The Analysis of Valve-Controlled

Hydraulic Servomechanisms

By R. G. RAUSCH
(Manuseript received July 10, 1959)

The nonlinear equations that represent the behavior of valve-controlled
hydraulic servomechanisms are derived, and the assumptions necessary for
their linearization are discussed. Solutions of the nonlinear equations ob-
tained by analog computation are compared with solutions of the lincar equa-
tions. Attention is directed to the influence of the hydraulic parameters on
the nonlinear closed-loop system behavior.

I. INTRODUCTION

Since the development of hydraulic control valves such as that em-
ployed in the Nike missile,' emphasis has been given to the analysis
of hydraulic phenomena in valved systems,?* with much of the litera-
ture having been devoted to hydraulic component design. In this paper,
the nonlinear closed-loop performance is given major emphasis; the effect
of hydraulic parameter variations on the closed-loop frequency and
transient responses is examined by linear and nonlinear methods.

The basic servomechanism under consideration in this study, as shown
in Fig. 1, consists of a summing device, an amplifier, a flow source and
control system, a hydraulic actuator (or motor) and a load. In the
following sections, the nonlinear differential equations which represent
the behavior of this closed-loop system are derived, a linear and an
ineremental-linear representation are discussed and solutions of the
nonlinear equations obtained by analog computation are compared with
linear solutions,

II. MOTOR AND LOAD ANALYSIS

In this section, emphasis is on the derivation and validity of the
equations used to represent the behavior of the actuator and load; the
mechanization of the flow source and its method of control will be
discussed in detail in the following section.
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Fig. 1 — Basie hydraulie positional servomechanism.

In Fig. 2, a piston-type actuator is shown connected hydraulically
to a flow source and mechanically to a load. The initial step in the
analysis is to relate the flows @, and @. to the dependent variable z,
the piston displacement from the eenter position.

The instantaneous volumes between the piston and two arbitrary
sections in the lines leading to the ecylinder are designated Vg and
Ve (in cubie inches), the numerical subseripts indicating a particular
side of the piston. @, and (), (in cubic inches per second) represent the
flows from the source and depend upon the source mechanization; they
are considered positive in the directions indicated in the diagram. @, ,
the leakage flow past the piston, is also shown in the assumed positive
direction.

A control volume is chosen so that it coincides with the volume Vg
{where Vg is a function of time) and the equation for the conservation
of mass flow is written for this volume. This relationship states that the
rate of mass accumulation in the control volume is equal to the net
rate of mass flow into the volume. The net rate of mass flow into Vo is
given by

net rate of mass flow into Vo = p(Qy — QL), (1)

where p is the mass density (in pound-seconds’ per inch') of the fluid
and Q;, is the flow out of V.
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Fig. 2 — Variable displacement actuator.



VALVE-CONTROLLED HYDRAULIC SERVOMECHANISMS 1515

In writing (1), it is assumed that the mass density, p, is uniform
throughout the control volume; i.e., it is assumed that p is a function of
time only, and not a function of position in the volume. Since p is de-
pendent upon the instantaneous pressure, p;, existing in Vg, this
assumes that p, is uniform throughout V. The justification for this
assumption is based on the caleulation of the velocity of propagation
of a longitudinal compression wave in the fluid. In general, the velocity
of propagation, for adiabatic conditions, is given by

w=1/" (2)

where 8 is the adiabatic bulk modulus of compression of the fluid. For
a typical oil, v, is approximately 50,000 inches per second. If the largest
linear dimension of the volume Vg is small, the pressure wave will
complete many cycles in a short time, and the perturbation will be
rapidly attenuated. For valve-controlled high-performance systems,
the volumes are small; under the assumption that the largest dimension
is one inch, the time of travel is 0.02 millisecond. Since this value is
small compared to system time constants of the order of five milliseconds
or more, the pressure can be assumed uniform throughout the volume.
A caleulation of the frequency of osecillation at which nonuniform pres-
sure distribution becomes important shows that it is much higher than
the frequencies of interest: 10,000 cps versus 200 cps.
The rate of mass accumulation in the volume Vg is given by

rate of mass accumulation in Vg = d(%@ =oVm+ Vap (3)
Equating (1) to (3) and solving for @, yields
i Vv

Q= Q.+ Vﬂ+—pi‘,-,. (4)

The adiabatic bulk modulus of compression, 8, of the fluid is defined as
dp
NG} 7
p
where $ is assumed constant. The elimination of p from (4) by use of
(5) results in

Vi

Q=Qr+ Vn + 7 Pr (6)
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In the same manner, application of the equation for the conserva-
tion of mass flow to the volume V., yields

Q=—Qu+ Vi + V?mpz (7)

Experimental tests show that the leakage flow is proportional to the
pressure differential across the motor (laminar flow), so that

Q= Lu(pr — p2), (8)

where L. is the leakage coefficient (in inches’ per pound-second) of
the actuator. In addition, define

v, = IntVn (9)
where V¢ is a constant, so that
VT]_ = VT + Ax,
(10)
Vi = Ve — Ax,

where A is the cross-sectional area (in square inches) of the piston and
2 (in inches) is the piston displacement measured from the center
position, Equations (6) and (7) are thus

Qi = Lu(pr — po) + Ai + (V%A”)m (11)
and
0s = —Ln(py — o) — g+ V2 =A%) 5 (19)

g

These flow equations have been developed for the linear piston-type
actuator, but the same equations are valid for vane motors,

For a fixed-stroke axial-piston rotary motor, the control volume Vr
is a discontinuous function of time, since, as the eylinder block rotates,
the individual eylinders transfer from one side of the motor to the
other. Since the volume of one cylinder is small compared to the total
volume on one side of the motor, the volume variation due to this
discontinuity may be neglected without serious error. Thus, the control
volume V5, is essentially constant, so that

Voo =V = Vo, (13)

where V. is constant and is equal to one-half of the volume in the
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system. With this assumption, the flow equations for the fixed-stroke
axial-piston motor can be written

. T .
Ql = Lm(pl - 102) + Vabo + %Pl (14)
and
. Ve .
Q2 = —Lm(pl - 102) - Vmgll + ?pE, (15)

where 8, is the motor shaft angular rate and V.. (in cubic inches per
radian) is the fluid displacement per unit rotation of the motor shaft.
Sinee Vo and 8 do not occur separately in (14) and (15), it will be
convenient to define a “compliance coefficient” K, as

K, =— (16)

where K, has the units of inches’ per pound.

The remaining discussion will be concerned with a rotational system,
for which (14) and (15) have been developed; the same relationships
will be valid for a translational system having small displacement w,
with appropriate changes in the definitions of the parameters.

In addition to the flow equations, two torque equations ean be derived.
The first is an energy relationship that equates the work done by the
forces on the motor during a rotational of 6, radians to the work output
from the motor shaft. The work input is (p; — pe) V. and is the flow
work commonly encountered in the Bernoulli equation. The corre-
sponding work output is 76, where T is the opposing torque. Since
these two expressions for work must be equal, there results

T=(pr— p) V. (17)

Another torque equation is obtained from Newton’s Second Law of
Motion. In general, the load may consist of inertia, damping and fric-
tion torques, and disturbing torques. Thus, the following equation may
be written:

T = Jy+ To, (18)

where J (in pound-inch-seconds’) is the total inertia (including that
of the motor and fluid) referred to the motor shaft, and T (in pound-
inches) is the total friction and disturbing torque acting on the motor
shaft.
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The elimination of 7 from (17) and (18) results in
(pl - Pz) V.= Jgﬂ + Ty (19)

A restriction must be placed on the values allowable for the pressures
py and p.. If absolute pressure units are employed, these pressures
must always be equal to or greater than zero. A more accurate repre-
sentation would be obtained if the vaporization pressure were con-
" sidered as the limiting value, but, in view of the fact that the differential
pressures in the system are normally very large, this degree of refine-
ment is not warranted. A good approximation is

m =0 and P = 0, (20)

where it is understood that absolute pressure units are employed.

In addition to the equations derived, the usual expression for the
position error e in terms of the input angle 8; and the output angle 8,
for a servomechanism having unity feedback (as in Fig. 1) is given by

e=0; — fy. (21)

The equations which have been derived in this section and which
apply to the axial-piston rotary motor are summarized below:

Q1 = Lm(Ih - P:z) + Vmau + I(cpl y

= —L,.(pr — p2) — Vaubo + Kpo,
(pr — p2) Vi = Jbo + T, (22)
m=0 and p: = 0,
e=0;,— 6.

The units employed in these equations are given in Table I.
The expressions for @, and @:, the flows from the controlled source,
are discussed in the next section.

III. CONTROL-VALVE ANALYSIS

In Section II, the equations relating the flows (into the motor) to
the dynamie state of the system were derived; the expressions for the
flows @, and @ were not specified. In this section, these quantities are
discussed for the particular case of a valve-controlled system and
analytical expressions relating flow to error signal and pressure are
obtained.

The schematic diagram of a typical valve configuration is given in
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TABLE I — DEFINITIONS OF SYMBOLS; UNITS

Symbol ‘ Definition Units
Q | flow in®/sec
L motor leakage coefficient ins/1b-see
P pressure 1b/in?
Vo | motor displacement ind/radian
0; position angle input radians
ty position angle output radians
€ position angular error radians
Vo ' one-half total trapped volume in3
B | bulk modulus of compression 1b/in®
J total inertia 1b-in-sec?
K. | compliance coefficient int/lh
To | viseous, friction and disturbing torque Ib-in
P | fluid mass density I1b-sec?/in*

Fig. 3. The type of actuator is not important in this discussion and, for
simplicity, it is pictured as a translational piston.

A source having a pressure p, supplies fluid to the valve as shown
and the main spool controls the direction and magnitude of this flow
to the motor. Fluid is returned to a sump at pressure ps . As in Section
II, the pressure on each side of the actuator piston is designated as p
with the appropriate numerical subseript.

The main spool controls the flow by means of four orifices 0y, 0.,
Fy and F. , and the spool position, in turn, is controlled by a transducer.
The configuration of the transducer varies considerably in current

+el
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Fig. 3 — Orifice flow conventions.
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production models and may have the form of either a torque motor or
a hydraulic preamplifier preceded by a torque motor or solenoid. If a
hydraulic preamplifier is employed, the entire valve is designated as a
“two-stage” valve. In the analysis an ideal spool-positioning mechanism
will be assumed; i.e., there will be only one position of the valve spool
corresponding to a given error signal, e

The following nodal equations are obtained from Iig. 3:

Ql = QOI - Qm ’
QE = Qoz - Qm.

Here, as in Section 11, the flows are chosen positive in the directions
indieated in the figure.

It is necessary to express the flows through the orifices in terms of
the pressures and the orifice openings. Consider first the general orifice
equation; application of Bernoulli’s equation to the case of flow through
an orifice of area A results in the relation

(23)

Q- ACC, _2A_7
B 1/ (A p’ (24)
I=C (Al)
where:
Q = flow,
A = orifice area,
(', = orifice contraction coefficient,
C', = velocity coefficient,

A; = upstream line area,
Ap = pressure differential across the orifice,
p = mass density of the fluid.

For application to a valve orifice, note that 4 /4, is small compared to
unity and that € is less than unity. It follows, therefore, that a good
approximation is obtained by

Q0 = AC.C, 1/%?”. (25)

The usual procedure in hydraulics is to define a discharge coefficient,
C, as

C=/0c0,, (26)
so that (25) becomes

Q = AC QAT?’. (27)
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This equation has been derived for the steady-state flow through an
orifice; in the analysis, it will be assumed that the same relationship is
valid for the dynamic state. It is not necessary to assume a value for
the discharge coefficient C, since it will be included in an over-all gain
constant.

In the present application, the orifice area, A4, is proportional to the
displacement of the valve spool (assuming rectangular orifices) and
the displacement is proportional to the electrical activating signal, K,
received by the positioning mechanism (see Fig. 3). It follows that A
is proportional to Ke, and (27) may be written as

Q = (K)o 4/ 22, (28)
where Cy is a new coefficient that is proportional to the area of the
orifice per radian of input signal. If the mass density, p, of the fluid is
assumed constant in this expression, the following equation may be
written:

Q = (Kie) VAp, (29)
where
K, = 5‘5’;’ (30)
i

is a constant for a given system. K, has the units of inches' per pound/*-
second-radians.

The relationship of (29) is indicated graphically in I'ig. 4. In this
figure, the equation has been normalized with respect to the three
maximum values Quux , (Kpe)mex and Ap.c . Since there is a limit to
the magnitude of the spool displacement, a spool-displacement satura-
tion region is indieated. (Spool-displacement saturation oeccurs when
the electrical error signal becomes greater than that corresponding to
the maximum valve spool-displacement; i.e., the error signal demands
a spool position that is physically impossible.)

Equation (29) implies that the flow through the orifice is zero for
zero error e. This is not generally true for the orifices in most valves,
and in fact, this condition would be very difficult to obtain. Equation
(29) must be specialized for each orifice.

There are three general types of valves, which can be classified accord-
ing to the flow conditions at zero signal input e; these are: (a) the open-
center valve, (b) the critical-center valve and (¢) the closed-center
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Fig. 4 — Orifice flow characteristics.
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Fig. 5 — (a) Neutral position for the three basic valve types; (b) typical
characteristics for the three basic valve types.
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Fig. 6 — Flow characteristics for the orifices in an open-center valve.

ralve. Fig. 5(a) indicates the zero error position of the spool for each
of these types for the orifice O,. In the open-center valve, flow passes
through the orifice for the condition ¢ = 0, i.e., for the spool in the
neutral position. The eritical-center valve allows no flow to pass in the
neutral position; however, a slight positive displacement opens the
orifice O; . The closed-center valve has a dead zone in that a relatively
large displacement is required to open the orifice from the neutral
position.

IMig. 5(b) shows a typical differential isobar (corresponding to those
of Iig. 4) for each type of valve. The origin is translated according to
the neutral spool position.

It is now possible to express the individual orifice flows as shown in
Fig. 3 with the aid of Fig. 6 and (29). Iig. 6 shows a typical differential
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isobar for each of the four orifices 0y, 0., E;, and E,, the case shown
representing the open-center type valve. (The equations to be derived
will be applicable to all three valve types, depending upon the choice
of the neutral position error-flow constants.) It should be noted that
the direction of flow is dependent on the sign of Ap for each orifice. In
general, the equations for the flows are as given by (31). In these equa-
tions eo;, €02, €r, €xe Are positive for an open-center valve, emax 18
taken as positive and sgn denotes the signum (sign) funetion:

(K| emas + €o1] V] p. — pr] sgn (s — p1) € > emax

Qo = | Kile + ea| V]p. — pu| sgn (po — 21)  —e€o1 < € < €max
0 e < — €01,

0 € > €02

Qo: = | Kile — eoz| V| ps — po| g0 (2 — Do) —€max < € < €02
| K | emax — €o2| V[ pe — 2| 580 (e — P2) € < —emax,
(0 €> em

Qer = | Kole — em | V[ p1 — pal 520 (p1 — Pa) —emax <€ <em
LK lemax — em | V]pr — pa|sgn (pr — pa) € < —emnx,
[ Ky |emax + e[ Vps — palsgn (P2 —pa) € > emnx
Qe = | Ki|e+ ema| V] p2 — pa| 580 (P2 — pa)  —em2 < € < emas
0 € < —en2;

(31)

Simplification of (31) is obtained by assuming that the sump pressure

TasLe IT — DEFINITIONS OF SYMBoLs; UNITS

Symbol Definition Units
Q flow in?/sec
A orifice area in?
A,y upstream line area in?
C. orifice contraction coefficient —
C, orifice velocity coefficient -

orifice discharge coefficient —

Cy area per radian input in2/rad
€ angular actuating signal radians
K dimensionless gain constant —
K over-all gain constant in*/IbY/2-sec-rad
P pressure 1b/in?
Ap differential pressure 1b/in?
p fluid mass density lb-sec?/in*
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pa 18 zero psi absolute rather than atmospheric pressure; this is a good
approximation since the pressure differentials are usually several hundred
psi. This assumption eliminates consideration of the shaded regions in
Tig. 6 for the orifices E, and FE.. Further simplification is obtained if
the valve is assumed to be perfectly symmetrical; i.e.,

€9l = €o2 = €g) = €g2 = €y,

and if it is assumed that the maximum spool position is never attained.
With these assumptions, (31) simplify to (32):

[Kile + &|V/|p. — pi| sgn (p, — p1) €e> —e
Qm =

_0 e < — €,

0 € > g
Qoz = . )

_bele -_ Eo|‘\/|fﬂa - ’pg| sgn (Pa - Pz) e < €, (39}
Q [0 € > € -
El =

_ch[f_ful\/ZTl € < €,

_Kblé’|'€ﬂJ\/??2 e> —g
Qra =

_0 ('< — €.

These equations, together with (23) and (22), complete the prelimi-
nary analysis for the valve-controlled servomechanism. Definitions of
the symbols, together with a consistent set of units, are given in Table 11.

IV. LINEAR AND INCREMENTAL-LINEAR ANALYSIS

The linearization of the equations representing the motor as given
by (22) results in (for a pure inertial load):

Ql = Ln.(Pl - Pz) + me}n + K:fh ’
Q. = —Lm(‘pl - Pz) — V.o + K.:ﬁ: ,
(7)1 - P'_‘) I'm = Jéﬂ,

€ = 6.‘ - Bu .
The restrictions on the values of p; and p. and their derivatives are
not applicable to a linear theory and have been omitted; in addition,
the frietion and output disturbing torques have been assumed to be zero.
For the case of a symmetrical valve having characteristics as given
by (32), the flows through the orifices are functions of the gain constant,
K , the error signal, ¢, the open-center constant, € , and the respective

(33)
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orifice pressure drops. If the region of applicability is restricted to those
cases in which p, > p; and p, > p. (pressures not limited) and in which
| €] < | €max |, (32) may be written:

Qo = Ky(e + )V — 1 for e> —e,

Qo: = —Ki(e — e)Vp. — pa for e < &, 34)
Qe = —Ki(e — )V, for €< &,

Qs = Ki(e + &)V for €> —e.

From (23) and (34) it can be seen that there are three distinet ranges
of ¢ that must be considered, the magnitude of the range depending

upon the value of € :
Region A (] ¢] = «):

G = Ki(e + En)\/p.q — ™ + Kiy(e — 60)\/51,

Q= —Ki(e — @)V, — p: — Ki(e + @) Vps. w
Region B+ (e = e):
@ = Ki(e + «)Vp — p1,s (36)
Q= —Ki(e + e)Vp,.
Region B— (e = &):
Q1 = Ki(e — «)V/p1, (37)

Q= —Ky(e — «)V/De — po-

Expanding 4/p, — p and 4/p about the steady-state value p,/2
yields

Region A:
. P1— Pa
— 0. =29k (2 Ds _ —) . 38
&= @ "(e 2 Y Vo, (38)
Region B+-:
- P — P2
— @ = K + (2 B A/ ' 39
Ql Q b (é Eu) ) 2Pg ( )
Region B—:

Kl — ) (2 2+ 1"\/;2;:”), (40)

Q — @

where the higher-order terms in [(p./2) — p| have been neglected. This
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further restricts the region of validity of our analysis to those cases
where the pressure differential across the load is not large.
IFor the region A, combination of (33) and (38) results in

41\-!» V ;€ = I\J 8" + I (Lm + ‘\/ )60 + 91’ moU) (41)

m

and the open-loop transfer function hecomes

4V,.K, 1/@
_B(s) K.J 2
GA(S) - e(s) - I: 9 n 2 (L + Kieo ) o+ 2Vm2:|1 (42)
1 TR V/2p, K.J
or
E’J_-g
Gats) = %) = i . @)
ELE) +2 () +1]
Wy Wn Wy
where
_ 28
Wn = Vm -VTJ, (44)
I{hf(} ﬁ )
o= [t ) A 5 )
o = 21{"*’ ?~ (46)

Here, w, is the undamped natural frequency of the system, {. is the
damping ratio and w, is the velocity gain constant. (The subscript “a”
indicates the region A.) It is interesting to note that {., the dnmpmg
ratio, is the sum of the motor damping (motor leakage) and a term
related to the steady-state flow through the valve. The term, Kveo/N/2p.
contributes the major damping to the system. In the quiescent state,
since € = 0 and p;, = p. = p./2, it follows from (34) that
—
(Qu)e = (Qo2). = (Qm)e = (Qu) = Kam 4/ B, (47)

where the subseript “s” indicates quiescent values, Now designate

Q. = (Qa1)s + (Qo2)s s (48)

where (, is the quiescent (i.e. ¢ = 0 and § = 0) total flow from the
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source, so that

Q. = 2Kieo 1/%‘. (49)
An effective leakage coefficient is given by
Kieo Q.
La - (Lm + ‘\/2—‘105) = (Lm + Zpa) (50)
and therefore (45) becomes
_ L. /B
% (51

Now consider the region B+, where ¢ = ¢ . The combination of
(33) and (39) results in

‘ P Ko 2] Ki(e 4+ )], .
2K, 4/5 (e + &) = V—meu +V; L, + 2_\/511_3 o+ 2Vaubo. (52)
An approximate “ineremental linear”” transfer function may be obtained
for this region by making the substitutions

e = €f 4 Ag,
By = 8u*‘i‘AeD,

where both the starred and the ineremental symbols are considered as
functions of time. The incremental variables are assumed small, so that
their products may be neglected. In this manner, a linear equation in
the ineremental quantities can be obtained if the equation defining the
starred variables [(52) with the symbols starred] is subtracted from
that obtained by the substitutions indicated previously. Then, if the
resultant equation, which is linear in the incremental variables, con-
tains any starred quantities, these can be considered to be varying
slowly with time — that is, essentially constant when compared with
the incremental variations with time. Therefore, a quasilinear incre-
mental transfer function can be obtained. In the present case, the
incremental transfer function valid for a small constant-acceleration,
ay , will be derived. This will be used to obtain the incremental transfer
funetion for eonstant-velocity operation.

Thus, the analysis is initiated by obtaining the linear equation in
the incremental quantities as previously outlined; this equation is

Ps _ Jb* _
2Kh ( E 21’7"‘ ‘\/Q—pa-) Ae =

K.J . 2J Ky(e* + )] .
?;AGB‘FE[Lm‘*‘ 2\/-2—;,; :|A90+2Vm690.

(53)

(54)
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Noting that a similar equation may be obtained for the region B—,
and denoting both regions by B, the following transfer function is
obtained for operation about a constant acceleration ap :

Cﬂ).
Guls) = B08) s )
E) +20(5)+1]
Wn wy Wn
where
_ 28
Wy = Vm /‘/-:V—T'-I, (56)
1 K| e*| + eﬂ)] 1/‘.1?
= —_ Lm —_— =l 7
& V,,,[ + 24/2p, 2Vr (87)
w3 y/B (-5, (3)

For an inertia load (no viscous or eoulomb friction), (58) ean be written:

K Joif.  |Apt]
o= 1/% (1 - o), (59)

where Ap* is the constant-differential pressure acting on the motor.

The preceding equations give an approximate solution for the case
in which the aceeleration o is small; i.e., ¢ varies slowly with time.
For this case, the incremental damping ratio { is appreciably increased
over that given by (45) for the region A. The incremental gain constant
wp is less than the gain constant in the A region as defined in (46); for
Ap* equal to p, , the gain is down 12 db from that of the A region.

For operation about a constant veloeity w;, w, and {, remain as in
(56) and (57), but the gain constant becomes

K 8
W = V: 1/%. (60)

In this case, the gain is down 6 db from that given for the A region.
For constant-speed operation, 6* = wd, the error is given by

TV o
& = 1/5 (%,‘:')-—eo, (61)

so that the effective leakage coefficient becomes:
Kb(J e lj’ 60) = Lo + 1:’,;.0-’:'.
2\/2p3 2 s

Ly = La + (62)
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Thus, sinee the “displacement” motor flow is given by
Qm = T]méu = Vi y ((J.:_)?)

the effective leakage coefficient is

Ly = Ln 4+ (64)
2p,

In many cases, L. is small compared to @, so that the incremental
damping is primarily a function of the motor speed.

The velocity-lag error, e, (steady-state position error under the
conditions 6, = w; where w; is a constant rate input), is as follows for
the two regions:

Region A:

Wy I’mwi

= — =T o (65)

Ws V4 ‘.Zp.,. ’
Region B:

J _ 2lewfjJ
Ev[ - Kb\/ﬁ €,

where it is understood that | e, | is greater than & . The velocity lag
error for the B region is thus approximately twice that predicted by
(65) if € is small compared to the lag error.

Some qualitative information on the nature of the system performance
can be obtained by comparison of (43) and (55). In the region A (i.e.,
| €| < &), the system is essentially linear for small pressure differentials.
In the region B (| e| > ¢), the system is nonlinear even though the
pressure differentials are assumed small. In this region, the behavior
is “amplitude sensitive'’; as the error amplitude increases, the inere-
mental gain deereases. The inecremental damping increases with increas-
ing error in the B region and is considerably greater than the damping
in the A region; the incremental damping is proportional to the total
flow through the valve. The velocity-lag error is, of course, greater in
the B region.

The transfer function G'4(s) as given by (43) was derived for a fully
symmetrical valve; the analysis of an unsymmetrical valve shows that
the basic form of the transfer function is similar to that for the sym-
metrical valve. For the unsymmetrical valve, however, the damping
ratio and gain expressions differ from those of (45) and (46). The damp-
ing ratio is

(66)
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1 Q.ps ] /JB .
a = 17 Lm oTr ) ()7
: T[ T &pip. — po 2V (67)

where p, is the quiescent value of the pressures p; and p.. For p, =
p./2, this expression is identical to that given by (45); for p, greater or
less than p./2, the damping is greater than that given by (45) (assuming
the same quiescent flow ;). The gain constant is:

Wa I_;rm (‘\/'pq + \/ps - pq (68)
and comparison with (46) shows that the two give the same solution
for p, = p./2. For p, greater or less than p./2, the gain of the unsym-
metrieal valve is less than that of the symmetrical valve.

V. SOLUTIONS OF THE LINEARIZED EQUATIONS

The equations representing the valve-controlled servomechanism
were linearized in the last section, and it was found that the open-
loop transfer funetion had the following general form:

wo

fol s) _ Wn

MR )]

where w, is the velocity gain constant, w, the natural resonant frequency
and ¢ the dimensionless damping ratio. If this is considered as a fre-
quency funection, the resulting open-loop attenuation and phase vary
as shown in Figs. 7 and 8. In these figures, the damping ratio, {, has
been taken as a parameter.

Equation (69), when solved for the closed-loop funection, results in

G(s) = (69)

Wy

6:]( S ) o Wy

ENOrECRAEG)

The relationships for the closed-loop operation are exhibited graphi-
cally in Figs. 9 through 12. In Fig. 9, the gain margin is shown as a
function of the peak attenuation, 3, (the maximum value of | 6,/8; |),
for the range of values of interest. In general, the gain margin decreases
with increasing peak magnitude and is less for the lightly damped cases.

(70)
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The phase margin variation with the peak magnitude is shown in Fig.
10; the smaller values of { have the largest phase margins.

I'ig. 11 shows the variation of the peak frequency, w, , with the peak
attenuation, M, , for the various 'damping ratios {. For { = 0.1, the
peak frequency is approximately the undamped frequency of the system
and is independent of the peak attenuation. As the damping is increased,
the peak frequency decreases, and it is lower for the lower peak attenua-
tions. In general, the lower the value of w,, the lower will be the band-
width of the closed-loop system.

The relation between the velocity gain constant wy, and the peak
magnitude is shown in Fig. 12 as a function of the damping ratio, {.
As the gain constant is increased, the peak magnitude increases; in
most cases (for constant peak magnitude), wy is less for the lightly
damped systems. This graph shows that, for { = 0.1, a change in wy of
approximately 3 db is sufficient to cause M, to increase 8 db, while,
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for ¢ = 1.00, wy must change 9 db for the same increase in peak magni-
tude. Since, in a practical system, fluctuations in the value of wy are to
be expected, operation of the lightly damped system would be more
erratic than that of a system having adequate damping.

Equation (70), when solved for the transient response (8; a step
function) yields solutions as given in Fig. 13. It is interesting to note
that the transient response for a servomechanism having a damping
ratio of { = 0.1 and a closed-loop peak magnitude M, = 3 db shows
little overshoot. Examination of the frequency response shows that
this is o result of a large attenuation in the frequency region below
resonance. The superimposed oscillation is caused by the gain in the
resonant frequency region.

The results of the transient solutions for ¢ = 0.5 are summarized in
graphical form in Fig. 14, in which the delay time, Ty, rise time, T,
peak time, 7', , and per cent overshoot are given as functions of the
gain, wy/w, . (The definitions of the various time values are given in
Fig. 15.) The response times decrease rapidly with increasing gain for
the lower gain values and, as the gain increases, become relatively
insensitive to gain variations. The per cent overshoot is a linear function
of gain for values of gain above the limiting case in which there is no
overshoot (wy/w, = 0.316).
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The relationships developed in this section can be used to estimate
design parameters. I'or example, from I'ig. 9, assume that a gain margin
of 6 db is desired for a servomechanism having a damping ratio { = 0.5.
This fixes the peak magnitude M, to be 4.15 db and, from Fig. 10, the
phase margin is found to be 50 degrees. From Fig. 11, the peak frequency
is w, = 0.8 w, and, from TFig. 12, the gain ratio wy/w, is —6 db; i.e.,
wo = 0.5 w, . Fig. 14 then predicts an overshoot of 24 per cent; a delay
time, Ty = 2.3/w, ; a rise time, T, = 2.1/w, ; and a peak time, T, =
5.0/w, .

VI. ANALOG SOLUTIONS OF THE NONLINEAR EQUATIONS

The equations representing the behavior of a valve-controlled servo-
mechanism were derived in Sections II and III, and the approximate
linear theory was discussed in Sections IV and V. In this section, repre-
sentative analog computer solutions of the nonlinear equations (which
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are summarized in Table III) are given for particular values of the
parameters, and the results are correlated with the linear solutions.

The valve-controlled servomechanism is assumed to have the numeri-
cal constants listed in Table IV. During the course of the discussion,
the effects of changes in these parameters will be considered, but, unless
otherwise stated, the values will be assumed to be as given in the table.
In this manner, a reference system is obtained and the discussion of
the effects of parameter variations is facilitated by comparison with
the reference behavior.

The first eight constants listed in the Table IV are considered to be
the independent variables while the remaining five are dependent. The
compliance coefficient, K., is given by (16) as the ratio of Vr to 8.
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The effective leakage coefficient, L, , is given by (50) as

]{béu
Ls = Ly, —
o= Ln+ o (71)
and the undamped natural frequency is given by (44) as
2
wn = Vim 1/ %. (72)
TasLe III — Equations SoLveEp BY AnNanog COMPUTATION
Qi = Lu(py — p2) + Vb + K.y
Q. = ""__Lm(Pl — Pz) — Vb + K.p2
(pr — p2)V = J8
e= 0; — 6
=0 and p2=0
Q= Qo1 — Qg
2 = o2 — WEe
Q =]:K:;lf'l'fo|\/|Ps—1f’lft‘5|¥1(F’a—Pl} €> —e
o1 0 e < —g
Q - [0 € > €n
T K e— e VP p2lsgn (pa— p) €< e
Qp = 0 € > €
El bee—énlv@ e < g
_ | Ki + P > -
Qm—[o”E «l|Vp :<—:g
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TaBLE IV — REFERENCE VALUES OF PARAMETERS

Definition Symbol Value Units
total inertia J 2,73 X 1073 Ib-in-sec?
motor displacement Vi 0.0151 in?
trapped volume Ve 0.125 in3
bulll); modulus B 2.22 X 108 Ib/in?
motor leakage coefficient L 0.039 X 1073 | in®/lb-sec
supply pressure Ps 1000 Ib/in?
gain constant Ky 0.0912 in*/lb!2-sec-rad
open-center constant € 0.0561 radians

3.21 degrees
compliance coefficient K. 0.0563 X 10=5| in?/Ib
effective leakage coefficient L, 0.1533 X 1073 | in®/lb-sec
resonant frequency W 544.7 rad/sec

86.6 cps
damping ratio ta 0.5
gain ratio lﬁ 0.496

The dimensionless damping ratio ¢, [from (51)] is

La I8 .
=y, 1/212' (7)

and the velocity gain constant is obtained from (46):

_ 2K/
Wag — Vm /‘/E'- (74)

Fig. 16 shows the theoretical frequency response of the reference
servomechanism as a function of the input amplitude. The linear
prediction (based on small amplitudes and pressure differentials) is
included for comparison. The amplitude sensitivity in the small signal
region, as represented for example by a curve of 1° amplitude, is the
result of the nonlinear flow characteristics of the valve. The operation
is within the region in which | €| < & (A region) and pressure saturation
has not occurred. f

The response for an input of 2° shows more deviation from the linear
response, primarily because of pressure saturation; operation is still
within the A region. For greater input amplitudes, the response falls off

t A —12 db per octave slope that passes through zero db at the frequency

[fiiml o an = i/t/p,V,,,
27 Jo;

divides the graph into regions that represent the saturating and nonsaturating
conditions.
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rapidly and operation is primarily in the B region; pressure saturation
effects become more pronounced.

The closed-loop transient response of the reference system as a func-
tion of step magnitude is given in Fig. 17, together with the linear
solution. For small amplitudes (less than 3°), the linear and nonlinear
solutions are essentially identical; as the amplitude is increased, the
discrepancy becomes large. The per cent overshoot decreases with
amplitude.

It is evident that the transient response of the servomechanism is
not as sensitive to amplitude as is the frequency response; for example,
comparison of the 3° curves in I'igs. 16 and 17 shows that the transient
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is much closer to the linear transient solution than the frequency re-
sponse is to the linear frequency response. This difference is attributable
mainly to pressure saturation. Fig. 18 shows the transient response of
the system for the 3° step, together with the pressures p; and p. . Since
the supply pressure is 1000 psi and the valve is symmetrical, both
pressures are initially 500 psi in the quiescent condition. For the case
shown, the applied step was in the positive direction, so that 6 was
also positive; consequently, p; has an initial positive slope while p, has
a negative slope. Irom 0 to 2 milliseconds, the oil is compressed and
very little shaft rotation oceurs; maximum acceleration (p1 — p2)
oceurs at 2 milliseconds, at which time the shaft has acquired an ap-
preciable velocity. From 2 to 5 milliseconds, the acceleration decreases
from maximum to zero, while the velocity continues to increase to its
maximum value. From 5 to 6.8 milliseconds, the acceleration becomes
negative, since ps is now greater than p, . The velocity is still positive
for this period, and the error signal e decreases from a positive value
to zero. The increase in ps is due to the compression of the oil in line 2
by the moving inertia, as the orifice area opening to the sump is gradu-
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Fig. 18 — Output and pressure variation with time for a 3° step.

ally reduced and the pump pressure is applied to this side of the motor.
For the period from 6.8 to 9.5 milliseconds, the error e is negative and
the velocity decreases to zero at the peak of the curve.

The nature of the response after 9.5 milliseconds is very similar to
that previously described, since the output starts from rest with an
initial error. The major difference, aside from the fact that the error is
now negative, is that the pressures have appreciable values at 9.5
milliseconds, while at 0 milliseconds the pressures started from the
quiescent state.

It should be noticed that the pressures p, and p. did not limit for
the 3° step and that, although the pressure differentials were appreciable,
the linear theory still provided a good approximation to the output
motion, as indicated in Fig. 17. The value of ¢ as given in Table IV is
3.2° so that operation was entirely within the A region.

Fig. 19 shows the transient response and pressures for the 20° step.
In this case, the pressures just limit at the start, and the pressure differ-
entials are large. In Ilig. 20, for the 30° step, the initial pressure satura-
tion is more pronounced and, in addition, p; reaches zero and p, obtains
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a value above that of the supply pressure (p, = 1000 psi). Examination
of the curves shows that the maximum value of p, of 1080 psi occurs
for e positive, the velocity positive and the aceceleration negative. This
indicates that the inertia of the motor and load combination is forcing
oil to flow out of the exhaust orifice and that, as a result, the pressure
p» achieves a very high value. At the same time, oil is forced through
the orifice connecting the pressure supply to line 1, but the veloeity is
so great that the rate of flow is not sufficient to maintain a pressure in
this line. Thus, during the period from 14 to 17 milliseconds cavitation
conditions exist on this side of the motor.

In Fig. 21, for the 50° step, the situation is similar to that of Fig. 20,
except that the saturation and cavitation periods are of longer duration.
Here, the peak pressure is very nearly 1400 psi.

From the preceding discussion, the desirability of including relief
valves in each line is apparent. Dangerously high pressures can be
generated, especially if a supply pressure of 3000 psi is used. The inclu-
sion of relief valves in effect limits the line pressure, so that the oil
eannot be “trapped’” by the inertia. This, however, has the disadvantage
of inereasing the overshoot for large amplitudes and does not decrease
the rise or delay times. In addition, the cavitation period is prolonged.

The effect of the variation in gain, K, , is shown in Figs. 22 and 23.
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In Tig. 22, K, has a value of 0.12, so that the parameters listed on the
figure change from those of the reference case; all other parameters
remain constant as given in Table IV. Since the open-center constant
€ is now only 2.44° it is to be expected that the system exhibit more
amplitude sensitivity. Comparison with I'ig. 17 shows that this is the
case; in the small-signal region, the curves for the higher-gain system
differ somewhat more from the linear solution than do those in Fig. 17.
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As the amplitude increases, this effect is lost, and the major difference
is found in the per cent overshoot.

In Iig. 23, the gain constant, K, , is 0.184. Ior this value the dimen-
sionless gain ratio is unity and the linear theory predicts zero gain
margin. There is a distinet difference in the nature of the response as the
amplitude increases. For the 1° step, the operation is entirely within
the A region (& = 1.59°) and the oscillations are almost continuous.
As the amplitude increases, the per cent overshoot decreases, since
pressure saturation oceurs,

This effect on the stability is more pronounced at the higher gain
values. In Fig. 24, a 10° step is shown for the case in which K, = 0.25
and the gain ratio is 1.36. From the linear theory, this system should
be unstable. Examination of the response shows that, in the A region
in which e is less than ¢ = 1.17°, the system is unstable, but that it is
stable in the B region in which e is greater than ¢ . The response, there-
fore, oscillates indefinitely, but only with the amplitude of & . It is
evident, therefore, that, if frictional forces are sufficient to overcome
the small oscillations of ¢ amplitude, or if these oscillations are not
detrimental to the performance in the particular application, the allow-
able gain is much greater than that predicted by the linear theory. For
a given valve, K¢ is a constant, so that, as the gain K, is increased,
the magnitude € of the sustained osecillations decrease. The incremental
damping and gain constants for the B region are given by (57) and (59);
these equations show that the operation in the B region is inherently
more stable than that in the A region, since the incremental damping
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Fig. 25 — Transient response as a function of supply pressure for a 20° step.

is greater than in the A region and the incremental gain is less than the
corresponding A region gain. Thus, in the absence of friction or viscous
damping, the sustained oscillations are most pronounced in the A region.

The effect of the supply pressure on the transient response is shown
in Tig. 25 for a 20° step. The linear theory provides the best approxima-
tion for the case in which the supply pressure is greatest. This is the
result of two factors: (a) the system with the higher pressure is less
susceptible to pressure saturation and (b) the value of & increases with
increasing supply pressure, so that operation is more completely in the
A region. The solutions show that, whereas the system having a supply
pressure of 1000 psi encounters saturation for a 20° step, the 3000-psi
servo is not pressure-limited until subjected to a 60° step. The advantage
of operating at higher pressures is thus primarily a question of pressure
saturation.

In all the previous solutions, the effective leakage coefficient, La,
has been maintained constant at 0.1533 X 107 inches’ per pound-
second, so that the damping ratio, {., was 0.5. From (71), it is seen
that the effective leakage coefficient is the sum of the motor leakage
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Fig. 26 — Theoretical transient response as a funection of Kyeo for a 1° step.

coefficient and a term proportional to Kye . It is interesting to observe
the response of the system as affected by the nature of the damping.
This is given in Iig. 26 for a 1° step. The three upper curves have a
damping ratio of {, = 0.5; the difference in the curves results from the
method used in obtaining the damping. For cases in which the open-
center valve provides appreciable damping, the response does not differ
from the linear prediction. This is the result of operation in the A region,
where € is less than ¢ . As the valve damping decreases and the motor
leakage is increased, the response is slower and falls below the linear
curve; this oceurs for the case in which Kje is 0.0005. Operation is
partly in the B region, since ¢ is equal to 0.31°.

When the damping is contributed entirely by the motor leakage,
Kiep = 0 and the valve is of the critical-center type. In this case, Fig. 26
shows that the response does not overshoot and that an increase in
gain would be desirable. Computer results show that, for K = 0.20,
the critical-center valve gives a transient response having about 25 per
cent overshoot and adequate stability. However, it should be empha-
sized that the damping ratio for this case was 0.5 and that the damping
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was obtained by altering the motor leakage. Any attempt to reduce the
valve-quiescent flow without compensating the system in some manner
to provide additional damping results in an underdamped servomecha-
nism.

The final curve, for which Kyee = —0.001 in Fig. 26, represents the
response to be expected with a closed-center valve. This valve has a
dead zone of 0.63° about which the output will wander, and is shown
in a particularly poor case, since the step is only 1° and the gain is small.
The only damping in this system is contributed by motor leakage, so
that the system is underdamped.

VII. CONCLUSIONS

This study shows that the linear approximation to the nonlinear
representation of valve-controlled hydraulic servomechanisms can be
applied only with the sacrifice of considerable accuracy. However, since
the linear theory is readily applied, it ean be used in obtaining estimates
for preliminary designs if the deviations from the nonlinear solutions
are understood.
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