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If f(t) is a band-limited function, with band limit —Q to Q, the result
of instantaneously companding f(t) s in general no longer band-limited.
Nevertheless, it has been proved that knowledge of merely those frequencies
of the compandor output which lie in the band from —Q to Q is sufficient
to recover the original signal f(t). An iteration formula has been proposed
that, in theory, performs the desired recovery. In this paper we study in de-
tail some of the practical questions raised by that formula. We show that
the successive approximations converge o the solution f(t) at a geometric
rate, uniformly for all t, and that the iteration procedure is stable. We then
describe a method of performing the recovery in real ttme and a successful
simulation of it on a general-purpose analog compuler. The etrcuit used in
the simulation serves as a first approximation to a practical realization of
the recovery scheme.

I. INTRODUCTION

When a signal, f(¢), is transmitted over a channel there is a tendency
for the low-amplitude part of f(t) to become masked by the presence
of channel noise and for the high-amplitude part of f(f) to become
distorted by the nonlinearity of components in those ranges. It would
be valuable, therefore, to find a way of assigning to f(¢) another signal
from which f(#) could be recovered, but which would have the property
that its amplitude lay more nearly in the middle ranges than did that
of f(t). This second signal is then transmitted, instead of the original
f(£). One relatively simple way of obtaining such a signal is by instan-
taneous companding: The signal sent is ¢[f(¢)], where ¢(x) is a mono-
tonie function (to allow recovery of f(¢) from ¢[f(¢)]), which has a large
slope around x = 0 so as to magnify signals of low amplitude, and which
approaches a constant value for large x so as to cut down on signals of
high amplitude.
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The drawback of instantaneous companding is that it destroys the
property of band-limitedness: if f(¢) is a band-limited signal with band
limit —Q to ©, the signal ¢[f(¢)] is not in general so band-limited. Thus,
if the signals are being sent over an idealized band-limiting channel,
the function ¢[f(¢)] is distorted in the process of transmission, even
though the original f(¢) would not have been. This would have put a
serious theoretical obstacle in the path of instantaneous companding,
were it not for a theorem by Beurling,' which shows that, to recover
a band-limited function f(#) with band limit —Q to @ from the com-
panded function ¢[f(¢)], it is not necessary to know the complete spec-
trum of ¢[f(¢)] but only that part of its spectrum that lies in the fre-
quency interval — to €. More precisely, Beurling has shown that, if
fi(t) and f2(t) are two band-limited signals with band limit —@ to £,
and if the spectra of ¢[fi(¢)] and ¢[f:(¢)] agree in the interval —Q to £
only, then fi(t) must coincide when f:(¢). This may be interpreted as
saying that ‘“no information is lost” in transmitting ¢[f(f)] over an
idealized band-limiting channel since the result, although bearing no
simple relation to ¢[f(¢)], is still sufficient to determine f(¢) uniquely.
Beurling’s proof, however, is nonconstructive, and gives no indication
of how the band-limited function f(#) might be obtained from a knowl-
edge of only the part of the spectrum of ¢[f(¢)] between — and Q.

In another paper,2 an iteration formula has been given, by means of
whieh, in theory, the recovery could be performed under the hypothesis
(somewhat more restrictive than Beurling’s) that ¢'(z) is bounded,
and bounded away from 0. In this paper we will study in detail some
of the practical questions raised by that formula. We will show that the
successive approximations converge uniformly for all { to the solution
f(t) at a geometric rate, and that the iteration procedure is stable. We
will then describe a method of instrumenting the recovery in real time
and a successful simulation of it on a general-purpose analog computer.
The circuit used in the simulation serves as a first approximation to a
practical realization of the present recovery scheme.

II. MATHEMATICAL FUNDAMENTALS

Throughout the subsequent discussions we will be concerned with
functions that are square-integrable; this restriction is imposed so that
we may pass freely, by means of the Fourier transform, between the
time and frequency domains. For a function f(¢) that is square-integra-
ble, that is, one for which

[nwra< -,
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the Fourier transform

Flw) = \/%;f_if(t)e““‘ dt (1)
is defined and has an inverse given by
f(t) = \/—12—;[_: Flw)e™ dw. (2)
Furthermore,
[Cuwra= [ 1F@ . (3)

We will say that a signal f(t) is band-limited with band —Q to Q@ if
its Fourier transform F(w) vanishesfor | w| > Q. Then, by (2), the band-
limited signal has a representation as an integral with finite limits

() = \}g f_ﬂ Flw)e™ d. (4)

Let us next consider an instantaneous compandor, which we will
describe by ¢(a); that is, if f(¢) is the input signal to the compandor,
the output signal is ¢[f(¢)]. We require that the function ¢(x) satisfy

@(0) =0 (5)
and
0<b<y(a) <B< ® (or —B < ¢'(z) < —b < 0) (6)

in the range of operation for z, and we consider the effect of companding
on a band-limited function. If f(¢) is band-limited with band — to
Q, the companded signal ¢[f(¢)] need not be band-limited. Nevertheless,
it is proved in Ref. 1 that one can compute the original band-limited
signal f(¢) from a knowledge of merely those frequencies of ¢[f(¢)]
which lie in the band from —Q to Q. In order to describe the method of
computation, and to enable us to examine the problem in more detail,
we introduce the following notation:

i. Let us denote by T the operation of taking the Fourier transform
[that is, T'f(¢) is the function heretofore denoted by F(w)], and denote
by T~ the operation of taking the inverse Fourier transform [that is,
T7'F(w) is the function f(¢)], and let x(w) be the function that equals
1 for | w| = Qand equals 0 for | w | > Q. With this notation, we may
describe the operation of a low-pass filter on a function g(t) as simply
T7'xTg, for the action of the filter may be thought of as decomposing
g(t) into its frequency components (performing the operation T'), pre-
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serving without change those frequencies in the band —Q to @ while
eliminating all others [multiplying T'g by x(w)], and lastly recomposing
the results back into a funection of time (performing the operation .

ii. For brevity’s sake, let us denote by B the space of all band-limited
functions with band limit — to Q.

iti. Let Sf = T 'xT¢lf]; that is, the operation S applied to a func-
tion f(t) consists of companding it and subsequently band-limiting the
compandor output. We should observe that, in forming the function
Sf, we use only those frequencies of the compandor output ¢[f] which
lie in the band | w | = 2. We should also note that Sf is always a band-
limited function.

iv. We need some way of measuring distance between two functions.
Since we are dealing with square-integrable functions, we choose as our
measure the quantity

1=l =[ [T150) = o) 1

We refer to || f || as “the norm of the function 7. This norm has many of
the properties of ordinary distance; in particular, the triangle inequality

IF+gll= 7+ 1gl

is valid in it. For general square-integrable functions, convergence in
norm need not imply ordinary pointwise eonvergence; that is, we may
have functions f,(¢) for which || f, || — 0 but which themselves do not
approach 0 at a point (for example, functions with high but thin spikes).
It is very important, however, that, for functions in the space B, conver-
gence in norm does imply uniform convergence on the whole {-axis;
indeed we have, if f(¢) is in B,

t

[f(t)]| = 1/5—2: £l for all t. (7)

The proof of (7) is straightforward and is given in Appendix B.
The theorem proved in Ref. 2 asserts that, if we choose a constant ¢
so that

|1 —e(a) | =r <1 (8)

for x in the range of operation of the compandor, then, for any two
funetions f;(¢) and f:(¢) both in B, we have

| eSfi—eSfe — (h—f) || =7l fi — ol (9)
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Inequality (9) has many consequences. One of these, established in
Ref. 2, is that, given any function a(¢) in B, the sequence of functions
g.(t), defined iteratively by

gea(t) = ca(t) + g(t) — cSqu, with go(¢) = 0,  (10)

converges uniformly on the whole t-axis to a limit g(¢), which is also
in the space B. By taking the limit on both sides of (10) we then obtain

g(t) = ca(t) + g(t) — ¢Sy,
or
Sg = a(t). (11)

It follows from (9) as well that g(¢) is the only function B for which
(11) can hold.

Tet us interpret this result in physical terms. We may think of a
compandor into which is sent a signal f(¢) of B, and whose output ¢[f(¢)]
(which is not in general band-limited) is transmitted over equipment
that acts as a pure band-limiter. We may thus deseribe the received sig-
nal as a(t) = T 'xTelf] = Sf, and our objective is to recover from a(t)
the original compandor input f(¢). The iteration formula (10) applied to
a(t) does precisely this, for the functions g.(¢) generated by it converge
uniformly to a function g(¢) in B for which Sy = a(t), and, since there
can be only one such function, g(¢) must be precisely the desired f(#).
The iteration process itself is interpretable in physical terms: the opera-
tion S, which has to be applied to g; in order to compute giy1 , consists
of companding g, and sending the resulting signal through a filter whose
action duplicates that of the transmission network. In essence, g4 con-
sists of g corrected by an appropriate constant multiple of the difference
between the received signal a(t) and the signal that would be received,
if gr(t) were companded and transmitted.

In thinking of applying an iteration scheme, the questions of rapidity
of convergence and of stability at once present themselves, Let us next
consider these.

III. RAPIDITY OF CONVERGENCE

We will begin by showing that the approximating functions g.(¢)
converge to their limit g(¢) at a geometric rate. Since the function g(¢)
in B to be recovered is given by

g(¢) = lim g.(¢),

n-—>w
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we may write
| ge(t) — g(&) || = || g(t) — gia(t) + grga(t) — graa(t) + -+ ||
S lgel®) — gea@® || + | gea() — gege(2) | + --+ . (12)

Now, from the definition (10), we have

giv1 = ca(t) + gi(t) — ¢Sy,
gi = ca(t) + gia(t) — ¢8gia,
whence, by subtraction,
I giaa(t) — gi(8) [| = | eSg: — eSgizs — (gi —gi) |, (13)

and, since all the functions g; are in B, the inequality (9) may be ap-
plied to the right side of (13) to yield

|| Jiv1 — i ” Srllgi —gial, (14)
for all 7. By applying the above relation in turn to || g; — gi—1 || and so
ondownto || g1 — gl = || a(¢) ||, we may replace (14) by

lgin = gil ' llal, (15)
which, together with (12), yields
k
r
; — =< .
loe —gll = llal

Since the function g, — ¢ is in B we may take advantage of the relation
between the norm and absolute value that holds (see point iv in Section
IT) to eonclude that actually

| gu(t) — g(t) | = %ﬂ r r <1, for all .

This establishes that the convergence of g; to g is geometric in rapidity
over the whole {-axis. The constant r, which determines the actual con-
vergence rate, comes from (8) and depends only on the companding
curve o(z). In order to obtain the fastest convergence, ¢ should be
chosen so as to make r as small as possible.

IV. BTABILITY

The stability of an iteration scheme refers to its sensitivity to error.
In the case at hand, the solution g(¢) is the limit of the functions g.(¢)
defined by (10), where we are interpreting a(t) as the signal received
when the band-limited signal g(¢) is companded and subsequently trans-
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mitted over a noiseless band-limiting channel, and where the operation
S consists of companding followed by band-limiting. With this model
in mind, it is easy to imagine that, in a real application, the received
signal would not be, because of noise, precisely a(t); or that the com-
pandor, when applied to g(¢), had not acted on the precise curve ¢(x);
or that the channel was not precisely an ideal band-limiting channel.
The iteration procedure is stable if the function g*(¢) that it produces
under each of these three conditions of error differs from the true g(f)
by an amount commensurate with the error.

Let us first take up the case that the received function ¢*(¢) is not
equal to a(¢). The iteration scheme (10) applied to a*(t) yields a func-
tion g*(¢) in B for which

g* = ca* + g* — cSg¥,
while the true g(t) in B satisfies
g =ca+ g — ¢cSg.

Subtracting the two equations above and taking the norm of both
sides, we obtain

lg* —gll =clla*—al +cSg — eSg* — (g — ¢*) || -
We may now apply (9), obtaining
lg* =gl sclla*—all+rllg*—ygl,
from which

c

¥ _
et - al,

[g* —gll =

or, passing to absolute values (as in point iv of Section II),
|g*(t) — g(d)| = cl\/—Q/JH a* — al, for all ¢, (16)

This is precisely a statement of stability, for it asserts that the maxi-
mum deviation of g* from g is bounded by a fixed constant multiple of
the norm (in our case the square root of the energy) of the error a* — a.
Let us consider next the effect of a compandor error on the iteration;
that is, the possibility that the compandor output is not ¢[g(t)] but
rather ¢*[g(¢)], where ¢*(x) is a curve not identical with ¢(x). Let us
assume that the companding itself is stable; i.e., that the quantity

le*g(D] — elgO1 1l



358 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1960

which represents the square root of the energy of the difference of the
two outputs, is commensurate with the compandor error, which we may
measure by the quantity

sup | o*(z) — (@) [ -
What we mean by this precisely is that there exists a fixed constant K
such that
le*lgl — elgl || = K sup | o*(2) — o(2) |
for all functions g(¢) under consideration in the problem. As we have

seen in point iii of Section II, the results of transmitting the two out-
puts are, respectively,

a*(t) = T 'xTe*g] and  a(t) = T 'xTelg]
so that, utilizing the stability shown above of the recovery formula
with respect to received signals, we have, from (16),

/
IAVAVE ST
T, e

IIA

| g*(t) — g(8) ] — all

(17)

_ C\/Q/'Jr | T % Te*lg] — T xTelgl ||,

where ¢*(¢) is the function ylelded by the iteration scheme on the basis
of the erroneous signal a*(t). Since, by (3), the Fourier transform of a
function has the same norm as the function, we have

| T'xTe*lg] — T 'xTelg] || = |l xT¢*lg] — xTelg] |
and

Il

| Te*lg] — Telgl | = [ ¢*lg] — elgl Il ,
while
| xTe*lgl — xTelgl | £ || Te*lgl — Telgl |
since the two sides of the inequality represent integrals of the same
positive funetion, over a finite and an infinite interval respectively.

Combining these with (17), we obtain
) — o] = VYT

L letlal = flalll,
and, by the assumption of compandor stability, the right-hand side
above is commensurate with

sup [e*(x) — e(x) |-

We conclude that the iteration procedure is stable with respect to a
compandor error whenever the companding process itself is thus stable.
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Lastly we take up the question of stability under a variation of the
channel characteristic. That is, we suppose that the compandor output
¢ g(#)) is transmitted over a channel whose effect on it is T 'x*T'¢[g)
rather than T 'xTelg], where the function x*(w) differs from the ideal
x(w) of point i in Section II. We have, from (16),

170 = g(0) | £ YT o — q]

1 —r
(18)
Q — _
= VT e relg) — TXTRl

and, by (3),
| T7'x*Telg] — T 'xTelg) ||

= [ x*Telg] — xTelg] || = || (x* — x)Telg] | .
Now from the definition of the norm (point iv in Section 1I), we may
estimate the quantity || (x* — x)Telg] || in various ways. We may

choose to say that
I (x* =0 Telgl || = sup [ x*(w) = x(@) [ | Telgl |, (19)

from which we can show that, for signals of bounded energy, the re-
covery computation is stable with respeet to a departure of the trans-
mission characteristie from the ideal x(w), when the deviation is meas-
ured by the quantity

sup | x*(w) — x(«) |.

That is, we will be able to conclude that the error | g*(¢) — g(t) | will
be small if

sup | x*(w) — x(w) |

is sufficiently small. The weakness of this sort of stability statement
lies in its requirement that | x*(w) — x(w) | be everywhere small; it
yields no information when | x*(w) — x(w) | is small everywhere, ex-
cept on a small segment of the w-axis. In those cases, the quantity

sup | x*(w) — x(w) |

ceases to be an adequate measure of closeness, and we would prefer to
have a stability statement involving || x* — x ||, for this may be small
even when | x*(w) — x(w) | is occasionally large. We may find such a
statement, for functions whose frequency spectrum, after companding,
is bounded, by using

[ (x* = x)Telgl || = [l x* — x ”lf,“lgﬂ[ Telgl | - (20)
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The weakness in turn of

I = xll = [ [ 1 = x|

as a measure of closeness is that it may become large, even when

[ x* — x|

is mostly small, simply because the interval of integration |w| = Q is
large. To find an expression for the size of error that has the virtues of
both of those above without the disadvantages of either — that is, one
which is not sensitive either to occasionally large values of | x* — x|,
or to the length of the band | @ | = 2 — we may apply a combination
of estimates (19) and (20) to the quantity | (x* — x)Telgl| . Let
us divide the interval —Q to £ into two complementary sets, 4 and
A = [(=9, Q) — A], and let us define

es = sup [x* — x|,

wed

1
EA’=[[ '|x*—x|2dw:|.
TweA

If | Telg] | for |w | = @and || ¢lg] || are bounded by M, then, using (19)
on the set A and (20) on the set A’, we obtain

[ (x* = x)Telgl || = M mjn max(es, €).
Hence, from (18),
[g*(t) — g(t)| = c—l\/i/:-ﬂff inf max (es,eq).
- A

This establishes that, for signals whose energy and frequency spectrum
after companding, are bounded by a fixed constant, the iteration proce-
dure is stable with respect to a departure of the transmission charac-
teristic from the ideal x(w); our present measure of deviation is the
best combination of | x*(w) — x(w) | and || x* — x ||, in the sense of
minimizing over all sets A the quantity max (e, , es”). The two bounded-
ness restrictions we have imposed do not seem unduly severe.

V. INSTRUMENTATION OF THE ITERATION FORMULA

With the stability of the recovery computation thus established, we
will now deseribe a way of instrumenting the iteration formula in real
time, and a simulation of the resulting recovery process on a general-
purpose analog computer. The iteration formula is

Jny1 = ca(t) + gn — CSg" , with GJo = 0,
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and we have already interpreted a(¢) as the signal received after the
function ¢(¢t) in B has been companded and transmitted over a
band-limiting channel, and the operation S as companding, followed
by band-limiting. The iteration is thus performable by analog methods,
with the aid of a compandor and of a band-limiting filter, used to carry
out the operation S. A filter of this type has a delay, however. Thus,
in order to add its output, Sg,., to the function ca(t) 4+ g.(¢), as re-
quired by the iteration, the latter would have to be delayed by an
amount equal to the filter’s delay. We may obviate the necessity for an
additional delay network by observing that, since the function ca(?) +
¢.(t) is in B, passing it through the filter does not distort it, so
that the addition may be performed before filtering. Thus, a possible
circuit for performing the iteration is that of Fig. 1. By connecting s of
these circuits in series, and by supplying as input the function g,(¢) =
a(?), the output will be the (delayed) approximation g.4.(¢) to g(t), for
which

s+1

1g(t) — genn(®)| = lalr

eV QY
1—7r

The circuit of Fig. 1 served as the basis for a simulation on a general-
purpose analog computer. The companding curve ¢(x) was chosen to
be of the type deseribed by Mallinckrodt® and consisted of a straight
line of slope 10 for —0.2 £ x = 0.2 that had joined to it at * = +0.2
a logarithmic curve which matched it in slope. The range of interest for
x was | x| < 2.5. The constant ¢ was chosen as 1/12, yielding for r the
relatively large value of r = 14/15. The band-limiting filter was simu-
lated from an expression kindly supplied by J. Bangert. Since it re-
quired 13 integrators, it was not possible to simulate more than one
stage of the circuit, so that the iteration was performed step by step;
the output g,41(¢) was recorded at every step and served, along with
a(t), as the input for the next iteration. Since the simulation was per-

a(t)
a(t) BAND- (DELAYED)
LIMITING f————————

FILTER —_

ca(t)+gn(t)—cya[gn]
@ ca(t) "_t

! dn+i(t)
9n (L) ¥ BAND- (DELAYED)
+ LIMITING p———

FILTER —_

COMPANDOR ( )
£ (x) 'CP[gn]

Fig. 1 — Cireuit for simulation on a general-purpose analog computer.
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Fig. 2. — The figure g(t) to be recovered.

formed to test the efficacy of the recovery process, the function g(t), to
which the approximations ¢, (t) were expected to converge geometrically,
was picked in advance to be 1.45 sin {/{, which is in B, as required.

The funection actually used for g(#) was an approximation to this,
generated on the computer as the step response of the filter, and appears
in Fig. 2. Since the filter is not ideal, the g(¢) used does not coincide
precisely with 1.45 sin ¢/¢ but it is a good approximation; the closeness
of the two curves provides, further, a measure of the filter’s performance.
The curve a(t), obtained as a result of companding and filtering the
g(t) of Fig. 2, appears as the bottom-most of the curves of Fig. 3. The
remaining curves of Iig. 3 represent the odd approximants: gs, gs,
1, ¢s , gu and gy, yielded by the iteration. They are seen to converge
well, although their limit is not quite the function g(¢). To test whether
the error was due simply to the various inherent machine insensitivities,
the last approximation, g;(¢), was companded and band-limited, and
the result was compared with the original a(t). The difference of these
two functions appears in IYig. 4 and is seen to be very small. The simula-
tion consequently appears to be successful, in that it verifies, in a special
case and within the limits of machine accuracy, the theoretical predic-
tions of convergence and stability for the recovery process.

As we have mentioned before, an obvious way of mechanizing this

2
| 7 e~
2
]
0 = |
|
=1
o 2.5 5.0 7.5 10.0 12.5% 15.0 17.5 20.0 22.5 25.0

Fig. 3. — The sequence of approximations produced by the iteration.
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Fig. 4 — Difference between the original a(f) and companded band-limited ap-
proximation gu(t).
recovery procedure is to connect s of the circuits of I'ig. 1 in series, and
to supply as input the function ¢;(¢) = a(t); the output will then be
the approximation g.41(t) to g(t), but delayed by s times the delay of
the band-limiting filter. This delay is an undesirable feature in practice,
and may perhaps be decreased, at the expense of some error in the re-
covery, by using a filter with a smoother cutoff.

VI. OPEN QUESTIONS

This study has concerned itself until now with the idealized version
of the problem — one in which the effect of transmission on the com-
panded signal has been to pass all frequencies | w [ = @ without change
and to eliminate all others. We have gone beyond this formulation only
to show the stability of the recovery process with respect to a variation
of the transmission characteristic from the ideal x(w); that is, we have
shown that, if this variation is not large, the error produced by applying
the present recovery procedure will not be large. The problem of how
we should proceed when given a signal a*(f) = T 'x*Te [g], with
x*(w) = 0 for |w| > @ but widely different from x(w) in the band
| w| = ©, remains an open one. We may, of course, precede the recovery
by passing a*(t) through a compensating network with characteristic
1/x*(w) ; this would convert a*(¢) to the ideal a(t), to which our present
iteration scheme could be applied without change. The question to be
answered is whether there exists an alternative, which would not require
compensation of the received signal; this is a matter worthy of further
study.

APPENDIX A

We reproduce here A. Beurling’s proof of uniqueness; we will use the
notation of i through iv in Section II.

Let the companding function ¢(x) be monotonic and have the prop-
erty that o[f(#)] is square-integrable whenever f(¢) is. Let us also suppose
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that f1(1) and fz(t) are both in B, and that Te[fi] = Te[fs] for |w| = @
only. We will show that f,(¢) and f»(¢) must coincide identically.
By the Plancherel theorem for Fourier transforms,

[ eli) = AR TR = TR do = [ el = ol (7= R dt

where the bar denotes complex conjugation. Now in the left-hand inte-
gral, by hypothesis, Te[fi] = Telfs] for | w | £ Q,and Tf; = Tf; = 0 for
| w| > Q, since f; and f; are in B. Thus,

_L {elfil — elfd}ifi — f2} dt = 0. (21)

But, since ¢ is monotonie, the integrand of (21) is nonnegative, for
if fi(t) = fa(1), then [fi(1)] = ¢[fe(2)], and, similarly, if fi(¢) = fu(?),
then ¢[fi(1)] = [f2(¢)]. Thus (21) implies that f1(¢) = fa(¢).

APPENDIX B

We will show here that, for functions in the space B, convergence in
norm implies uniform convergence on the whole {-axis.

Let f,(¢) be a sequence of functions in B, with || f,(¢) || — 0. By ap-
plying Schwarz’s inequality to the representation (4) we obtain

501 s Y2 p o],

r

or
() | £ VY7 || Fulw) |, (22)
where F,(w) is the Fourier transform of f,.(¢). But, by (3),
” F,(w) ” = ”.fn(” ” ’

so that (22) becomes
[ful0) | = VO | Sl
whence we have
| fu(t) | — 0, uniformly for all .
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