation of (LP) solves the problem of
constructing the desired codes, since a numerical procedure exists for
solving this type of integer linear program.” Practically, this procedure
is of limited usefulness, since the size of the program to be solved soon
exceeds the eapability of the largest electronic ecomputer. Also, numerieal
solutions do not provide information about the interrelations among
various codes with different parameters. A much more desirable solu-
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tion would be a elosed solution of (LP) in which the valuesof z; , 25, - - -,
zam_y and & are expressed as functions of m and d. The derivation of such
closed solutions and of various properties relating solutions for different
parameters will constitute the remainder of this paper.

The first step in obtaining solutions of (LP) will be to remove the
matrix notation and express (L.LP-3) as a set of simultaneous inequalities,
This is done to simplify the proofs of the theorems to follow.

The inequalities represented by (LI-3) can be expressed in terms of
a single matrix by defining a matrix A™ in whiech all of the columns of
P" P, -, Py appear.’

Definition: The matrix A™ is formed as follows:

(1) The first m columns of A™ are identical with P™.

(2) The jth eolumm of A™ (j > m) is formed by taking the sum
modulo 2 of the columns of " that have one entries in the jth row of P".
When the value of m is clear from the context, A™ will he written as 4.

Erample 7: For m = 3,

]
2
]

o =

]

P =

_—o o o=

—_—— O = O = O

—_ O = - OO~
S = OO~
O = O = O = O
SO == —-0 &
— OO O~ H=KFH =

0
0
1
0
1
1
1

—_ O = O~ O
—_— - O = O O

The fifth column of 4° is formed from the sum modulo 2 of the first
and third columns of P* since the fifth row of P* has ones in the first
and third eolumns, ete.

Definition: Let €;(m) be deflined as follows:

e(m) =1 for 1 =237 =m,

o

e;(m) =

for 1T4+m=7=m —I—(z)n) s

e(m) = s for E (m) <= y: (-m),

v=0 14

m—1 f
e(m) =m  for 2 (m) =jE2" - 1.

v=0 14 ;

Theorem 3 can be stated in terms of A™ as follows:
Theorem 3': A matrix P is a parity-check matrix for a code of mini-
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mum distance d if and only if:
[2(P) 22(P) -+ zema(P)] - [A"] Z [wr wn - - wom], (2")

where w; = d — e;(m).

Some properties of A™ are stated in the following lemmas, in which
a:;" represents the element of the ith row and jth column of A™. When
there is no ambiguity possible, a;;" is written simply as a;; . Proofs
will be given in the Appendix.

Lemma 4: The matrix A™ can he partitioned into submatrices as
follows:

14 " — [Pl'lll é Pgﬂ'l ; P3 m é e é P’H'IHJI
Lemma 4:
ai; = anji D aiep @ -+ @ Ainbim for 7 > m.

Lemina 6: The transpose of A is identical with A: AT = A, ora; =

aij.
Lemma 7:
am—7 am—1
> oa =) ay"t =2""
1=1 i=1
Lemma 8:

m

D ai” = e(m).
1=l

Lemma 9: The inverse of A, A7, is obtained from A by replacing

each one entry of 4 by 2" and replacing each zero entry by —2" "
aij_l = gl=m ¢ ai; = 1, and
G;"J;_l _ _217”! if e = 0.

Theorem 3 can be stated directly in terms of the a;;" as follows:
Theorem 3”: A matrix P is a parity-check matrix for a code of mini-
mum distance d if and only if:

2m—]1
2 iz Z wj, (2")
7=1
where w; = d — ¢;(m).
The corresponding formulation for the program (LP) is
minimize:
2m—1

]ﬂ = Z 2
1=1
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subject to:

1497

(LP")

(1) z; integers,

(2) 2. =

>0

2m—1

(3) 2 @iz 2 wj,

1=l

where w; = d — ¢€;(m).

The following theorem presents a lower hound on k, the number

of

check bits that are required for specified values of m, the number of
information bits and d, the minimum distance between code words.

Theorem 5:

[For an error-ecorrecting code having minimum distance d

and m message bits, the number of check bits, &, must satisfy

k

v

Proof: By (27),
Z @ij2;

gm_1 9m—1

2 2 ai
i=1 i=l
2m—1 2m—]
Q;z;
i=1 j=1

gm am_1

-Z i Z Qij

=1 i=1

But, by Lemma 7,

am—_7

E Qi
j=1

S0
2,’]_1
E Zi
1=l
and
om—]
Z Zi
i=1

By the definition of w; ,

am—1

2w =
i=1

m

2>

s=1

(

om _
"1)d—m.

(3)

2m—1

I]V

(o= (5)em 00

wj,
gm_1
2w
am_1
Z Wi,

am—_1

ZWJ

m—1
20,

am—1

_Z Wy,

am—1

2! Zl w;, by Lemma 3. (7)
=

(’:) s (i)

m

2

s=1
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but

S0
am_

1
w; = (2" — 1)d —m2"",
i=t

Substituting this in (7) yields

Bz 2 — 1) d — m2"!

. " -1
k= S d— m.

Since the total number of bits in each code word, n, is just equal to
m 4+ k, this bound on k yields a bound on n.

Corollary 2: For an error-correcting code having minimum distance
d and m message bits, the total humber of hits in each code word must

satisfy:
n = (2 — 1) d. (4)

or

21)171

If d < m, the bounds given in (3) and (4) can be improved, since
some of the w; in (2”) will be negative and should be replaced by zeros.

Corollary 3: When d < m, k and n must satisfy the following inequali-
ties:

gm _ m ,
bz (e Na-mr2n S (Ne-0, @

a=d+1

(22_—}) d+ 2 f‘,l (";") (s — d) (4)

s=d+

n

Iv

Proof: From (7i) of Theorem 5,

lw;‘ = i(?) (d — s),

i=1 s=1

am_

but when w; < 0 it can be replaced by 0. This is equivalent to defining
wi =d — ¢;{m) ford = e;(m) and w;/ = 0 ford < e;{(m). Then,

am—1] d
w; = Z(T) (d — s) ford < m,

i=1 §=1
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or
2m—1 m m .
w =2 (m) (d —s)+ 2 (m) (s — d) for d < m
i=1 s=1 \ 8 s=dt1 \ S
=" —1d—-m2""+ > (?n) (s —d).
s=d+1 \ S

By (7) of Theorem 5,

am_—1

ol—
=2y w,
i=1

am—1
— '
g 21 m Z w;
i=1
"
— — m
g 21 m|i(2m _ 1) d — 1)?.2"‘ 1 + Z ( )(S _ d):l
s=d+1 \ S
om 1 . — [m
== )d—-—m+ 2" s —d).
o P (A

Whenever d = k2™ ', the bounds (3) and (4) are not integers and
therefore cannot be met exactly.

Definition: Let | N} equal N if N is an integer and equal the smallest
integer larger than N if N is not an integer.

Definition: Let
om
*(md) = {(;%;_Tl) d —m }

" 1
n*(md) = (-)m—i" dp.

Since the total number of bits per code word and the number of check
bits must both be integers, the following inequalities follow directly
from Theorem 5 and Corollary 2,

Corollary /4: For an error-correcting code of minimum distance d and
having m message bits:

and

k ; I*
and

n n

I
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VI. MINIMUM-REDUNDANCY CODES

Since n and & must be integers, the bounds given by (2) and (3) can
be met exactly only when d is divisible by 2™, that is, when d can be
written asd = h2™ ', where h is a positive integer. The following theorem
shows that the bounds can always be achieved in these cases. The ap-
propriate P matrix is formed by including each possible distinct row &
times, except for rows of weight one, which are included only A — 1
times.

Theorem 6: Whenever d = h2" ', where h is any positive integer, a
minimum-redundancy code exists with

k= h(2" — 1) — m,
n = h(2" — 1)
and
zi=h—1 forl £¢:=m
=h form+1=41=52" — 1.

IIA
1A

Proof: Letz; = h — 1for1l ¢ = mand 2 = hform + 1
2™ — 1. Then,

am—1 am—]1 m

> @iz = 2 hag — 2 ai,
i=1 1=l =1
am—1 am—1

> hai; =h > aiy; = h2"' by Lemma 7,
1=1

=1

> ai; = ¢j(m) by Lemma 8.

i=1

Thus

am—1
Z @iz = ]],2"1_1 - e,-(m).
=1
But, by Theorem 3”, this is exactly the condition for a code of minimum
distance h2" .
The number of check bits, k, is given by

gm—1 gm—1

k=§z,-:_2h— :(1)

i=1 3

= h(2" — 1) — m.
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By Theorem 5,

o — _
k= ( ‘)mkll) (h2™™) —m

=z (2" = 1) h—m.

Therefore, the code is a minimum-redundancy code.
Example 8: Form = 3,d = 8 = h-2""' = 2.2

E=h2"—1)—m=2(2"-1) —3 =11,

100
010
001
110
110
P=1101
101
011
011
111
[ 11 1]

and
21=22:Z:|=1,
24:ZE=25=27=2.

Theorem 5 can be extended to the case when d = h2™™" — 1 by
means of the following theorem, which has originally proved by Ham-
ming.”

Theorem 7 (Hamming): From any minimum-redundancy code* con-
taining n bits per code word and having minimum distance d, with d an
even number, it is possible to obtain a minimum-redundancy code con-
taining » — 1 bits per code word and having minimum distance d — 1
by removing one of the bits from each of the code words (the same bit
must be removed from each word). If the original code was a systematic
code, the bit removed should be one of the check bits.

Conversely, from any minimum-redundancy codef containing n bits
per code word and having minimum distance d, with d an odd number,
it is possible to obtain a minimum-redundancy code with n 4 1 bits
per code word and having minimum distance d + 1. This is done by

* Not necessarily a systematic code.
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adding a check bit that is a parity check over all of the bits of each code
word.

Corollary 5: If 21, 22, - - -, zem_y specify a minimum-redundancy syste-
matic code for d, where d is an even number, it is possible to obtain a
minimum-redundancy code for d — 1 by decreasing any nonzero z; by
one.

Corollary 6: Whenever d = h2"™' — 1, where h is any positive inte-
ger, a minimum-redundancy code exists with

ko= h(2" — 1) — (m — 1),

[

n = h(2" — 1) — 1.

This follows directly from Theorem 7 and Corollary 5.
There is a large class of codes for which

2" — 1
( 211)—1 )d

is not an integer, but for which minimum-redundancy codes with k = %
can be derived.

Theorem 8: Whenever d = hy 2"' — 2" where h, is a positive integer
and ks, is a positive integer with h» < m — 1, there exists a minimum-
redundancy code with

ko= m2" — 1) =2 —m 4+ 1,
no= (2" —1) — 2" 41

*

and
2 =zl — &,
where
2l =h — 1 forl £i=m
=M form+1=<qi=<2" -1,
and

2" = 1if the corresponding row of A™ has all zeros in its
first m — hy — 1 columns

= 0 if the corresponding row of A™ does not have
all zeros in its first m — hs — 1 columns.

Proof: Let z; , z/ and z,” be defined as in the statement of the theorem.
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By the methods used in proving Theorem 6, it follows that

am—1
—1
Z ﬂ,‘jZi’ = h;gm —_ e,-(m).
1=1
Consider
om—1
Z a2
i=1
This is equal to
ghatl—y
2 bis,
i=1

where the b,; are the entries of a matrix B, which is made up of those
rows of A™ for which the corresponding z,” are equal to one. The first m —
hy — 1 columns of B contain all zeros. Therefore,

ahat1_1

Sobij=0 forl £j<m—h — L

i=1

. . . ho .
The next ks + 1 columns of B are identical with P**"", since each com-

bination of zeros and ones (except the all-zero combination) oeccurs

. . e phatl s oha
exactly once. Thus, since the weight of each column of Pt ys 2
ghat+1—

1
aha . .
> b= 2" form — he =7 = m.
=1

Iivery other column of B is formed from the sum modulo 2 of some of
the first m columns. Sinee the all-zero columns do not have any effect
on the sum modulo 2 operation, every other column of B is equal either

to one of the columns for m — he £ j £ m or to the sum modulo 2 of
several of these columms. Thus, every remaining column of B is identi-
. . ha41 r - - N <
cal with some column of A", Therefore, form + 1 2 j = 2" — 1,
ahot1_1 ohat+1_1
a1 Sha

2 b= 2 ay =27,

i=1 i=1
Thus,

ohatl_q

1
aiz’ = 2, by=0 forl<j=m—hs—1
i=1

i=1

am—

=2 form —ha 522" — 1,

and

am—]

S oagzi=h2" ' —m) =0 forl £j<m—h— 1
i=1

om— ohe .
=h2"" —g(m) — 2% form —he 7= 2" — 1.
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Thus,

2mal

E Qi8¢ = h12m_1 - 2"2 - e,-(m),

il
or the given z, satisfy the requirements for a code with d = h; 2" — 2",
This proves that a eode constructed from the given z; will have d =
h2" " — 2" A proof must now be given for the fact that the result-
ing code is minimum-redundancy

am—1 2m— 2m—1

1

k= ZZ;'= ZZ,"—' EZ"”.
i=1 i=1 =1

The z;" are the same as the z; of Theorem 6; therefore,

am—1
>z = m(2™ — 1) — m.
=1
Since there are 2" — 1 rows of A™ that have all zeros in the first
m — hy — 1 columns,
am—1
v zi” — 2:’12“'1 _ 1
1=1
and
ko= h(2" —1) —m — 2" 4 1.
Now,

I (mpe2™ " — 2) = {(2 - 1) (2™ — M) — m},

277;—1
which ean be rewritten as
k* — [(2111 . l)h]_ _ 2h2+1 + 21+hg—m _ m},
but, since m > 1 + hs,
2™ <
go that
B* = (2" — h — 2" —m + 1,
and therefore &k = k* and the code is minimum-redundancy.

Corollary 7: Whenever d = 2™ — 2" — 1, where h, is a positive
integer and h; is a positive integer with Ay < m — 1, a minimum-
redundancy code can be obtained from the code of Theorem 8 by the
method given in Corollary 5.

Minimum-redundancy codes for d = 2, 3 and 4 were given in a paper

by Hamming.? A code for d = 2 can be obtained by using all n-bit words
that contain an even number of ones, since Theorem 2 just requires each
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column of P to contain at least one one. Thus, the minimum-redundancy
codes ford = 2 all havek = 1.

For codes of distance 3, Theorem 2 requires that each column of P
contain at least two ones and that no two columns be identical. In this
case, m is equal to the number of different columns having b rows, and
at least two entries equal to 1; orm = 2° — k — 1.

VII. RELATIONSHIPS AMONG CODES

For values of d which are greater than 4 and do not satisfy the condi-
tions of either Theorem 6 or Theorem 8, it has not been possible to
obtain elosed solutions of the linear program (LP). Computation using
Gomory’s algorithm® is necessary to obtain minimum-redundancy
codes for these values of d. The following theorems present various
general properties of minimum-redundancy codes that are useful in
obtaining codes for new values of d from the codes obtained by use of
the algorithm.

Definition: Let K(mgd) be the minimum value of & that is possible
for a code having m message bits and minimum distance d.

Definition: Let N(mgd) be the minimum value of n that is possible
for a code having m message bits and minimum distance d.

Lemma 10:

K(m — 1,d) £ K(m,d).

Proof: A parity-check matrix for m — 1 can be obtained from the ma-

trix for m by simply removing one column. Since the conditions of

Theorem 2 must be satisfied by the reduced matrix if they were satis-

fied by the original matrix, the reduced matrix corresponds to a code of

distance d if the original matrix corresponded to a code of distance d.
Theorem 9: Form < d < 2",

N(mud) > n*(md),
K(md) > E*(m,d).

2" —1
Fd_m for‘méd

={(2-2"")d — m}

. d
= {ld m =t m}

F*(md) = 2d — m form <d < 2",

(m — 1,d) = 2d —m + 1 form—1=<d<2™,

Proof:
k*(md)
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but
K(md) =z K(m — 1,d),
K(im — 1,d) = k*¥(m — 1,d),
*(m — L,d) > k*(m,d) form =d <2
Kimd) = K(m — L,d) = k*(m — 1,d) > k*(md),

m—2

so that
K(md) > k*(md)  form =d < 2"
Since n = I + m, it follows that
N(md) > n*(md)  form £d < 2"
Theorem 10:
N(mud, + d») £ N(m,d,) + N(md2),
K(mdy + dv) £ K(mdy) + K(mgds) + m.

Proof: Tet 2/ = [z/ 2’ -+ zm_] be the values of z; corresponding to
N(m,dy) and 2” = [, 2" -+ zm"] be the values of z; corresponding

to N(m,ds). Thus,
om—_]

Z al) zl g d] - Ej(?n)

and
am—1
> ai" 2" = dy — €;(m).
i=1
Let
=z +z"+1 forl =1 =m
and
4 =2 + 2" form +12¢ 2" — 1.
Then,
2m—] 2m—] 2m—1 L
- r
Z G,’jmz;‘ _ Z ﬂ”m + Z a”m 1” + Za{jm
i=l1 i=1
= di — ei(m) + d2 — ¢;(m) + €(m)

= dl + d2 - e,-(m).
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Thus, &; satisfy the conditions for a code of distance d; 4+ d». I'urther-
maore,

am_q am_q am_1 m
> k= oA+ LA+ (),
1= 1= 1= i=1
am_1
k{md,+ds) = Z 3 = Kimd,) + K(m,d:) + m,

so that
K(md, + do) £ K(m,dy) + K(m,ds) + m.
Corollary 8:
N(md, + h2" ) < N(mdy) + h(2" — 1),
KOngy + 02" < K(md) + h(2" = 1).

Definition: Let max(z;, 22, - - -, za) equal the largest of the values of
the z; .

Theorem 11: Let 21, 23, ++, zam_y correspond to a code for which & =
K(m,). Then, if max(z, -+, zm) = M,

Km—1d) = K(m,d) — M,

Proof. Tet zr, (1 = I = m) be one of the z; such that z; = M. Then,
it the fth column is removed from the matrix P specified by (21, 22, -+ -,
2am_1), the resulting matrix must still correspond to a code of minimum
distance d (Lemma 10). However, M of the rows of the reduced matrix
consist of all zeros, since there are M rows which contain a one only in
column 7. Thus, these M rows can be removed without affecting the
minimum distance d. Removal of M rows decreases & by M, giving

Km—1d) = K(md) — M,

VIII. COMPARISON WITH PLOTKIN’S BOUND

The approach of this paper has been to search for codes which require
the minimum number of check bits, k, for specified values of m and d.
Another common approach to the study of error-correcting codes is to
specify the total number of bits per code word, n, and the minimum
distance, d, and then to try to construct codes which contain the largest
number of messages. A bound on this maximum number of messages
has been proved by Plotkin.”

Theorem 12 (Plotkin): Let A(n, ) equal the maximum number of
binary n-bit words in an error-correcting code (not necessarily a syste-



1508 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1959

matic code), for which the distance between any two code words is at
least equal to d. Then

2d

oY — for 2d > n.

A(nd) =

For a systematic code, the number of messages must be a power of
two, and therefore this bound ecan be met exactly only when 2d/(2d — n)
is a power of two. The following theorem shows that, whenever this is
true, a systematic code exists which does meet the bound.

Theorem 13: For values of n and d such that 2d/(2d — n) = 2", for
some m, a systematic code exists with m message bits and therefore 2™
code words. For such values of n and d, no code of any type is possible
with more eode words.

Proof: The equation 2d/(2d — n) = 2" can be written as

n m—l1
= (" ot
¢ (2 —1>

Since d and 2" ! are integers, and 2" — 1 does not divide 2", n/(2" — 1)
must be an integer. Leth = n/(2" — 1), thend = h2™ ", By Theorem 6,
a code exists with d = k2" and

n = h(2" — 1) —(Z_m”_fl) 2" 1) =n

and m message bits.
By Plotkin’s theorem, no code with more code words is possible.
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APPENDIX

Various proofs have been omitted in order not to disturb the con-
tinuity of the paper. These proofs will be presented here.
Lemma 4: The matrix A™ can be partititioned into submatrices as

follows:
‘4’??1 — {Pl??? . Pr'ﬂlp g Paﬂ’l g e i Pm'nl].

Proof: By definition, the first m columns of A™ are identical with Py".
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The rows of P™ are ordered so that all rows with one one come first,
then all rows with two ones, ete. The columns of P" which must be
summed to form the jth column of A™ are determined by the jth row
of P™. Because of the ordering of the rows of P™, all sums of pairs of
columns of P™ will oecur as columns of A™, then all sums of three col-
umns of P", ete. Since P,™ contains all sums of J eolumns of P™, A™
can be partitioned as shown.

Lemma 5: a;; = antj ® @iotjp @ -+ @ Gimljm, forj > m.
Proof: The jth column of A™(j > m) is formed by taking the sum mod-
ulo 2 of the first m columns of A™ which have a one entry in the jth
row of A™. Thus, if the jth column of A™ is denoted by 4,",

A" = A" @ apds" @ -0 @ ajmd,” forj > m,

since the column 4,™ is to enter into the sum only if a; = 1, ete. It
follows from this that the 7th element of the jth column (7 > m) is
given by
;= a1 @ A @ -+ @ Cinljn .
Lemma 6:
aij = Qji.

Proof: Tt follows directly from Lemma 5 that a;; = a,; for j > m or
1 > m. Forj < m and 7 < m, the definition of 4 requires that a;; = 0
unless ¢ = j, so that a;; = aj;; = 0for 7 # j and, for ¢ = j, a,; is identi-
cal with a;; .

Lemma 7:

2m—1 2m—1

Z G,,'_,'m = Z a;,’" = 2”’_1.
=1 i=1

Proof: The first m columns of A™ contain each m-bit binary number,
except the all-zero number, exactly once. Consider these rows which
have a one entry in the first column. There must be 2"~ such rows,
since there are 2" " different (m — 1)-bit binary numbers, and each of
these must occur once in the remaining m — 1 columns. Thus,

om—_

1
Z a“m — 2m—1‘

i=1

A similar argument shows that
2m—]

> a;m =2 forl =5 = nm.
-
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For j > m, each entry a;;” is the sum modulo 2 of the entries in s of the
first m columns. Consider these columns. Each s-bit binary number
must oceur exactly 2”" times (except the all-zero number, which oc-
curs 2" — 1 times), since there are exactly 2"7° ways to choose the
entries in the remaining m — s columns. There are 2° different s-bit
numbers and 2°" of these contain an odd number of one entries. Thus,
there are (2"7*) (2'") = 2" rows containing an odd number of one
entries, and hence 2" of the a;;" are equal to one. Thus,

m—a

2m—1

a; = 2" forj > m.
im1
Sinee a;; = aj;, it follows that
2m_1
-]
a'fj — 2"1
=
Lemma 8:
m

a-ijm = ej(m).

i=1
Proof: The definition of e;(m) is:

e;im) =1 for 127 =<m,

e(m) =2  for 1+m§j§m+('"2")’

eij(m) s for i (m) =Jj= Z (m>

=0 \ ¥ a=l \H

I

Consider the first m columns of A™. The first m rows contain a single
one, since they are all the m-bit numbers containing one one. The next

m . m
(2 ) rows contain two ones, the next (

3 ) rows contain three ones, etc.
Thus,

> ai" = e(m).
i=1
Since a;; = aj;, it follows from this that

m
> a" = e;(m).

=1
Lemma 9: 1f the elements of A~ are represented by a;; ', then

_1 l— -
a;j = 2 " ]f ai; = 1
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and
71 1— -
a;; = -2 if a;; = 0.

Proof: The a;; ' given above are the elements of the inverse of A if and
only if

am—1

bl'J' = Z Ay j = 1 ifi = j

and
am_1
bij = Z‘I ana =0 ifi =7
pyes
If ¢ = j, then
am—1 am— am—1
Z; Qiylly; | Z Qillei - = Zl a“-as.-_l,
Py P

which equals
am—1

1—m
2 Z Qg .
g=l1

Bui
"l?l‘l_
Z a,;; = 2™ by Lemma 7,
go that
Dm_
Z aasam = 1.
If 7 # j,
2m—1 am_1
1 4
hi’j = Z Aisllsj Z Asillsj
g=l

Three cases will be considered:

Case 1:7 < mand j < m.

In this case, b,; = 27" (number of 11 entries in columns 7 and j)
minus 2" (number of 10 entries in columns 7 and j). By the argument
used in proving Lemma 7, there are 2”7 11 entries and 2" 10 entries,
so that b, = (2'7") (2"7%) — (2"") (2"7%) = 0.

Case 2: 7 < mand j > m.

In this case, the elements a,; are formed as the sum modulo 2 of the
entries in » of the first m columns of A, so that b;; = 27" Ny — 27"
N., where
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N, = the number of rows of 4 which have a 1 in the ith column and
an odd number of 1’s in the » columns from which a,; is formed.
N, = The number of rows of 4 which have a 1 in the 7th column and
an even number of 1’sin the » columns from which a,; is formed.
Again, by the argument of Lemma 7, in the » + 1 columns consisting
of column 7 and the » columns used to form a,;, each different binary
number (except the all-zero number) must occur exactly 2™ times
so that N, = Ny and b;; = 0.
Case 3:
A similar argument shows that b,; = 0 for the case when 1 > m and

Jj > m.
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