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A shot noise, 1(t), is a superposition of impulses occurring al random
Poisson distributed times -+ ,t_y, to, ty, ta, +++ . In the simplest case, if
the impulses all have the same shape F(t), then I(t) = SF(t — ti). We
study, in this and more general cases, the distribution function Q(I ) =
Pr{I(t) £ I]. One of our resulls is an integral equation for Q(I). This
yields explicit expressions for Q(I) in a number of cases, including F(t) =
¢”'; it also permils a computational technique which is applied to F(t) =
e " sin wt for 0 > 1.

I. INTRODUCTION

A shot noise, 1(¢), is a superposition of impulses occurring at random
times + -+, ¢y, lo, i, ta, -+ . If the impulses all have the same shape,
F(t), then

I(t) = 2 F(t — to). (1)

More generally, the impulse shapes may be randomly chosen from a
family of shapes, F(a, t), depending on a parameter a. Then

I(t) = 2 F(ai, t = t). (2)

We assume that the times ¢; form a Poisson sequence with rate n impulses
per second. In the case of (2), we assume that the parameters a; are
chosen independently from a common distribution.

We study the amplitude distribution function

Q(I) = Pr{I(2) = 1.

Rice' (Section 1.4) considered thenoise (1) and noises (2) with F(a, t) =
aF(t). He expressed the density function P(I) = Q'(I) as a Fourier
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integral. The Fourier integral is difficult to evaluate except by means of a
series that Rice derived for the case of noises that are nearly gaussian
(large impulse rate n). In our treatment we derive for (1) an integral
equation

[ zda) = u [ au - F@F®) @ (3)
or, equivalently,
IQ(I) = f_I Q(z) dx + n _[: QU — F()IF(¢) dt. (4)

We solve (3) for some special choices of F(t) illustrated in Fig. 1. The
section numbers on Fig. 1 give the part of the text in which each I(¢)
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Fig. 1 — Impulse functions F(t).
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is considered. Analytic solutions are obtained for all cases except the last
one of these; this case is an important one in practice, and so was chosen
to illustrate a numerical solution of (3).

For purposes of finding Q(/) any given noise of form (2) can be re-
placed by an equivalent one of form (1). This equivalence is discussed
in Section I11.

Several different ways of deriving (3) are possible. We give an analytic
proof (Section IV) and a probabilistic proof (Section V).

II. CHARACTERISTIC FUNCTIONS

All impulse functions F(¢), F(a, t) will be assumed integrable over
— @ < { < . This assumption is no practical restriction and is made
to ensure that the series (1) and (2) converge.

We begin by deriving the characteristic function C(s) of I(¢) for the
noise (2); i.e.,

C(s) = E[¢"""). (5)

Here I denotes the expected value.
The characteristic funetion Cy(s) in the case of the noise (1) is

Co(s) = exp {—n f_w (1 — exp [—sF(t)]) dt} (6)

(see Ref. 1, Section 1.4-7). We may obtain C'(s) directly from (6) by
regarding the noise (2) as a superposition of noises of the form (1) with
different choices of F(¢). Suppose, for example, that the parameter a
has only a discrete range of possible values (a = Ay, A:, A5, - +-), and
let pi be the probability of picking a to be A . Then, collecting to-
gether the terms of (2) for which a, has the same value, one expresses
I(1) as a sum of new independent random variables

I(t) = L(t) + I(t) + -+,

where I,(t) is a noise of the form (1) in which the impulse shape is
F(t) = F(A,, ) and the impulses arrive at an average rate, np. per
second. If C'x(s) is the characteristic funetion of I.(¢),

C(s) = E[ef"“‘m‘“‘u'“’*"-?]
C(s) = Cy(8)C(5) -+ . .

In (7) each Cix(s) may be evaluated by an expression of the form (6),
and the final result is

C'(s) = exp [—n ([ﬂ (1 — Ele"") dt)]. (8)
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In (8) the expectation E is taken with respect to the random parameter
a. Although our derivation of (8) used the assumption that a had a dis-
crete range of values, a convincing limiting argument can be given for
the truth of (8) in general. Alternatively one can rederive (8) in general
by a slight modification of Rice’s derivation of (6).

In a similar way, we find

E {exp [— s (1) — -+ — sul(7x)]}
0 N
= exp {—n[ 1 — E[exp — > sF(at — ) dt:l},
L3 k=1
which might be used to study the joint distribution of 7(7y), - -+, I(7s).

III. EQUIVALENCE

In (6) it is evident that there are many different ways of choosing an
F(t) to obtain the same distribution of I(¢). The integral in (6) remains
unchanged if F(¢) is replaced by any other function Fy(¢) such that, for
every choice of u; and wu; , the two sets S and S, of times ¢ that are de-
fined by:

S: w < F(t) = u,

So: uy < Iy(t) = we

have the same measure: For example, the second function in Fig. 1 may
be replaced by e *'*!. Some idea of the freedom with which one can con-
struet such a new Fo(¢) from a given F(¢) may be had from Fig. 2.
Given F(i) and n, one can construct a measure, dg(w«), on the real u
line by defining the measure of the interval v, < u = wus to be n times
the Lebesgue measure of the set of times ¢ for which w, < F(¢) £ ..
Then, changing the variable of integration in (6) from ¢ to u, one ob-
tains

(9)

Co(s) = exp I:—f (1 —e™) dg(-u)]. (10)

F(t) Fo(t)

ARV

Fig. 2 — A pair of equivalent impulse functions.
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Similarly, in the case of noise (2), let dg(u) be defined in such a way
that the interval u; < u < u. has measure equal to n times the expected
value of the Lebesgue measure of the random set of times ¢ satisfying

w < Fla, t) = u. (11)

Changing the variable of integration in (8) from ¢ to u, one obtains for
C'(s) an expression that is just the right-hand side of (10). Thus, we
call two noises which have the same dg(u) equivalent and have shown
Theorem: The distributions of the amplitudes 1(t) of equivalent noises
are the same.
Given a noise (2) with measure dg(u), one can find a function F(¢)

such that
F (fum difli)) =u foru>0 (12)
and
r (—fl; dg;w)) = u foru < 0. (13)

The noise (1) with this choice of F(¢) is equivalent to the given noise
(2). Then every noise (2) is equivalent to a noise of form (1). For the
problem of finding the amplitude distribution we now need consider
only noises of the form (1),

As a very simple application of the theorem, consider (2) with the
family of impulse functions

b f0=<t=a
F(a, t) = _ (14)
0 otherwise,
where the parameter a is distributed over positive values only. To find
the measure dg(u), note that the set (11) has Lebesgue measure

JOG ifuy <0 = up
f ) dg(u) = la 02w <b 2w

uy

0 otherwise.

Then, dg(u) must lump all its measure onto two points u = 0 and u = b.
The measure of 0 is « and the measure of b is nd, where A = E(a), the
expected length of the pulse (14). A noise of the form (1) that also has
the measure dg{ ) is the one with

(b fo=st=4
F(t) = (15)
0 otherwise.
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This happens to be a noise for which the amplitude distribution is easily
obtained. Since 7(¢) is just the number of impulses which arrive in the
time interval from ¢ — A to ¢, I(#) has the Poisson distribution

(nA)k e—nA
k! )

Pr[I(t) = kb] =

By the theorem, this result also solves the distribution problem for the
original noise (14). In the same way, the example may be generalized
as follows: If F(a, t) hastheform S(¢/a) for some given impulse function
S(t), then the amplitude 7(¢) in (2) has the same distribution as the
amplitude in (1) where F(t) is taken to be S[t/(¥ | a | )].

Although the measure dg(u) determines the amplitude distribution, it
does not determine all the statistical properties of the noise. One can
easily find examples of functions F(¢) and Fy(¢) for which the corre-
sponding noises (1), although equivalent, have different joint distribu-
tions for the pair of random variables I(7,), I(72). The spectrum of /(i)
is proportional to the squared magnitude of the Fourier transform of F(t)
(see Campbell’s theorem in Ref. 1, Sections 1.2, 1.3), and so can be
changed without changing dg().

IV. DERIVATION

A proof of (3) can be given from the formula (10) for the character-
istie function C'(s). We will assume here that the impulses F(¢) or F(a, t)
in question are nonnegative functions. This restriction will be removed
in the next section and is made now in order to allow Laplace transform
methods to be used.

We have

C(s) = E[le""]

= [ eaamn

—s fm () dl,
0

where the last formula is obtained by integrating by parts and noting
Q(0—) = 0. Thus, C(s)/s is the Laplace transform of Q([I).

Using (10),
'(s) _ d
(s) ds

— fe"“‘u dg(u).

Q)

log C(s)

S
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Then

_C(s) _ ﬁlfe—”u dg(uw). (16)
S

8

Take the inverse Laplace transform of (16). The product on the right
of (16) transforms into a convolution. One of the terms, C(s)/s, is the
Laplace transform of Q(I). The other term is already in the form of a
Laplace transform. Then the product transforms into

I
Q(I — w)u dg(u).
0
This integral is another way of writing

fQu — FOIF() dt.

To prove (3), it now remains to show that the term —(C'(s)/s in
(16) is the Laplace transform of

fu@ dQ(x).

This follows because
C'(s) = —f ¢ "1 dQ(I)
0

and because 1/s is the Laplace transform of the unit step function.

The integral equation (3) can be proved in several other ways; in
particular, a more probabilistic proof will be obtained as a byproduct
in the next section.

V. SUMS OF NOISES

Let 7,(¢) and I.(t) be two independent shot noises with impulse re-
sponses Fy(t), Fu(t), impulse rates ny , o and measures dg(w), dg.(u).
Their sum I(¢) = I,(¢) 4+ I.(t) is a shot noise of the form (2). The im-
pulse rate for the sum I(¢) is n = n; + n.; the function F(a,t) is
chosen to be F1(¢) or Fa(1) with probabilities n,/n and ns/n. The meas-
ure dg(u) for I(t) is

dg(u) = dgi(u) + dgs(u).

Since I(¢) is the sum of the independent random variables ,(¢) and
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15(t), the distribution of 7(¢) can be obtained from those of I;(¢) and
I:(t) by a convolution.

This observation may be used ocecasionally to compute the distribution
function for a given noise /(¢). Suppose the measure dg(u) of I(t) can
be written as a sum Z dg;(u) of measures of noises I;(¢) for which the
distribution functions are known. Then 7(¢) is equivalent to a sum of
independent noises Z I;(¢) and its distribution function may be ob-
tained by convoluting the distributions of I;(¢) together. Even when an
exact decomposition dg(u) = Z dg:(u) is not known one might approxi-
mate dg(w) by a sum to get an approximate Q([).

A particular instance of a decomposition is the following. Let meas-
ures dg™(u) and dg” (u) be defined by

dg(u) ifu>0
dgtu) = |

0 otherwise,

dg(u) ifu=0
dg (u) = g )

0 otherwise.

Then dg(u) = dg*(u) + dg (u). At present, our proof of (3) holds
only for positive noises. A similar derivation of (3) for negative noises
also holds. In the general case we might consider our noise I({) to be
equivalent to a sum I*(¢) 4+ I (t) of independent positive and negative
noises, and compute Q(/) as a convolution

Q) = [ Q" — =) d@ ().

That (3) holds in general now follows from the next lemma.
Lemma: Let dg,(w), dg2(w), dg(u) be measures such that

dg(u) = dg(u) + dgo(u).

Let Qh(I), Q:(I) be solutions of the integral equation corresponding to the
measures dgi(u), dgs(u). Then for measure dg(u) the convolution

QD = [ QI — w) dQu(w)

= [~ 2) dau(x)

18 a solution of the integral equation (3).
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Proof:

f_: y dQ(y) = L: fw y dQu(y — w) dQu(w)
= [ [ 1~ w) + wlduty - v) d@xtw)
= [: f QI — w — w)u dgy(u) dQe(w)
[ [ @ty — war - wdeto

= _[: QI — w)u dg(u).

Taking dg, and dg. as dg™ and dg~, the lemma, together with the result
of Section IV, completes the derivation of (3).

A different proof of (3) may now be outlined as follows. Consider
first the noise with response function (15). The integral equation (3)
holds in this special case. For dg(u) gives measure nA to the point u = b
and

o - 3 "
Then
S kb (nA)" na

Fb=1 k!

nAbQ(I — b)

[ = daw)

Il

— fm Q(I — w)udg(u).

Next, any step function F({) with a finite number of steps has a meas-
ure dg(u) = Z dg:(u), where each dgi(u) concentrates its measure on a
single value of u [a level of F(¢)]. We have just proved that the inte-
gral equation holds for each of the dgi(u) noises. By the lemma we can
conclude that (3) holds for all step function noises. By limiting argu-
ments, one might establish (3) more generally.

VI. EXAMPLES

For certain choices of F(t) the integral equation can be solved easily.
Some special cases of this kind will be examined in this section.
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6.1 Example 1

Ifirst consider a noise (1) with
e’ ift=0
0 if t < 0.

We expect a distribution Q(f) that has a density P(I) = Q'(I) and
so write the integral equation in the form

o - |

1 I
IP(I)=nf P(I—-wu)du=mn P(z) du.
0 I—1
Differentiating, we obtain
IP(I) — (n — 1)P(I) = —nP(f — 1).

To solve this differential difference equation, note first that, when
0=7I<1,P(I —1) =0.Hence,for0 =71 <1,

P(I) = eI™™,

where ¢ is a constant of integration to be determined. For larger values
of I, the differential difference equation may be converted to an integral
form

P =1 l:c - n[ Plz — D" d:c].

Since the integrand is known for * < 2, we can determine P(I) for
I < 2. Next, this result enables us to integrate further to get P(I) for
I < 3, ete. Clearly, the analytic form of P([l) changes at [ = 1, 2, 3,

-+, For example, when n = 1, we have

P(I) =c¢ ifo<71=<1,
P(I) = ¢(1 = log I) if1<7=2

I
P(I)=c|:1—logl+flo——g—(::;_—l)dx:| if2=<1sx3,
ete.

Finally, the constant ¢ must be determined by the condition
[ pyar = 1.
0

The constant can be determined as follows: The Laplace transform
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p(s) of P(I) is the characteristic function. By (6),

8 _
pls) = 6xp(—nf l—e dy).
oYy

This may be rewritten, with the aid of partial integration, as

I

p(s) = exp l:—n.(l — ¢ ") logs +

w0

nf e’ logydy — nf e’ logydy:|
0 8

=g e {1 + ofe™ ")) for any ¢ > 0.
Thus, for0 < I < 1,

e

r'(n)
where y = 0.577215665- - - is Euler’s constant. Hence

P(I) = 7

6.2 Krample 2
Our next example concerns a noise (1) with F(¢) defined as follows:
F(i) =0 fort =0,

and

) —¥ .7
t = f Y >0,
Fl) Y

This somewhat artificial noise interests us because it has a very simple
P(I). A sketeh of F(t) is shown in Fig. 1, marked “Section 6.2”. I'or
small ¢, F(t) grows large but only logarithmiecally:

F(t) ~ —logt.
Tor large ¢, F(¢) has an exponential tail,
F(t) ~+,

where v is Euler’s constant.
Tor this noize, dg(u) = ne “ du and the integral equation can be put
in the form

I
IP(De' = n.f P(x)e dx.
1]
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Differentiating, we obtain a very simple differential equation and the
solution is
e—IIn—l

r'(n) °
This solution exhibits a rapid approach of P(7) to gaussian form (with
mean n and variance n) as n — o,

P(I) =

6.3 Example 3

If we consider the case

1 -1t 0=st=1

ro - |

0 otherwise,

then the distribution Q(7) has a jump of ¢ " at I = 0, since ¢ " is the
probability that no point of the Poisson process falls into an interval of
unit length. We therefore seek a density funetion P(7/) such that

I
QUI) ="+ f P(z) dx for I = 0.
0
The integral equation then becomes

I
nf P(I — y)ydy + nle™ fo<rI=s1
=4

nf P(I — y)y dy ifl1 <.
0

If P(I) = R"(I), this becomes
" 0 ifl <1
IR (I) — nR(I) =
—n[R(I — 1) + R({ — 1)] if 7 = 1.
This ean be solved recursively. In the first interval (I < I)

nR(I) _ o n D(2V/0D) ’
1 VI
where I, is the Bessel function, and where the coefficient of I, has been

determined by substitution in the integral equation.
In the general case, if I > 1,

Il k
P(I) = ¢ lE (Sl V) T — BTN 0T = k),

i— k!

P() =
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where [I] is the largest integer <I. For example, if 1 < I < 2,

PI)=¢" [1/% L(2/nl) — m'n(z\/n([——l))].

(Note that Iy = I,.) These formulas can be derived either from the
integral equation, or, with rather more courage but actually less work,
from (6).

6.4 Kxample 4

Choosing

—log ¢, 0<t=1
F(l) =

0 otherwise

provides another simple case. Again, Pr(/ = 0) = e ", and we seek a
density P(I), as in Example 3. For values I > 0, P(I) satisfies

I
IP(I) =n [ P(I — wue™ du + ne "Ie .
Jo

Now, letting R(I) = T ¢'P(I), we obtain again the differential equation
IR"(I) + nR(I) = 0, this time for all 7 > 0. The solution is

P(I) = ¢ /‘/? I(2+/nI) for I > 0.

6.5 Example 5

In this example we let F(¢) be the response of a simple tuned circuit
to an impulse; i.e.

F(t) = ¢ sin (27‘;’-‘) (17)
Although the period h appears in F(f) as a parameter, the correspond-
ing measure dg,(u) tends to a limiting measure dg(u) as h — 0. We will
solve the integral equation numerically in this limiting case only. We
then expect this result to be applicable as a good approximation when-
ever the tuned circuit has high Q;ie, h K 1.

To get the limiting measure dg(u) let us examine F(¢) in a small
neighborhood of a time ¢t = T at which the sinusoid is at a maximum.
During the period from T to T + h the exponential ¢ ' changes only
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by a factor ¢ * = 1 + O(h). Thus, aside from terms of order O(h),
F(t) is

21r(th— T):I

F(t) =¢ " cos[
in this period. Given a level w > 0, F'({) = u for a time
A arc cos (ue”)[1 + O(h)]
T

during the period ' = t = T + h. For small h, we conclude that F(t)
lies above level u for a total amount of time approaching

) —log u
f dg(w) _ lf are cos (ue”) dT
0 n 0

m™
_ lflarccosz
T My

as h — 0. Similarly, setting the amplitude level u at a negative value,
we obtain
" dg(w) _1 ' are cos Z
e M T Jiul VA

dZ.

The measure dg(u) is now known. We wish to solve the integral equa-
tion in which
n arc cos | u | du if |u) <1
dg(u) = | u (18)
0 if |u| = 1.

v

In this case, we had to resort to numerical methods. The integral
equation might be approximated directly by a system of linear algebraic
equations. However, such an approximation would be troublesome in
our case because the integral equation is homogeneous. Unless we could
guarantee that the approximating system would have determinant zero,
there would be no nontrivial solution at all. The procedure that fol-
lows avoids this difficulty.

Let measures dg " (u), dg” () be defined as in Section V. We will solve
the two integral equations with measures dg*(u) and dg (u) and con-
volute the two solutions P*(I), P~(I) together to get the desired den-
sity P(I). This approach has the advantage that the integral equation
expresses PT(I) in terms of only values of P for arguments <I. Thus,
one can compute P () approximately by a simple recurrence.
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One might start the recurrence computation by assuming a value of
P*(I) for a small I; afterward the solution could be normalized to make

f: PHI) dI =

However, we can obtain in the Appendix an asymptotic formula for
P*(I) for I near 0, and thereby start the recurrence with nearly correct
values of P™(TI).

Figs. 3 and 4 give the results of the computation for this limiting case
of an infinitely rapidly oscillating tuned-circuit response. Computations
were made for rates of 2.5, 5 and 10 impulses per unit time, where the
time scale is determined by the exponential in (17). Fig. 3 shows P(1)
for these three cases; Fig. 4 plots @(I) on log normal paper and com-
pares the result with the gaussian of the same mean and variance. As
expected from Rice’s theory, the noticeable differences are in the tails
of the distributions; in the shot noise, very large values of I are more
likely than in the corresponding limiting gaussian.

0.60

0.55 \

*\
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Q.10 \ \\\
\\\\
0.05 \ .\

o 0.5 1.0 1.5 20 25 30 35 40 45 50 55 6.0
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i

-

Fig. 3 — Amplitude density P(J) for high-frequency damped sinusoid noise;
F() = et sinwt, w > 1; P(—1) = P(I).
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Fig. 4 — Comparison of amplitude distribution @(f) with gaussian approxi-
mation; Q(—1) =1 — Q).

As indicated above, the computation was performed in two stages.
First, the integral equation for P¥(I),

IPH(I) = f[ PH(I — u) dg(u),
0

was solved by approximating the integral through Simpson’s formula
and solving the resulting triangular system of equations; the series for
PY(I) near I = 0 was used to start the computation. Then, with the
aid of the theory in Section V, P(I) was computed as

P = [ PPN + ) ay,
and Q(I) as the integral of P.
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APPENDIX
Derivation of the Form for P*(I) for Small I for a Tuned-Circuit Response

We begin with the integral equation
n min(1,I)
P == f PT(I — u) are cos udu.
T Jo

Taking Laplace transforms, we obtain

fo'(s) + 1_,; p(:) [1 — Iu(s) + Ly(s)] = 0,

where I, is the modified Bessel function, and Ly the Struve function.
Remembering the condition #(0) = 1, and that I,(0) = 1, Ly(0) = 0,

we find
a _ n 1 — I[)('lt) + Lo(’u) ‘
p(s) = exp[—éf; ” du,].

Now Iy — L approaches zero at infinity rapidly enough for that portion
of the integral to converge as s — =, but the remaining term diverges.
We thus write

Oxpli_ﬂgj: Lo(u) — I(u) + (u + 1)—1] "

u

] —1
+ g [M — 1] du
4 Y0

u u

p(s)

zaf” Lo(u) — Io(u) 4+ (u + 1)_]]
2Jo

u

(s + 1) " exp [—
-expl:g j;m Lu(u) - In(u) + (u + 1)_1 du].

uw

By Ref. 2, p. 426,

To(u) — Lo(w) _ 2 © Jo(x) P
U rdo 224w

Hence,
Io(u) — Lo(u) — (w+ 1) _ 2 f" Jo(z) = (1 +a97

U a2 4+ u?

We may now integrate with respect to u and interchange integrations.
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There results

[ ) = a0 = ek D, [T I) = 4D,
0 0 T

w

=j; l:.]l(x) (1+ ):Iloga:dx
= log 2 —

by Grébner and Hofreiter’ and Bierens de Haan.* Thus,
‘p(é‘) — c—(nl?)')r(g)nm(s + 1)-—r|,'2
«© ; _ -1
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It remains only to discuss the behavior of the last integral for large s.
By Ref. 2, p. 332,
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Hence,
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Both of these are O(1/s) for large s, and hence, for large s,
f)(s) — e—n,’2‘;'2m'28—n12 + O[Sf(n,lﬂ)fl].

Hence
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for small values of 7.
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