Theory of Current-Carrier Transport and
Photoconductivity in Semiconductors

with Trapping
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Fundamental differential equations are derived under the unrestricled ap-
proximation of electrical neutrality that admits lrapping. Eaxtension is
made for applied magnetic field. The transport equations derived hold
without explicit reference to detailed trapping and recombination statistics.
Modified ambipolar diffusivity, drift velocity and lifetime function apply
in the steady state. The same diffusion length is shown to hold for both car-
riers, and a general ‘“‘diffusion-length lifetime” s defined. M ass-action
statistics are considered for cases of (one or) two energy levels. Certain
“effective’” — rather than physically proper — electron and hole capture and
release frequencies or times that apply to concentration increments are de-
fined. Criteria are given for minority-carrier trapping, recombination and
majority-carrier trapping, and for “‘shallow™ and “‘deep” traps. Applica-
tions of the formulation include: the diffusion-length lifetime for the Shock-
ley-Read electron and hole lifetimes; linear and nonlinear steady-stale and
transient pholoconductivity; negative photoconductivity; the photoconductive
decay observed by Hornbeck and Haynes in p-type silicon; the photomagneto-
electric effect; and drift of an injected pulse. Pholomagnetoelectric current 8
found to be decreased by minority-carrier lrapping, through an increase in
diffusion length. A simple general criterion is given for the local direction
of drift of a concentration disturbance. With trapping, there may be “re-
verse drift,”’ whose direction is normally that for the oppostie conductivity
type, and also local regions of carrier depletion that may extend in practice
over appreciable distances.
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photoconductivity also is analyzed ecritically and in some detail, a pro-
cedure facilitated by results from the present formulation of comparative
formal simplicity. This analysis involves a formalism that recurs in
theory of time-dependent transport. A detailed treatment of the drift
with trapping of an injected pulse is given. These applications of the
formulation constitute an illustrative selection.

In Section 1.2 is assembled descriptive material intended to be read
for further preliminary orientation as to the contents of the paper, and
also to be read piecemeal with corresponding portions of the main sec-
tions.

1.2 Outline of Procedures and Results

The formulation is accomplished in two stages. By treating concentra-
tions of added electrons and holes formally as unrelated variables, differ-
ential equations for the transport are derived in Section 2.1 along the
lines of previous treatments.!?'{ Extension for applied magnetic field
is included." These equations involve no specific reference to the detailed
trapping and recombination statistics. Specialized to the steady state,
the ambipolar continuity equation is formally the no-trapping equation,
but with the sum of fixed and mobile positive (or negative) charges as
dependent variable, and with suitably modified ambipolar diffusivity,
drift veloeity, and lifetime function, which depend in general on two
(concentration-dependent) phenomenological differential “trapping
ratios.” The same diffusion length is shown to apply for both electrons
and holes, and a general ‘‘diffusion-length lifetime,” 7o, based on the
unmodified ambipolar diffusivity, is defined. The formulation is com-
pleted in Section 2.2 with equations for the time rates of change of con-
centrations of carriers trapped in centers of each type.

These rates are written in accordance with mass action, which provides
a simple] and general§ basis for trapping and recombination.| Two

t In Ref. 11 small Hall angles are assumed, in part because appreciable mag-
netoresistance is otherwise involved. As indicated in this reference, arbitrary
Hall angles (and injection levels) could suitably be taken into account by theory
involving the phenomenological magnetoresistance without added carriers.

1 See Hoffmann.? The mass-action approach, now widely used in semiconductor
theory, is essentially that used in early theory of metal-semiconductor junctions:
see Schottky and Spenke.'2

§ Boltzmann statisties, assumed for the transport equations, imply mass-action
relationships at equilibrium: see Spenke.!® But, with definitions of equilibrium
parameters suitably extended, mass-action equations apply also for degenerate
semiconductors: see Rose.!

|| A treatment based on Fermi statisties that allows for degeneracy and includes
dependence of occupation probabilities on applied magnetic field has been given
by Landsberg.!®
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energy levels (as well as a single one) are considered; equations are
written in Section 2.2.1 for two types of trapping centers and, through
simple formal modification, in Section 2.2.2 for two levels from centers of
a single type.t Partly by way of notational convention, the levels are
taken as acceptor and donor levels, which give negative and positive
fixed charges. This case is the simplest for which both steady-state trap-
ping ratios occur, these ratios being the respective changes in concentra-
tion of all fixed negative charges and all fixed positive charges divided
by the change in concentration of all negative or positive charges. With
suitable interpretation of the notation, the equations apply to one- or
two-level cases in general; results written for centers of the acceptor
type, for example, are not restricted to this type. Moreover, it will ap-
pear that, in the analysis of transient (or steady-state) photoconductivity
for a given multilevel model, the trapping at a given time need usually
be considered in detail in no more than two successive levels. Levels
appreciably lower and higher than these may contribute to recombina-
tion, but will not contribute to trapping, in the sense that the lower levels
may be assumed to remain completely full (or else saturated) and the
higher levels completely empty.{

To facilitate analysis and interpretations, in Section 2.2.1.2 “effec-
tive” capture and release frequencies and times that apply to concen-
tration increments are defined a priori from the mass-action equations.
The four effective frequencies or times for each energy level differ from
the physically proper ones, which depend on the trapped concentrations
and thus on the detailed solution of the particular problem. They satisfy
a fundamental restriction, used extensively in the theory, which is de-
rived from thermal-equilibrium relationships involving detailed balance.
With this restriction, quantitative eriteria are established in Section
2.2.1.3 for ranges of minority-carrier trapping, recombination and major-
ity-carrier trapping. These ranges may be specified in terms of the
location of the equality level§ relative to the Fermi level & and the
“reflected Fermi level” &', the reflection of &7 about &, its location for
intrinsic material. If spins are taken into account, quantities of the mass-
action theory serve to locate the trapping level relative to &. It is shown

+ Theory for multilevel centers is given in Landsberg,!s:1® Champness,'’
Okada,” Shockley and Last,'® Mercouroff,?’ Khartsiev,?! Sah and Shockley,*
Bernard,? Kalashnikov and Tissen,? and Kalashnikov.2®

1 The influence of trapping at a given level on recombination at another has
been calculated for the near-equilibrium steady state by Kalashnikov.?% See also
Mashovets.?

§ This is the Fermi level for which the (equilibrium) rates of electron and hole
capture and release are all equal.22-2 The equality level is similar in purport to
the demarcation level of Rose,?:3° which is the trapping level for which the rates
are equal.
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that a proper criterion for “shallow” or “deep’ minority-carrier trapping
levels is that &;' separates these levels. Thus, levels in extrinsic material
considerably shallower than the midgap may still be “deep” levels.

Detailed theory is given in Section III through various applications
of the general formulation, and consequences of the mass-action statisties
are examined. In Section 3.1.1 diffusion length and diffusion-length life-
time, as well as the trapping ratios, are evaluated from equations written
for the limiting linear small-signal steady state. A “capture concentra-
tion” is introduced, use of which is found to simplify formally much of
the detailed theory, including that for time-dependent cases. This con-
centration is the concentration of (single-level) centers multiplied by the
respective equilibrium fractions of centers occupied and unoccupied.
Values of it that are small or large result, respectively, in negligible cap-
ture frequencies or in large capture frequencies with negligible release
frequencies. For the case of a single energy level, the general (equilib-
rium) Shockley-Read electron and hole lifetimes™ are obtained in forms
involving the capture concentration. These lifetimes are shown to cor-
respond to a diffusion-length lifetime 7o whose general expression is
formally the same as that for the common (equilibrium) lifetime® 2 in
the limit of small concentration of centers. This common lifetime other-
wise applies as such only under a condition restricting the eapture con-
centration, which is frequently severe: In the minority-carrier trapping
range, it is that this concentration be small compared with the equilib-
rium minority-carrier concentration. I'rom conditions for the neglect of
quadratic terms in the mass-action equations, the linear approximation
is shown to imply a restriction of injection level that may be much more
severe than the familiar small-signal condition'® based on the conductiv-
ity change.

The general single-level trapping ratios and lifetime functions for the
nonlinear steady state are obtained in Section 3.1.2. These and the
mobile-carrier concentrations, as well as the volume recombination rate,
can be expressed in terms of trapped-carrier concentration as single
concentration variable. The lifetime functions reduce to the Shockley-
Read lifetimes in the linear small-signal limit and to a single limiting
large-signal value. The familiar common lifetime function® for small
concentration of centers usually does not apply in the small-signal range
unless it is substantially constant in this range. The differing general
lifetime functions otherwise usually apply, and small-signal minority-
carrier trap saturation obtains. The apparent diffusion-length lifetime
then increases to a small-signal saturation-range value equal to the
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majority-carrier release time.7 Further inerease oceurs in the approach
to a large-signal lifetime, which, in this case, is also the (small-signal)
lifetime in the limit of strongly extrinsic material of the opposite con-
duetivity type. Such increases of lifetime can account for certain cases
of superlinearity, or the more-rapid-than-linear increase of photoconduc-
tivity with injection level, on the basis of a single trapping level.]
Transient decay of photoconductivity is analyzed in Section 3.2, In
the linear small-signal case, the decay is given by a sum of exponential
modes with {real and positive) decay constants whose number exceeds
by one the number of types of centers present.?.#-11§ For nonrecom-
binative trapping by centers of two types, the decay constants and
equilibrium concentrations after injection are evaluated in Section 3.2.1
for electron and hole traps present together and for electron (or hole)
traps only. With the latter, carriers released from one type may be
captured in the other. The general linear case for centers of one type,
including recombination, is analyzed in detail. The two time constants
are given in forms invelving the capture concentration. If one is large
compared with the other, then the larger may be identified as the lifetime,
while the smaller represents a trapping transient during which approach
to the steady-state trapping ratio takes place. This transient has small
amplitude for small concentration of centers, for which capture rates in
the ratio of capture frequencies and release rates in the ratio of release
freqquencies decay with the concentration in the lifetime mode. Tt does
not oceur if the steady-state trapping ratio obtains initially, or if “criti-
eal recombination” obtains, with which, because of equal capture fre-
quencies, trapped concentration does not change from initial value zero.
Sufficiently small capture coneentration gives, with the comparatively
short trapping transient, a lifetime substantially equal to®:39.4% the
common steady-state electron, hole and diffusion-length lifetime. The
required condition is frequently severe: In the minority-carrier trapping
range, it is the same as the common-lifetime condition. Capture con-
centration large results in decay times equal to® 40 the steady-state
electron and hole lifetimes and given by the electron and hole eapture
times. If one of these is large compared with the other, then the smaller
represents the transient for practically complete trapping of the carriers
of one kind, and the larger represents the recombinative decay of the

t Approximate steady-state solutions which exhibit small-signal nonlinearity
have been given by Tolpyvgo and Rashba.#

1 A multilevel model for superlinearity has been given by Rose 3435 (and
Ref. 1, Ch. 1A). See also Bube.?®

§ See also Ref. 1, Ch. 3A. This chapter also includes some nonlinear cases.
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carriers in traps and of the carriers of the other kind as these are cap-
tured. In all these cases, the lifetime decreases monotonically as con-
centration of centers increases. Under a condition that is usually met
in the minority-carrier trapping range, this decrease occurs primarily in
two ranges of concentration of centers, with approximate constancy of
lifetime in an intermediate range.}

The photoconductive decay is governed in the general case by non-
linear differential equations. These are considered for centers of a single
type in Section 3.2.2. The general single-level problem is rather intractable
analytically.] Solutions of the nonlinear equations are given for two
special cases, namely, nonrecombinative trapping and sufficiently small
concentration of centers or large concentrations of mobile excess carriers
such that the steady-state lifetimes are substantially equal. The latter
solution§ has the rather restricted general application of the common
steady-state lifetime function,™ since it is the integrated form correspond-
ing to this function.|| By solving suitably linearized equations, the decay
times associated with a small-amplitude pulse of added carriers above a
steady generation level are evaluated. If, as is often permissible, direct
recombination may be neglected,®49.50 then the decay in the general
large-signal limit is exponential with lifetime equal to the steady-state
large-signal lifetime. During this decay, the concentrations of carriers in
traps remain constant. This lifetime and the corresponding concentra-
tions in traps are evaluated for centers of a single type and for the two-
level cases. A differential equation that is invariant under interchange of
quantities pertaining to electrons and to holes is derived for centers of a
single type. It provides a first integral under a condition that holds for
sufficiently large concentration of centers or concentrations of mobile
carriers. With this first integral, the decay problem may be formulated
as a first-order (rather than second-order) nonlinear differential equa-
tion. The large-signal condition, obtained in this connection, differs from
the familiar one!® in that, as a condition for equal electron and hole
lifetimes, it entails not only relatively large change in conductivity but

t The approach to constancy with increasing concentration of centers is dis-
cussed by Wertheim.#

1 Certain analytical approximations have been considered by Isay.* A treat-
ment which includes numerically computed solutions has been given by Nomura
and Blakemore.*

§ It is equivalent to ones given by Rittner, in Ref. 1, Ch. 3A, and by Guro.#

| The decay lifetime has been evaluated as this function by Okada.? That the
nonlinearity aceording to this function does not account for (small-signal) decay
in silicon has been observed by Blakemore.*® This author has fitted dependences
of lifetime on injection level and temperature assuming two-level recombination
from one type of center or from two types. The common lifetime function has been
employed for centers in germanium by Iglitsyn, Kontsevoi and Sidorov.” It
appears that these centers were in the recombination range.
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also requires saturation of centers, which may be present in relatively
large concentration.

Conditions are obtained for centers that give recombination with
substantially constant lifetime for minority carriers and inappreciable
trapping. Constant lifetime that applies in the small-signal range also
applies in the large-signal range, provided the energy level of the centers
is not too far from the Fermi level towards the majority-carrier band.
It requires, however, sufficient strongly extrinsic material. In material
of mixed conductivity type, the recombination rate cannot, in general,
be specified in terms of a minority-carrier lifetime. But “linear re-
combination” may apply, characterized by a two-lifetime recombination
rate that is the sum of contributions respectively proportional to the
added minority- and majority-carrier concentrations. The assumption of
general linear recombination is also a convenient notational device: In
the analysis of models involving nonrecombinative traps in conjunction
with the recombination centers, it permits deriving results in forms that
apply for any conductivity of either type.

The phenomenon of negative photoconductivity, or the decrease in
conductivity below the equilibrium value upon optical injection,{ re-
sults essentially from excitation of minority carriers from traps with
recombination in other centers. Theory for this effect is given in Section
3.2.3, a general expression for mobile-carrier concentrations being derived
for the linear small-signal case. This result is of comparative formal
simplicity and shows that the effect tends to be offset by recombination
in the traps and to be enhanced with deep traps of small capture cross
section.}

A general procedure is outlined in Section 3.2.4 for analysis of trapping
models with a number of discrete energy levels, which relates the various
decay times to capture cross sections and these energy levels. This
procedure is applied to observations of Hornbeck and Haynes®™ on elec-
tron trapping in p-type silicon.§ For the sample on which the most
extensive measurements were made, the decay times ranged from 20
microseconds to 260 seconds. Their model, that of two kinds of non-
recombinative traps with recombination in other centers, is found to
imply a hole-capture cross section of the deep traps and of the shallower

t This has been analyzed by Stéckmann.® It has recently been observed in
silicon by Collins.*® Infrared quenching of photoconduectivity or luminescence
from short-wavelength excitation, discussed by Rose®-3::3% and others, is a closely
related effect.

t Excitations involving trapping levels may inerease normal photoconduc-
tivity.%

§ See also Ref. 1, Ch. 3F.
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(but still ““deep’) traps that is small compared with about 10~ and
10720 em?, respectively.

These cross sections are calculated from expressions for the decay
times for nearly empty traps. Recombination in the deep traps cannot
account for the observed decay: The hole-capture cross section that
gives the decay time of 260 seconds for the nearly empty traps would
give a considerably larger decay time, rather than the observed value
of 1 second, for the traps nearly full. Recombination in the shallower
traps, however, can account for the observed decay: The hole-capture
cross section caleulated from the decay time for these nearly empty traps
is in close agreement with that which fits the entire deeay in the deep
traps. The lifetime with traps filled of 20 microseconds may then be
ascribed to recombination in the higher level of two-level shallower
traps. A recalculation of cross sections and energy levels on the basis of
this model gives hole-capture cross sections large compared with 1.2 X
10-7 em?, equal to 2.4 X 10-?° ¢cm? and small compared with 10~ em?,
respectively, for the recombination level and the shallower and deep
trapping levels. The corresponding electron-capture cross sectionst
are 2.3 X 10715, 1.1 X 107 and 2.9 X 10~ em?, the last two being
half an order of magnitude smaller than the ones calculated by Horn-
beck and Haynes. The shallower and deep trapping levels are found to
lie 0.007 ev above and 0.23 ev below the Fermi level for intrinsic ma-
terial; the latter trapping level is 0.78 ev below the conduction band.f
Use is made of the observed straggle effect from the shallower traps,
comparison being made with the theoretical expression derived in
Section 3.4.3 for the limiting decay time at fixed location for the tail of
the distribution from a pulse injected under applied field after the
maximum has drifted past. It is shown that a model for which the
trapping levels are levels of centers of a single type cannot account for
the observations. While the levels found are close to two levels of
gold,®.5 it is thus unlikely that they result from a single metallic im-
purity. This conclusion bears on the indications that the deep traps are
associated with the presence of oxygen as an impurity.

The steady-state photomagnetoelectric (PME) effect with trapping
is analyzed in Section 3.3 on the basis of the general formulation with
applied magnetic field.§ Equations formally similar to those for no trap-
ping apply in terms of redefined quantities that involve the trapping

t Theory to account for such large cross sections has been given by Lax.55

1 An energy gap of 1.10 ev at 300°K is used rather than 1.00 ev as in Ref. 54.

§ A treatment of photoconductance and PME voltage with trapping under ac
illumination is included in: Lashkarev, Rashba, Romanov and Demidenko.®
Mironov?® deals with the transient decays after removal of steady illumination.
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ratios. The effect may exhibit small-signal nonlinearity with nonuniform
lifetime if recombinative deep traps in the minority-carrier trapping
range are involved. The influence of trapping as such is investigated.
It is found that nonrecombinative minority-earrier traps (in conjunction
with recombination centers) increase diffusion-length lifetime by an
amount proportional to the capture coneentration.t Thus, minority-
carrier trapping decreases PME current. A comparatively slight de-
crease in 7, and increase in PME current results from majority-carrier
trapping.

Detailed illustrative procedures and related theory are given for the
determination of capture cross sections, concentrations and energy
levels from suitable PME and photoconductivity measurements at given
temperature. With trapping in recombinative traps of a single type, the
PME current-conductance ratio involves light intensity implicitly
through its dependence on the lifetime 7, that is defined in terms of the
change in conductivity for a given steady, uniform volume-generation
rate. The ratio, however, determines a relationship between 7o and .,
a transcendental relationship with the preferred method" of the high-
recombination-velocity dark surface. This relationship, in conjunction
with suitable additional conductance measurements also independent of
light intensity, suffices to determine both 7y and 7., then the capture
(and release) frequencies and capture concentration, and finally the
quantities sought. The linear small-signal theory] is given for recombina-
tive traps of a single type and also for nonrecombinative traps with
recombination centers, for which the results are essentially similar
though somewhat simpler.

Preliminary to analysis of transport problems, the general ambipolar
continuity equation is specialized to the linear small-signal case in
Section 3.4.1. Then, for trapping (and recombination) in centers of a

t Jonscher® gives an incerease of diffusion length with trap coneentration which
is bounded and always essentially negligible, a result at variance with that given
here. In Jonscher’s nonambipolar treatment, the continuity equation does not
include a term in the second space derivative of trapped-carrier concentration.
Though this term is relatively small for sufficiently strongly extrinsic material,
its neglect significantly affects the higher-order differential equation for concen-
tration of mobile minority carriers, obtained by eliminating trapped-carrier con-
centration, in that it gives a coefficient of the term in the second space derivative
that is too small by just the factor by which diffusion-length lifetime is increased.

1 Zitter® discusses the phenomenological dependence for any model of electron
and hole lifetimes on 7. and lifetime derived from the PME effect (in the thick
slah). The latter is the same as 7o, and Zitter relates it to a diffusion length.
Amith,".6 has presented the effect of nonrecombinative traps on the PME cur-
rent-conductance ratio, and has pointed out that the predominant effect is usually
on conductance. That on PME current is generally negligible in comparison if the

traps are minority-carrier traps and are present in not too large concentration in
sufficiently strongly extrinsic material.
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single type and linear recombination in other centers, the respective
concentrations are shown to satisfy certain third-order partial differential
equations, which are of the second order in time. These reduce to the
same equation if there is no volume generation. They otherwise each
contain a term proportional to the volume generation funection, the
equations for the mobile-carrier concentrations containing the time
derivative of this function as well.

The case analyzed in Section 3.4.2, that of injection into a filament
in the steady state with applied field, yields qualitative information of
interest. If a certain frequency », , the ‘“‘straggle constant,” is positive,
then the field-opposing and field-aiding solutions in the regions separated
by the point of injection are sharply varying and gradually varying
exponentials, as in the no-trapping case.® But with negative »,, grad-
ually varying field-opposing and sharply varying field-aiding solutions
obtain. In the limit of no diffusion, these give added carrier concentra-
tions only in the direction opposite to the direction of drift normally
determined by conductivity type. This “reverse drift” is explained by a
simple and entirely general criterion, obtained from the fundamental
equations, for the local direction of drift of a concentration disturbance:
Normal or reverse drift occurs according to whether injection results in
proportionately more or fewer minority carriers than there are at thermal
equilibrium. For no trapping, for example, the concentrations are in-
creased locally by the same increments, so that proportionately more
minority carriers result if the material is extrinsic; and zero driftt0.®
obtains if the material is intrinsic. Conditions for the sign of », are given.
It is shown from these that reverse drift, which occurs for sufficiently
large trap concentration in not too strongly extrinsic material, occurs
with nonrecombinative trapping if minority carriers are trapped so that
the fraction of the time they are free is smaller than the equilibrium
minority-carrier to majority-carrier concentration ratio.

Drift of a pulse of carriers injected into a filament, with trapping by
centers of a single type,T is analyzed in detail in Section 3.4.3. Bilateral

1 Fan¥.% has given a solution of this drift problem which applies for negligible
majority-carrier capture frequency. Clarke!? has, in effect, pointed out this re-
striction, to which solutions for the decay of photoconductivity given by Fan®
and Rittner! are also subject. Jonsecher® has given solutions for drift of minority
carriers with recombination and nonrecombinative trapping at variance with solu-
tions given here. The otherwise plausible neglect by Jonscher, in a nonambipolar
treatment for strongly extrinsic material, of a term in the continuity equation
involving the gradient of trapped-carrier concentration is apparently not justified.
In the differential equation for concentration of mobile minority carriers, it re-
sults in minority-carrier release frequeney only as a factor in the concentration-
gradient term instead of », , which, for this case, is substantially the sum of the

eapture and release frequencies. This neglect of the capture frequency is tanta-
mount to neglect of the capture concentration compared to the equilibrium minor-
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or two-sided Laplace transforms derived in Appendix A are used to
obtain solutions of the differential equation for negligible diffusion. These
solutions are of two main types, according to whether a frequency unit,
v, comnected with the introduction of dimensionless variables and
parameters, is real or imaginary. From theory concerning » and the
parameters, it is found that real » implies either the minority-carrier
trapping range or the recombination range.f Illustrative solutions of
real » for which nonrecombinative trapping is assumed are presented
graphically. These show that carriers that remain untrapped appear in a
comparatively rapidly attenuated pulse that drifts at the ambipolar
velocity. This remnant of the initial pulse leads a continuous distribu-
tion, which, as a result of multiple trapping, ultimately spreads as a
time-dependent gaussian distribution and exhibits a maximum that
drifts at a fraction of the ambipolar velocity. For nonrecombinative
trapping, this fraction approaches comparatively slowly a limiting value
that does not exceed the fraction of the time the carriers are free,{ and
(for imaginary » as well) the fraction of carriers trapped, obtained by
integrating over the drift range, approaches comparatively rapidly the
fraction of the time carriers are trapped. Recombination in other centers
reduces the distance for a maximum at given time and thus the ap-
parent mobility of the distribution. The decay constant for the straggle
effect is found to be the (positive) straggle constant, accordingly so
named.

Imaginary » obtains over the majority-carrier trapping range and, for
nonrecombinative trapping, over the reverse-drift range. With re-
combinative trapping, it obtains also for zero drift and over a normal-
drift range other than that of majority-carrier trapping. Illustrative
solutions, for which nonrecombinative trapping is assumed, are presented
graphically for reverse drift and for majority-carrier trapping. It appears
that in the reverse-drift range an attenuated pulse of untrapped carriers,
which drifts at the ambipolar velocity, leads a continuous distribution

ity-carrier concentration. It presumably leads, for example, to the conclusion of
this reference that a very short pulse is fransmitted without distortion and is only
attenuated. Also, the solution given for the steady state of continuous injection
should properly include the fraction of the time minority carriers are free as a
factor in the exponent. That is, trapping results in a more gradual decay with
distance: for this case of no diffusion, a lifetime applies that is equal to the sum of
the lifetime proper and the (generally much larger) lifetime for multiple trapping,
which is discussed in Section 3.2.4.

 As shown in Section 2.2.1.2, these ranges in their entirety together constitute
the “minority-carrier capture range,” for which the equilibrium minority- to
majority-carrier capture frequency ratio exceeds unity. It is shown in Section
3.4.3 that there is a minority-carrier eapture range of imaginary » which includes
the reverse-drift range.

 Fan® has shown from his solution that this limiting value is, for relatively
small trap conecentration, equal to the free-time fraction.
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of added mobile minority carriers, which crowds towards the injection
point as its maximum excursions both above and below the axis increase
with time. There is loeal carrier depletion, the distribution being nega-
tive over part of the drift range after a certain time. The distribution
approaches a pulse at the injection point of strength equal, for non-
recombinative trapping, to the initial strength times the free-time
fraction. It does not exhibit essentially unidirectional drift: The drift of
added carriers, initially in the direction of the ambipolar velocity, is
largely in the opposite direction after some trapping has taken place.
A numerical estimate of the effect of diffusion indicates that negative
added-carrier concentrations ean oceur over appreciable distances under
conditions that can be realized in practice.f The illustrative solution
for majority-carrier trapping shows that negative added-carrier con-
centrations occur in this case also. Majority-carrier trapping, however,
results essentially in drift at the ambipolar velocity and, if it is nonre-
combinative, the fraction of carriers trapped approaches the trapped-
time fraction.

The solution is given for ‘“critical trapping,” the borderline case be-
tween cases of real and imaginary ». For nonrecombinative trapping, it
is the same as that for zero drift and gives exponential continuous dis-
tributions that are established progressively as the drift range in-
creases and otherwise do not change with time. T'or trapping in intrinsic
material without diffusion, drift does not start, and the initial pulse re-
sults simply in pulses for the concentration increments that remain at
the injection point, where they change as trapping and recombination
proceed. With diffusion, ambipolar drift occurs, since the condition for
zero drift no longer holds in the intrinsic material as carriers are trapped
away from the injection point. Iurther physical interpretations for the
various cases are obtained by evaluating the current density of added
carriers, which represents the equal departures for given total current
density of the electron and hole flow densities from their values for no
added carriers.

1.3 List of Symbols

The following list includes most of the symbols to be employed, and
is largely consistent with previous notation.10.11.64

t Kaiser® has suggested that negative added-carrier concentrations that
were observed with localized optical injection in silicon under applied field may
be accounted for through these results. A theoretical discussion of carrier deple-
tion is included in Ref. 10.
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parameter in distribution of (153).

capture cross sections for electrons and holes for the
jth energy level or type of center.

ia/ 1ty , drift mobility ratio.

coefficient for direct electron-hole recombination given
in (37).

electron and hole capture coeflicients for the jth energy
level or type of center,

FTwuay(n + p)/e = (n + p)/(n/D, + p/D,), ambi-
polar diffusivity for no trapping.

modified ambipolar diffusivity, defined in (31).

diffusivity for intrinsic material.

diffusion constants for electrons and holes.

diffusivities defined in (133).

value of D at thermal equilibrium.

value of D' at thermal equilibrium.

electronic charge.

electrostatic field.

Termi level for intrinsic material.

TFermi level.

“reflected Fermi level,” the reflection of & about &.

electron energy for the jth energy level or type of
center.

fractions of mobile electrons, trapped electrons, and
mobile holes for drift of a pulse, given by (164).

rate of volume generation of electron-hole pairs.

g — Go.

value of ¢ at thermal equilibrium.

quantity defined by (9).

conductance increase of slab per unit width, given by
(116), (118) and (129).

dark conductance of slab per unit width.

I, + L., total current density.

current density of added carriers, defined by (19).

diffusion current density, defined by (7).

electron and hole current densities.

modified Bessel functions, in the notation of Watson.

Bessel functions, in the notation of Watson.

Boltzmann’s constant.

unit vector in the direction of magnetie field.
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K = quantity defined by (10).
= factor in (129) for conductance change of illuminated

Kq

K.

o> B B
LSS “u| ~
mm m

[l

L 1

Im

1l

slab, evaluated in (130).

factor defined in (119) by which diffusion-length life-
time with nonrecombinative trapping exceeds re-
combination lifetime.

vor, length unit defined in (143).

surface rate of generation of electron-hole pairs from
strongly absorbed radiation.

(Dqro)}, diffusion length.

operator symbol for two-sided Laplace transform.

p+p=mn+r

m — My.

value of m at thermal equilibrium.

electron concentration.

n — Ng.

two-sided Laplace transform of An.

An/(®/L).

an/(®/L).

concentration of fixed negative charges.

i — i .

two-sided Laplace transform of Asi.

Adf(®/L).

total concentrations of centers.

electron concentration for the Fermi level at the jth
trapping level.

equality density, defined in (54).

“capture concentration,” defined (forj = 1) in (63).

ny — Po.

value of n at thermal equilibrium.

value of # at thermal equilibrium.

dimensionless decay constants defined by (147).

hole coneentration.

P — Do.

two-sided Laplace transform of Ap.

Ap/(®/L).

Ap/(®/L).

concentration of fixed positive charges.

P — Do



CURRENT-CARRIER TRANSPORT AND PHOTOCONDUCTIVITY

531

® = number per unit area of carrier pairs injected over

P

Ta

mm ) {Ru ] G{p
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Smy Sny Sp

Hny Hp
v

Vp

Vgnj y Vapi

I

ll

cross section of filament.

hole concentration for the Fermi level at the jth trap-
ping level.

equality density, defined in (54).

value of p at thermal equilibrium.

value of § at thermal equilibrium.

dn/dm, steady-state trapping ratio.

trapping ratios for transient photoconductive decay
modes, evaluated in Section 3.2.1; also similar quan-
tities that are given in (149).

dp/dm, steady-state trapping ratio.

functions specifying rates of decrease of m, n and p
through trapping and recombination.

Laplace transform variable.

surface recombination velocities for m, n and p, re-
lated by (115).

temperature in degrees absolute.

t/r, dimensionless time variable.

ambipolar drift velocity, defined by (8).

modified ambipolar drift veloeity, defined in (31).

velocities defined in (133).

value of v at thermal equilibrium.

value of v/ at thermal equilibrium.

electrostatic potential.

r/L, dimensionless distance.

quantities defined in (78).

’l‘ln/ﬂl P1,/pu .

Po/p2 = M2/ .

quantity defined by (62).

dimensionless parameter defined in (145).

dimensionless parameter defined by (152).

6, — 0, = 3p+leu{'

Hall angles for electrons and holes.

variable defined by (157).

= dimensionless parameter defined in (145).

drift mobilities for electrons and holes.

frequency unit (real or imaginary) defined in (143).
quantity defined in (136).

“offective” release frequencies for electrons and holes,
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defined for acceptor-type (j 1) and donor-type
(7 = 2) centers in (50), and for two-level centers in
Section 2.2.2.

= decay constants defined by (47).

= decay constants for ‘‘linear recombination,”” defined in
Section 3.2.2.

sum of hole and electron capture and release frequencies
defined by (83).

“effective’ capture frequencies for electrons and holes,
defined for acceptor-type (j 1) and donor-type
(7 = 2) centers in (50), and for two-level centers in
Section 2.2.2,

“straggle constant,” defined in (136).

decay constants for photoconduetivity.

dimensionless parameter defined by (151).

o, + o, , total conductivity.

partial conductivities for electrons and holes.

time unit defined in (143).

conductivity lifetime, defined by (117).

“effective’” release times for electrons and holes, the
reciprocals of »y.;, vyps .

steady-state lifetime or lifetime function for Am.

lifetime for Am with recombination centers as well as
traps, evaluated in Section 3.3.

steady-state electron and hole lifetimes or lifetime
functions.

(C )", (Ch91;) " for a particular j.

apparent lifetime from PME current-conductance ratio,
evaluated in Section 3.3.

“effective” capture times for electrons and holes, the
reciprocals of ve.;, vip; -

“diffusion-length lifetime,” evaluated in (35) and (65).

“diffusion-length lifetime’ with nonrecombinative traps
and recombination centers, given by (119).

time constants for photoconductive decay, the re-
ciprocals of »,, v2.

lifetime for decay through recombination centers, the
reciprocal of v,3 or vps .

photoconductive decay time for nearly empty traps.

—e'e.

potential defined by (15).

— G_ISj .
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1. GENERAL FORMULATION

2.1 The Transport Equations

The general neutrality condition may be written as

m=p+p=n-+i, (1)

which states that the total concentration of positive charges, the sum
of the concentrations of mobile holes and fixed positive charges, is equal
to the corresponding total concentration of negative charges. It is, as
will appear, of advantage to deal with the total concentration m of
charges of either kind.

By way of extension of the familiar (nonambipolar) continuity equa-
tions for holes and for electrons that apply for no trapping, two forms
of the continuity equation for m may be written:

om/at = ap/ot + ap/at = —e ' divI, + g — QR
= anjot + anjot = e ' divI, + g — Rn. (2)

Here, for simplicity, the same volume-generation-rate function ¢ is as-
sumed for both holes and electrons; generalization to include excitation
to or from trapping levels (as well as interband excitation) is given in
Section 2.2.3. The volume rate ®, is associated with trapping and
recombination. It depends directly on the various concentrations and
not explicitly on coordinates and time; op/9¢ and 9n/at contribute only
to M, , and, if these are respectively subtracted from (2), then con-
tinuity equations for holes and electrons, namely,

ap/at = —e ' divl, + g — &,, Ry = Rm + 0P/,
/ot = ¢ ' divl, + g — @, ®, = R, + on/ot

result. The same volume rate ®., is properly used in each of the equa-
tions (2) since it depends directly only on concentrations; it must
apply, in particular, in the case of zero current densities. As (2) shows,
this use of @, is consistent with the neutrality condition and with the
condition®

divI =0, I=1,+1,, (4)

which applies in regions containing no sources or sinks of current.
Differing volume rates for p + p and n + 7 are properly introduced
only if there is appreciable space charge.

The familiar current-density equations,
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I, =0c,E —eD,grad p
and (5)
I. = o.E + eD, grad n,

apply under the assumption of Boltzmann statisties, which imply also
proportionality of the hole and electron mobilities g, and g, to the
corresponding diffusion constants D, and D, in accordance with Ein-
stein’s relation. By use of these equations and the neutrality condition,
(1), a continuity equation for m of ambipolar form may be derived:
The hole and electron current densities I, and I, are eliminated from
(2); the electrostatic field E is also eliminated by means of the expression
for E involving the total current density I that is obtained by adding
the equations in (5); and use is made of (4), the condition of solenoidal
I. This procedure is similar to that previously employed in the no-trap-
ping case'’ except that, for the required generality, p and n are treated
formally as unrelated variables. The single continuity equation for m
that results from (2) may be written in various forms as follows:f

am/ot — g+ ®Rn = —e¢ "divl, — v-G
= —¢ (divI, + K-I)
= —¢ ' div I¥ (6)

where
I, = —eo (0,0, grad n + ¢.D, grad p)

= —e[D grad m — ¢ '(o,D, grad # + 0.D, grad )]
= —eD(n 4 p) " grad np = — ekTuauyo ' grad np, (7)
euapp(n — p)anﬂl) (8)

<
{]

G=(n—p) ‘(ngradp — pgrad n)

=grad m — (n — p)(ngrad p — p grad 1), (9)
K = (D, — D,) "grad D = €*u,pu,0 *(n grad p — p grad n)

= e(py ' — )7 grad [0 ' (n + p)]

= —e(py ' + u )7 grad [ (n — p)], (10)
and
F=aol +6I”, a+8=1, (11)

1 This equation specialized to the case of Ap = 0 can be shown to be consistent
with a continuity equation for Ap derived by Rittner! under the assumption of
a common lifetime function for electrons and holes.
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with
V'=I,—e(p, ' +u ) o (n—p]I

= —e(uy '+ pa ) 7'[(n — P)E + (kT/e) grad (n + p)]

= (b+ 1)7'(bI, — L) (12)
I" =Ty 4 e(py ' — pa )0 (n+ p)I

=e(py, ' — )7 [(n + P)E + (kT/e) grad (n — p)]

= (b — )7L, + L).

The diffusivity D, a definition of which is contained in the last of the
equations in (7), is the general ambipolar concentration-dependent
diffusivity, which occurs in the theory for no trapping. It is used here
simply for notational convenience. The velocity v of (8) is properly
interpreted in the continuity equation as two velocities, nv/(n — p)
for drift of Ap and pv/(p — n) for drift of An. It is otherwise formally
similar to the ambipolar velocity of the theory for no trapping, except
that now n — p is not a constant concentration. The first two right-
hand forms of the continuity equation, (6), exhibit terms associated
with diffusion and drift, respectively, as comparison with the continuity
equation for the no-trapping case shows. The current density I*, as given
by (11), is introduced for generality; with solenoidal I, the divergences
of I and I” are equal.t From the expressions for these current densities
in terms of I,, I, and the drift mobility ratio b given in (12), it may be
verified that I* may be chosen as I, or —I,, as in (2). Indeed, as is
otherwise evident, I* may be written simply as a linear combination of
I, and —I,, normalized as in (11), since a linear combination, so nor-
malized, of any two I* is also an I*. The current densities I' and 1”7 are
introduced because their use is frequently convenient.

The mobile-carrier concentrations n and p are, in accordance with
(1), properly written as m — # and m — P where they occur explicitly
and in the diffusivity D, in the electron and hole conductivities o, =
ep.n and o, = ew,p and in the total conduetivity ¢ = o, + o, . For ac-
ceptor and donor centers of single types, @1/dt and dp/dt in terms of
the various concentrations provide, with the continuity equation, three
simultaneous differential equations in the dependent variable m, % and
p. Tor more than single types of acceptor and donor centers, 7% and p
are sums of fixed-charge concentrations. Equations are then written for
the rates of increase of each of these concentrations, and the number of

 Note that these divergences equal that of I, and (—1.); also, I” — I equals
2b(b? — 1)1
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simultaneous differential equations exceeds by one the total number of
types of centers present. These are the differential equations for the
general transport problem with trapping and recombination provided I
is a known function of the space coordinates and time.

In some cases, I must be determined from boundary conditions. Use
is then made of the fundamental differential equation, (4), which may
be written to involve the electrostatic potential V as additional de-
pendent variable. With

o6E = —ograd V =1 — e grad (D,n — D,p), (13)
it follows that (4) may be written in the form
div [o grad V — (kT'/e) grad (¢, — a,)] = 0, (14)

in which ¢, , ¢, and ¢ are to be expressed in terms of m, 7% and . In this
formulation, V is introduced into the continuity equation through the
elimination of I by means of (13). Another procedure, of advantage in
some connections, involves use of the potential

V=V — (kT/e)(b—1)(b+ 1) In (¢/00) (15)
instead of V as dependent variable. Then I is given by
I = —cgrad ¥ + eD; grad(p — %), (16)

where D; = 2(D,”' + D, ") " is the diffusivity in intrinsic material.
Aside from the effect of trapping on I, as given by the second term of
(16), ¥ is the potential that “drives” the total current density. This
may be described as the electrostatic potential modified by the Dember
potential. The latter gives the field associated with diffusion of carriers
of differing diffusion constants.

Electrostatic field given by

E=c¢'(n+p) L/ua+ L/u, — kT grad(p — #)), (17)

an equation somewhat analogous to (16), is a result obtained by solving
for E in the equations for I” in (12). As (17) shows, E in the absence of
trapping (and of appreciable space charge) may be written in a form
that does not involve concentration gradients explicitly.

In the ambipolar form of the present treatment, the equations of (5)

are
I, = (6,/0)] + In = (o,0/a0)I + AI

and (18)
L, = (oa/c)I — Ip = (au/o0)I — AL
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in which zero subscripts denote values at thermal equilibrium; AI is
defined by

Al = euppo0 o (nep — po)I + Ip
= %6’0’0(1[(#“ + #ﬂ(ﬂu + 'PH)I’ + (.Un - .Up)(_ﬂu - pu)I”]
= U'Oil(gnlllp - a’pllIu)v (19)

Applieation of one or more of (13) or (17) and (18) is frequently re-
quired in connection with boundary conditions. The ambipolar dif-
fusion current density I, includes the effect of the Dember field and
contributes the same particle flow density to both I, and I, . Use of the
expressions for I, and I, that involve AI is of particular advantage for
physical interpretations and in small-signal cases, since Al is the current
density of excess mobile carriers.”” For given total current density I,
it represents the equal electron and hole flow densities, that are the
departures from the thermal-equilibrium flow densities and that do
not contribute to I. Note that I* may also be chosen as Al

2.1.1 Extension for Applied Magnetic Field

The current densities for Hall angles 8, and 6, small are given in
general by Equations (10) and (13) of a previous paper.'’ These result
in

e(dmfat — g + &)

—divI, = div I,
—div(e,E) 4+ eD, div grad p

— 6,[grad ¢, , E, k]
div(e,E) + eD, div grad n

+ 8.Jgrad o, , E, k], (20)

I

in which k is a unit vector in the direction of the magnetic field and the
heavy brackets denote scalar triple products. With n and p treated
formally as unrelated variables, multiplying respectively by o, and o, ,
adding and simplifying gives

am/oat — g + Bu = —e¢ '(divI, + K-I)
— uupe (0] (u,p” grad n + wn® grad p) Lk}
+ (8,0, + 8.0,)(D.n — Dyp)fgrad n, grad pk}], (21)

where I, and K are defined in (7) and (10) and 8 is the sum of the
magnitudes of the Hall angles, 8, — #,. In deriving this continuity
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equation, use is made of curl E = 0, which holds for steady applied
magnetic field; time dependence of I generally has a quite negligible
effect.” Use is also made of the relationships

¢E =1 — ¢ grad(D.n — D,p)
— ¢ (80, + 0a0)I X k — 01, Xk (22)
and
[(0,n grad p — 6,p grad n),Ek] =
o '[(6,n grad p — 6.p grad n),Lk] (23)
+ ec Y(8,D.n — 6,D,p)[grad n, grad pk],

which hold with the neglect of terms quadratic in Hall angles. Equation
(23) is obtained in a straightforward manner from (22), which is ob-

tained by writing total current density as
I = ¢E + egrad(D,n — D,p) + (0p0, + 6,0,)E X k (24)
— egrad(6,D,p — 6,D,n) X k

and then solving for E. The terms on the right-hand side of (24) repre-
sent, respectively, drift, Dember, Hall and PME contributions.

A differential equation that expresses the solenoidal property of I is,
from (24),

div[¢E + (kT/e) grad(c, — o))
+ [grad(6,0, + 6.0.),Ek]} = 0.

If direct use must be made of this fundamental equation, then it is well
to eliminate I from (21) by means of (24), and to employ the electro-
static potential V as one of the dependent variables.

The current densities are given in ambipolar form by

I, = (o,/o)1 + I
and (26)
I, = (a,./0)1 — I5,

(25)

where, if terms quadratic in Hall angles are neglected,
I = I, + 8(0.0p/0 )] X k — ¢ (6,00 + 0,0,)[n X k. (27)

Components of total current density perpendicular to the applied
magnetic field are



CURRENT-CARRIER TRANSPORT AND PHOTOCONDUCTIVITY 539

I, = ol + c(% (Dun — Dup) + o (8,0, + 8u0u)1, + 0I5, (28)

and I,, which is given by a similar expression obtained by inter-
changing 2’s and 3’s and (to retain a right-handed coordinate system by
effectively reversing the direction of the z axis) changing the signs of
the Hall angles. One way of deriving (28) is to substitute the expression
obtained by solving for B, in the equation for I, , for E, in the equation
for I, obtained from (24), and to neglect terms quadratic in Hall angles.

2.1.2 Formulation for the Steady State in Terms of Trapping Ratios

A number of results for the steady state can be established from the
general differential equations without specifying in detail the trapping
and recombination statistics. Differential “trapping ratios”

r, = di/dm, rp = dp/dm (29)

are introduced. These apply since, in the steady state, # and P each
depend directly only on total concentration m of negative or positive
charges. In the immediate context, 7, and 7, will be considered simply
as factors that depend in general on m, which, multiplying grad m, give
grad % and grad P, respectively. They apply, of course, for any number
of types of centers present. Their evaluation for particular models is
given in Seection 3.1 in connection with the more detailed analysis of
the steady state.

With (29), it follows from (6) through (9) that the continuity equa-

tion for the steady state may be written as
div (I grad Am) — v'-grad Am + Ag — Am/r, = 0, (30)

in which D’ and v’ are modified ambipolar diffusivity and drift velocity
that are given by

D' = kT, '[(1 — rp)n + (1 — 7,)p]
= [1 = (rpn + mp)/(n + p)ID,
s (31)
vV = ClintpT [(}- - Tp)n - (1 - Tﬂ}p]I

= [l = (rpn = mp)/(n — P)Iv,

and in which the net generation rate ¢ — ®, has been written as the
increment in this rate over thermal equilibrium, Ag — Am/r,, with
Ag and Am being the corresponding increments in g and m and 7, a
lifetime function for Am. The modified diffusivity and velocity do not
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apply to time-dependent cases; v/ would, for example, give the effect of
applied field on apparent diffusion length, but is not, as will appear in
Section 3.4.3, drift velocity for an injected pulse.

Expressing the concentration gradients for the steady state in terms
of r, or 7, and grad Am also formally simplifies (14), the differential
equation that must also be used if the current-flow geometry is not
known. In connection with (18), the current-density equations, the
procedure results in ambipolar diffusion current density given by

I, = —eD grad Am (32)

for the steady state.

The trapping ratios defined by (29) can assume negative as well as
positive values: If centers of a given type trap mostly carriers of the
opposite charge, then a negative trapping ratio obtains. Consider, for
example, trapping in centers of the acceptor type, which are neutral or
negatively charged. For these, positive r, cannot exceed unity; it nearly
equals unity if electron trapping is the predominant process, so that the
excess trapped eleetron and mobile hole concentrations are substantially
equal. If, however, hole trapping is the predominant process, then r,
is a large negative number, the increment in concentration of fixed
negative charges being negative and balanced by the excess mobile
electron concentration, so that m retains substantially its thermal-equi-
librium value. Similar considerations apply to r, for centers of the donor
type. Thus, the trapping ratio is close to unity or a large negative num-
ber according to whether the centers predominantly trap carriers of the
same charge or of the opposite charge.t

For a large negative trapping ratio, the comparatively small incre-
ments in m are associated with large magnitudes of D' and v/, as (31)
shows. A concentration variable other than Am may then be more suit-
able. The equation in the linear combination A An + BAp (with constant
A and B) of the excess mobile-carrier concentrations that results from
(30) has diffusivity and velocity equal to D' and v' each divided by
A{1l — r,) + B(1 — ), since, from (29), grad Am is [A(1 — »,) +
B(1 — r,)] " grad (AAn + BAp). In general, they are bounded in magni-
tude for all values of the trapping ratios that can occur.f In this equa-

1 For acceptor centers, say, of total concentration 97, , the trapping ratio
ry = d(I — A)/d(p + i — #) for holes may be defined. The two ratios are
symmetrically related: They may be interchanged in r,’ = »r,/(r. — 1) and, as
one increases to unity, the other becomes negatively infinite,

t Note that A(1l — r,) + B(1 — r,) equals r, — r, for 4 = 1 and B = —1 and,
if r, and r, are constants (as obtains under suitable small-signal restriction), also

for A = r,and B = —r,. It follows that » — p and rpn — r.p are (under this re-
striction) both subject to diffusivity Dy'/(r, — r,) and veloeity vo'/(rp; — 7).
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tion, the recombination term is properly written as —(AAn + BAp)/
(Ar, + Br,), where 7, and 7, are lifetime functions for An and Ap.
These functions are respectively equal to An/®,, and Ap/®, since, from
(3), ® = &, = ®,, holds for the steady state.

The equilibrium lifetimes for electrons and holes differ in general, but
are nevertheless always associated with the same diffusion length. This
result follows readily from (30), whose linear small-signal form is

Dy div grad Am — v -grad Am + Ag — Am/7. = 0, (33)

the zero subscripts denoting thermal-equilibrium values.t The lifetime
function 7, is here constant; and, since An and Ap equal (1 — 7,)Am
and (1 — r,)Am, with r, and r, the thermal-equilibrium trapping ratios,
(33) implies

(1 — 7,)7'Dy div grad An — (1 — r,) 7w/ -grad An

(34)
+ Ag — An/(1 — )7 =0

for eleetrons and a similar equation for holes. Thus, for An the lifetime
is 7, multiplied by (1 — r,), while — as may be established in greater
generality from (29) and (30) — the diffusivity and velocity are those
for Am multiplied by the reciprocal of this factor, and similarly for Ap.
It follows, in particular, that the product of equilibrium diffusivity and
lifetime, which is the square of Ly, the diffusion length, is the same for
An, Ap and Am, independently of the particular trapping and recombina-
tion statistics.) A “diffusion-length lifetime” 7o, based on the unmodi-
fied ambipolar diffusivity Dy, may accordingly be defined hy™

To = Lﬂz/])ﬂ = (DU‘/DD.)T?H = [1 - (Tpn‘ﬂ + Tnjﬂu)/(nu + pl’l)]Tm

(35)
= (norp + Pore)/ (0 + Pu),

in which 7, and 7, are the equilibrium lifetimes for Ap and An. The more
detailed analysis of Section 3.1.1 includes evaluation of the single diffu-
sion length and lifetime ry that correspond to the (equilibrium) Shock-
ley-Read electron and hole lifetimes. Diffusion-length lifetime for re-
combination in the presence of nonrecombinative traps is evaluated in
Section 3.3.

For the steady-state formulation that includes applied magnetic field,
it is readily shown that (21), the continuity equation, assumes the form
of (30) if ¥ is redefined in accordance with

f As shown in Section 3.1.1, the required small-signal restriction may he more
severe than that given in Ref. 10 for the no-trapping case.
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vV = eﬂ-n”paiz{[(l - ’n",,)'ﬂ, - (]- - Tn)P]I
+ 8(e/a)[(1 — rp)pn® + (1 — r)u,p’ll X K.

Note that the second scalar product in (21) vanishes, since steady-state
concentration gradients are collinear vectors. For this case, use of the
trapping ratios formally simplifies (25), as well as (27) and (28), which
involve the form for I, of (32).

(36)

2.2 Mass-Action Theory

2.2.1 Single-Level Centers of Two Types

In this section, centers of both the acceptor and donor types are as-
sumed to be present, namely centers that can have respectively single
negative or positive charges or be neutral. By use of a suitable conven-
tion, the equations apply, in effect, to the more general model of two
types of centers each of which has two states of charge (which differ
by one electronic charge). On the basis of equations of this section,
theory for centers of a single type but with two energy levels or three
states of charge is given in Section 2.2.2.

Under the assumption of mass-action interactions, the equations

g — G{m = g _ Cﬂ’?,p —_ Cp][pﬁv - p](ml - ﬁ)]
- Cuﬂ[nf) - nﬂ(a‘(d - ﬁ)]r

/ot = Ry — R = Cua[n(Ny — 1) — ny]
. ()
— Cpulpi — pu(9 — )],

Ry, — ®n = _‘CﬂQITLfJ - ﬂg(fﬂa - f))]
+ Colp(2 — D) — popl

hold. The first equation gives ®.,. , and it (as well as the other two) is
obtained by considering the photoconductive case of uniform concen-
tration and no transport, g — @ being the contribution to dm/at¢ that
does not involve transport. Four processes are taken into account for
each type of center. In the second equation, for example, the term C,;p#
is the volume rate of neutralization of fixed negative charges by holes;
(1 is a phenomenological capture coefficient, which depends in general
on temperature and not on concentration. The second term in the same
brackets gives the rate for the inverse process, C1p: being the emission

ép/at

1 In the terminology of Sah and Shockley?® this quantity is called a capture
probability.
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coefficient for hole emission from a neutral acceptor center. Here 9, is
the total concentration of the acceptor centers, and the concentration
p1, constant at given temperature, is defined by the condition that the
quantity in brackets vanishes at thermal equilibrium, in accordance with
detailed balance. The preceding brackets relate to the interactions of
the same centers with electrons, the term ', ;n(91; — #) being the volume
rate of capture of electrons by the neutral acceptor centers and C,im
being the coefficient for electron emission from the charged ones. The
concentrations n; and p, are those of the Hall-Shockley-Read theory,
and are here introduced without explicit reference to Boltzmann statis-
ties.”"®™ The third equation expresses the dependence of dp/dt on the
analogous processes for the donor centers. In the first equation, which
includes the rate Cinp of direct electron-hole recombination, only inter-
actions that change the total concentration m are involved.

The sign or magnitude of the charge that a center can assume is not
of material significance in the analysis of this section; although written
symmetrically for fixed charges of both signs, (37) may formally be
transformed so as to apply to two types of donor or acceptor centers.
This possibility is related to the circumstance that the fixed charges are
not properly considered as trapped carriers, since the trapping processes
are manifest through changes in fixed-charge concentrations rather than
in these concentrations themselves. For example, centers of the acceptor
type funetion as electron or hole traps according to whether the concen-
tration of the charged centers increases or decreases with carrier injec-
tion. Consistent with the discussion in Section 2.1.2 of the steady-state
trapping ratios, either type of center may be considered alternatively as
an electron trap or a hole trap, under the convention that a change in
fixed-charge concentration resulting from trapping may be negative as
well as positive. To establish this result from (37), write the two equa-
tions that apply for, say, acceptor centers only. Then transform these so
that the concentration M, — 7 of neutral centers becomes concentration
of fixed positive charges $, and the concentration 7 of charged centers
becomes concentration M, — § of neutral centers; note that a given in-
crease in the original 7 is equivalent to the corresponding decrease in
the new p. New equations then result that (with the replacement of
(.1 and C,, respectively by (.2 and C,2) are the ones that follow directly
from (37) for donor centers only.

2.2.1.1 Thermal-Equilibrium Relationships. The definitions
ny = no(My — 1) /70, P = poie/ (T — To),

. i . (38)
na = nopo/ (M2 — Pa), P2 = Po(TNa — Do) /Po
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are required by detailed balance. It is evident from these equations that
mpy = NePe = MNP = T?,I'E (39)

holds, where n; is the thermal-equilibrium electron or hole concentration
in intrinsic material. Note that (39) states, in effect, that the product
— (Can1) (Coupr) or (Chene) (Cheps) — of the electron and hole emission
coefficients equals n;° times the product of the corresponding capture
coefficients.”**

If the concentrations in the right-hand members of (38) are known,
then ny, pi, ne and p» are, of course, determined. Certain relationships
hold between the concentrations. Since ny — Py = n, equals Py — 7
from (1), the neutrality condition, this condition and the last equation
of (39) give

no = H[(Po — 10)* + 40T + (Po — 7o)}
and (40)
po = H[(Po — 70)* + 40T — (Po — )}

It is readily found from (38) that fractions of charged acceptor and donor
centers are given respectively by

Ao/ = (1 4+ a0 D7 P/Te = (1 4 aw )7, (41)
with
aw = no/m = p/po = 3 [(nd A+ 4nd) 4 nl,

—1 2 2y & <42)
0 = Po/Pr = Ne/me = 3pe [(ne + 4n7)T — nl;

the final expressions on the right follow by use of (40). For given semi-
conductor material at given temperature, n; is known and n, is deter-
mined by conductivity type and conductivity oy, and n; and n. (and
hence p; and p. also) are accordingly determined by the fractions of
charged centers. Expressing the thermal-equilibrium concentrations of
mobile carriers and fixed charges in terms of each other (with other
concentrations as parameters) thus involves roots of gquadratic equations.
The relationships given apply regardless of the number of kinds of centers
present, since (40) contains no quantities pertaining to particular cen-
ters, and each equation of (41) and (42) contains quantities pertaining
only to a single kind of center.

On the other hand, the fixed-charge and mobile-carrier concentrations
for centers of two kinds are obtainable in general in terms of 9%, 9s , 7y,
ne and n/’. Tt will suffice to indicate that the concentrations are roots of
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biquadraties that follow readily from the equations

my = 'ﬁu + ?llﬁn/(ml —_ ﬁo) f)u + pl(‘f(l —_ '??!(])/ﬁu y

‘ s (43)
my = g + na(MNa — Po)/Po = Po + PaPo/ (N2 — Do)
for 7y and Py and
my = Cflu['”l + 911/(1 -+ Chn)] = "120[]02 + ERQ/(l + Cl’?(l)]: (44)

a0 = ‘?12/?11 = pl,/jﬂz

for amp and as , and hence ny and p, . Equations (43) and (44) are ob-
tained from (38) by eliminating, respectively, the concentrations of
mobile carriers and fixed charges by use of the neutrality condition.t
They are equivalent to combining (40) with (41) and (42), which are
accordingly subject to a requirement of mutual consistency. For exam-
ple, temperature determines n;* for a given semiconductor; specifying
conductivity also then determines no and py ; specifying further »n; and
ny determines 7o/ and P/ from (41) and (42), but only one of T,
and 9%, can now be independently specified, since po — 70 must equal
ho — Po -

Through familiar considerations involving equilibrium Boltzmann
statistics, the concentration ny or py (and ne or ps) has been shown to
equal electron concentration in the conduetion band or hole concentra-
tion in the valence band for the IFermi level coincident with the energy
level of the centers.” The relationship

n = H.,-E/pl _ nl_efgl—.';m-r _ ﬂielc(ﬂbwl)uﬂ'l (45)
for acceptor centers is here employed, and a similar one is used for donor
centers. Here ¥, = —e¢ '& and ® = —¢7'8 are the equivalent electro-
static potentials of the energy level &, of the centers and the I'ermi energy
& for intrinsic material. This relationship is more phenomenological than
those involving the energies of the conduction-band and valence-band
edges and which give n, and p, in units of the effective densities of states
in the bands. Note that the temperature dependence of the energy gap
is involved through n;, while the difference between the effective densi-
ties of states or the effective masses with nonspherical energy surfaces
in momentum space is reflected simply in a difference hetween ® and the
midgap potential. If statistical weights associated with spin degeneracy
are taken into account, then the definitions of (38) are of course retained,
but (45) is modified. The right-hand members (for n;) are multiplied

+ It is easily seen that cubics result for centers of one kind only, or if complete
ionization obtains for one of two kinds of centers.
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by two; the exponentials for p; are multiplied by one-half. In the similar
result for donor centers, the exponentials for ns and p. are multiplied
by one-half and two, respectively. Tor given n; and n. , these modifica-
tions " produce comparatively minor changes in & and & or ¥,
and ¥,

2.2.1.2 Equations in Concentration Increments; Trapping and Release
Frequencies and Times. For detailed analysis, it is advantageous to re-
place (37) by equations in the increments Am, An and Ap in m, % and p
over their thermal-equilibrium values. By subtracting from (37) the cor-
responding thermal-equilibrium equations, in which the time derivatives
and the quantities in the various square brackets are zero, the result

Ag — ARwm = Ag + ruAm + vpAh + wsAp — CiAnAp
— CaApAT — CAnAp,
AN/ = AR, — AR, = vuAm + vaR + vy AP
— (C.An + CrAp) Af,
AP/t = AR, — AR, = vuAm + vpAi + vuAD
— (CpAn + CrAp) Ap

follows, in which the decay constants of what will be referred to as the
“p;; notation” are given by

(46)

ru = —Ci(no + po) — Cprtio — Cuao,

Cipo — Cu(po + p1) + Cozh,

vy = Cog — Calmo + n2) + Crato,

vy = Cu (9 — 1) — Cprtlo,

vy = —Cuy(MNy — 70 + no + m) — Calpo + 21),

vy = Cpitho, : (47)
vy = Cpo(Na — Po) — Chzo,

lli

V12

var = Chao,
vig = —Cra(no + nM2) — Cpa(Ma — Po + po + p2).
Zero subscripts denote thermal equilibrium values. Note that A®R.. , A®,

and A®, are respectively ®, , ®, and ®, minus go = Cni. In (46), in
which Am, A% and Aj are to be considered as dependent variables, the
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quadratic terms have been written compactly with An and Ap, which
may be replaced by Am — Az and Am — Ap; and no and po in (47) may
be replaced by my — 7 and mo — Py .

It is desirable to supplement the v;; notation with another notation,
which, although it often results in less compact expressions, facilitates
physical interpretations. If volume generation and direct recombination
are neglected for the present, the respective contributions to 8An/adt and
dAp/at other than the terms involving transport processes as such may
be written as

— AR, = — AR, — AR/ = — 1gudAn + vpuAn
— V;nzAn + Vgn‘ZA(En"l - f’)!
‘ . (48)
_A(Hp = — AR, — aA'p/at = - Vgp]A'p + Vg;plA(ml - n)

- PgPQAp + Vgpgﬂﬁ.

The top and bottom rows of the forms on the right give the respective
contributions of the acceptor and donor centers. The decay constants
may be identified as certain capture and release frequencies by com-
parison with the equations

—AG = — Cul(9 — 1) An — noit — Andii] + Comdi
— CoolpodAn + noAp + AnAp] + CranaA(Ne — P), (49)
—A®R, = — Cpltdp + podn + ApAR] + Cpp A(Ty — #)

— Cpl(M2 — Po)Ap — podp — ApAP| + Crapalp,

which follow from (37). In (49), the magnitudes of the contributions
involving brackets are capture rates, while the other terms on the right
are release rates.

Expression of the capture rates in terms of capture frequencies would
require writing them with An or Ap as a factor, and would thus necessi-
tate solution of the particular problem. These physical capture frequen-
cies would depend in general on coordinates and time. The contributions
to the capture rates that contain A% and Ap as factors are associated,
however, with trap saturation: These contributions, for carriers of given
charge, represent the deereases and increases in capture rate with the
filling of centers that assume, respectively, the same and the opposite
charges. They may, in a phenomenological sense, be deleted from the
capture rates and assigned to the release rates. The “effective” capture
and release rates that result from this procedure are clearly rates in
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terms of which the capture and release frequencies of (48) and related
times may be defined as follows:

Electron capture by neutral acceptors:

vr = Tin1 = Car(M — 7g) = Cud/ (1 + ano),
Electron release from charged acceptors:

vy = o1 = O + 1),
Hole capture by charged acceptors:

vl = Tipr = Cpto = Cpdliane/(1 + ana),
Hole release from neutral acceptors:

vam = o1 = Cu(p + pr), (50)
Electron capture by charged donors:

Vine = Ting = Crzpo = Crodocron/ (1 + ),
Electron release from neutral donors:

vans = Ty = Cral(n 4 na),
Hole capture by neutral donors:

iz = Tipr = Up(9a — Po) = CpIla/(1 + am),
Hole release from charged donors:

e = Top2 = Coa(p + p2).

The second forms given for eapture frequencies follow by use of (41).
Note, for example, that v, i3 an average frequency per electron of
electron capture by a neutral acceptor center and hence the reciprocal
of the corresponding electron capture or trapping time, 7., ; and that
v, 18 an average frequency per charged center of electron release from
a charged acceptor center and hence the reciprocal of the corresponding
electron release time, 7,,; . The saturation terms that originate from the
true capture rates appear as the contributions from n and p in the
“effective” release frequencies, while the “effective’” capture frequencies
do not depend on the injection level.

It is readily seen that, if direct recombination is neglected, then an
alternative proceduret for including the quadratic terms in (46) is to

t Another alternative procedure is to replace @, by # and o by $ or, more
generally, by increasing o and $o by a fraction v of Ad and of Ap and noe and po
by the fraction 1 — 4 of An and of Ap. The definitions of (50), which correspond
to v = 0, are then modified, and depend on v, the fraction of the quadratic terms
assigned to capture.
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generalize the »;; by replacing ne and p, in (47) by n and p. The formal
equivalence of (46) and (48) that results then permits expressing these
generalized »;; in terms of the effective capture and release frequencies
of (50), as follows:

P11 = —Vip1 — V2,
Vis = —Vgp1 + Vin2 ,
Y1y = Vipl — Vgn2,
Yo = Vil — Vipl,
Voo = — V@l — Vynl — Vgpl, (51)
Vo3 = Vipl,
Va1 — — Ve + Vipe
V32 = Pume,
Vag = —Vgn2 — Vip2 — Vgp2.
Note that
vy + v+ v =0 (52)

holds for this ease of no direct recombination.
The four effective trapping and release times or frequencies for each
type of center satisfy a fundamental restriction, namely:

TuujT!;uJ" — V“iivﬂp." — ?ﬁ’ 1 + Ap/(pﬂ + pf) 7 = ]_ 2 (53)
TiniTypi VoniVt pi o 1+ An/(nﬂ + ni) ’ ’ ’

Thus, only three are independent. As will appear, this restriction is
widely useful for caleulations and physical interpretations. It is essen-
tially a consequence of detailed balance: I'or thermal equilibrium, it
follows readily from relationships tantamount to this principle, such as
(41) and (42) or the definitions of (38). The factor on the right that
depends on An and Ap results simply from the concentration dependence
of the effective release frequencies.

A property easily established from (42) and (50) is the following:
For centers of given capture coefficients and energy level, if the electron
and hole eapture frequencies are equal for a given eonductivity, then
the equilibrium release frequencies are equal for material of the opposite
conduetivity type and the same value of | ny — pg |, that is, for material
such that the values of ng and py are, in effect, interchanged.
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2.2.1.3 Trapping and Recombination Ranges; Shallow and Deep Traps.
Three linear small-signal ranges, characterized respectively primarily by
minority-carrier trapping, recombination and majority-carrier trapping,
may be defined for each type of center by use of (53). The “minority-
carrier trapping range’ is defined by the condition that the equilibrium
minority-carrier to majority-carrier release frequency ratio exceeds unity.
In p-type material, this ratio, vui/vpi, 18 Cain;/Cripe = Cujne/Cripi,
from (39), (41), (42) and (50); and, from (53), v:.i/vp; is larger by
the factor po/no . The “majority-carrier trapping range” is defined by the
condition that the majority- to minority-carrier capture frequency ratio
exceeds unity, for which the equilibrium majority- to minority-carrier
release frequency ratio is larger by the factor po/ng for p-type material,
or by no/po for n-type. The “recombination range’ is defined as that not
included in either trapping range. Thus, the recombination range is
given by no/n; = p;/pe = Cri/Cyi = pj/Me = po/n;j for p-type material,
the electron-trapping range by C,;/C,; > p;/m = po/n;, and the hole-
trapping range by Cr;/Cpi < pi/po = no/nj. A “minority-carrier capture
range”’, which includes the trapping and recombination ranges, may be
defined by vu;/vep; > 1. Similar results, obtainable by interchanging n
and p, hold for n-type material. Ranges of minority-carrier-dominated
and majority-carrier-dominated transitions™™** are those parts of the
trapping ranges here considered for which strong inequalities hold.
Equal eapture frequencies, which occur at the boundary between the
recombination and majority-carrier trapping ranges, result in what will
be termed “critical recombination”, with which, as will be seen, A7 or
Ap is zero.

The three ranges may be specified in terms of the equality densities.
These are the equilibrium carrier concentrations for the Fermi level
coincident with the equality level. They are defined in the present
context by

n* = Coipi/Cai = PVipi/Vinj = NVopi/ Von;
and (54)
pi* = Con;/Cpi = Novini/vip; = pOVﬂﬂJ‘/”am‘:

in which the release frequencies are equilibrium values. Thus, the re-
combination range is given by ng £ p;* < poor po = n;* = n, for p-
type material, the electron-trapping range by n,;* < ng or p;* > po and
the hole-trapping range by n;* > po or p;* < mng, and similarly for n-
type material. The ranges may evidently also be specified in terms of
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the equality level, the Fermi level & for intrinsic material, the actual
Iermi level & and the “reflected Fermi level,” &, = 26 — &g, the re-
flection of & about &: For the recombination range, the equality level
is between &7 and &;'; for the minority-carrier trapping range, it is be-
tween & and the edge of the majority-carrier band; and for the major-
ity-carrier trapping range, it is between &7 and the edge of the minority-
carrier band. Note that, if the capture coefficients are equal, then n;j* =
p; (or p;* = n;) holds and the respective trapping ranges are given by
conditions on the trapping level &; obtained by interchanging those on
the equality level.

The volume rates of electron and of hole transitions at equilibrium
are respectively Como(9 — 7o) = Copue = novem and Cppoita =
Copr(I — 7o) = povyn for acceptor-type centers. From (53), these
rates are proportional tot vy, and vy, . Hence each definition given for
a trapping range insures that the transition rate at equilibrium for the
particular carriers is the larger, and also that the transition rate i or
vipr per mobile carrier is the larger too. The asymmetrical relationship
between the definitions for minority- and majority-carrier trapping re-
flects the circumstance that a transition rate will be the larger if either
the cross section or the concentration of the particular carriers is suffi-
ciently large. The recombination range is that for which a larger transi-
tion rate per mobile minority carrier is associated with a total transition
rate for majority carriers which is the larger.

For shallow minority-carrier traps, since relatively few are occupied
by minority carriers at equilibrium so that they can capture majority
carriers, the condition for the minority-carrier trapping range may be
met even though the capture coefficients are comparable in magnitude.
For deep traps, since relatively few can capture minority carriers, the
minority-carrier trapping generally requires a minority-carrier capture
coefficient considerably the larger. Suitable condition for “shallow’ and
“deep” traps are, in view of the condition on C,;/Cp; for the electron-
trapping range, respectively p; << ny (or n; > po) and n; < po (or
p; > me) in p-type material. That is, “shallow” and “deep” traps for
minority carriers are appreciably removed from the reflected Fermi
level &', towards the edges of the minority- or majority-carrier band.
Similarly, for majority-carrier trapping, “shallow” and “deep” traps are
appreciably removed from the Fermi level & , towards the edges of the
majority- or minority-carrier band, respectively.

 They equal vz and vy, times the capture concentration, as shown by (63)
in Section 3.1.1.
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2.2.2 Centers with Two Energy FLevels

The formalism for centers of two types is readily modified to yield
equations for one type of center with two energy levels. With the assump-
tion that the centers can each assume single negative or positive charge
or be neutral, # and  denote concentrations of centers in the respective
charged states. It is thus clear that the fundamental mass-action equa-
tions for this ease are formally the same as (37), with the modification
that both 91; — # and 9, — P are replaced by . — # — , where 9 is the
total concentration of the centers.

For thermal equilibrium, definitions of n;, g1, ne and p. apply that
are equations of (38) with both 9%, — 7, and 91, — {p replaced by 9 —
fio — Do . It follows that the restriction

?102/ Nhe = Pﬂﬂz/ Pu2 = 7:60/ ﬁa (55)
holds for this two-level case. As is easily verified, (39) and (40) still
apply, while the fractions of charged centers are

Ao/ = (1 4 ny/ng + nyna/ng) "

= (I + 'pu/’)‘h + 1!302/1011‘3'2}71
= aw/(1 + e + awn),

Do/ = (1 + po/po + pipo/pi?)
= (1 + ﬂn/nz + noz/ﬂlﬂz)_l
= an/(l + aw + an),
with @ and e given by (42). The modifications of (43) and (44) for
the biquadratics are the replacement of 9%, — 7y and 9, — P by N —
’rin — ’[‘Jn &-Ild of 911/(1 + Ollu) and S)L,(l + l‘lgu) byf)l/(l + 10 + agu).
Note that (55) is not an independent equation, in that it is implicit in
the modified (43).T Relationships formally identical with (45) give n,
and m, In terms of the two energy levels.
The fundamental two-level mass-action equations for no direct re-
combination yield the equations in concentration increments
Ag — A®m = Ay — (v + Vo) AM 4 (Pe — vyp — Chane) AR
+ (vipr — vz — Capr) AP,
aA'ﬁ'/at = (ytnl - ytpl)Am - (Vtul + Pgni + Vﬂpl)Aﬁ
+ (V”.l — Can — szpl)Af),
6Aﬁ/at = (thE - V-!J!?)Am + (ptu'z! - Cpﬂp - CnZnZ)A'ﬁ
- (Vf,pﬁ + Vyp2 + Vyﬂ?)Af):

T The corresponding restriction for two types of centers has (fa/ Po) (M2 — Do)/
(31 —#o) as right-hand member,

(56)

(57)
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from which appropriate »;; can immediately be identified. Effective cap-
ture and release frequencies are here employed whose definitions are
provided by (50) if 91, — #g and 9 — P are replaced by 0 — 7y — o,
and 94/(1 + ap) and 9/(1 + ax) replaced by 9/(1 + aw + ax).
Aside from these modified definitions, the equations of (57) are formally
identical with equations for two kinds of centers except for the additional
terms in which the capture coefficients appear. These are ““constraint”
terms. The ones in dA7/dt represent the decrease in this rate that results
from the decrease in the concentration of neutral centers associated
with an inerease in p; neutral centers capturing electrons and emitting
holes are the two processes that increase n. The rate decrease ',;nAp
is that associated with the electron capture, while C',;p,Ap is that asso-
ciated with the hole emission. The condition that the rate decreases for
these two processes be the same is clearly n,* = n. Similarly, the con-
straint terms in dAp/dt represent the respective decreases C',.pAn and
(,ansAn in the neutral-center hole capture and electron emission rates
associated with an increase in 7; these decreases are equal if p.* = p
holds. The third forms of (54) show that a pair of equal constraint terms
implies an equilibrium hole-to-electron release-frequency or transition-
rate ratio for the aceeptor or donor levels equal, respectively, to n/ne
or po/p, which are substantially unity near thermal equilibrium.

Tor this two-level case, the four effective trapping and release times
or frequencies associated with each energy level satisfy the fundamental
restriction that is formally identical with (53). It is also easily verified
that the various conditions given for the recombination and trapping
ranges and for shallow and deep traps apply without formal modifica-
tion.

By suitable notational generalization of the fundamental mass-action
equations, the results of this section can be shown to apply to two-level
centers in general, whose states (differing successively by one electronic
charge) may include ones that are multiply charged, either positively
or negatively. Through use of the phenomenological capture coefficients,
statistical weights associated with multiply charged states do not enter
explicitly. For example, the concentration U — 7 — P of neutral centers
may be replaced by concentration { of centers with single positive charge,
and P used to denote concentration of centers with double positive
charge. Then 4 is replaced by the new concentration 9t — § — § of neu-
tral centers.t Thus, with obvious modifieations in the physical deserip-

f Note that these transformations applied to (1) give Am = An — Ap — Ap =
Ap + Ap. While the correct neutrality condition holds, Am is no longer the incre-
ment in concentration of total negative or positive charges.
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tion of capture and release frequencies and other quantities, the theory
is essentially unchanged.

9.2.3 Volume Generation with Excitations Involving Trapping Levels

The excitations associated with the absorption of radiation of wave-
lengths beyond the limit of intrinsic absorption may be taken into ac-
count phenomenologically through suitable generation terms in the
differential equations. To the volume rate g of interband excitations in
the differential equation for n is added g + ge2 , Where gq is the volume
rate of hole excitations from the conduction band to centers of type 1
— that is, electron excitations from these centers to the conduction
band — and g.. is the similar quantity for centers of type 2. Similarly,
in the differential equation for p, to g is added gu + g2, each term of
which is the volume rate of electron excitations from the valence band
to the centers or hole excitations from the centers to the valence band.
To g in the differential equation for m is added g + ge2, and not ga
or g, , since g.; increases n as it decreases i, while g,2 increases p as it
decreases p. The generation terms Agn , Ag, and Ag, in the differential
equations for Am, An and Ap are thusf

Agw = Ag + Aga + Ages,
Agn = Ag + Aga + Ager, (58)
Agy = Ag + Aga + Agw,
and the generation terms that the equations for A% and Ap now contain
are respectively Agm — Agn = Aga — Agaand Agm — Agp = Age — Agan.

The additional generation terms clearly represent the same processes
as do the emission terms of (37). The distinetion implicit in the notation
is valid, however, consistent with zero values of these additional genera-
tion terms at thermal equilibrium. Each generation rate of (37) is de-
termined at equilibrium by the phonons and radiation associated with
the equal corresponding capture rate. Since detailed balance applies also
to the radiative part separately, there is no net radiation at equilibrium
from any given process of capture and the corresponding generation.

III. DETAILED THEORY AND APPLICATIONS
3.1 Diffusion Length and Steady-State Lifetime Functions
3.1.1 Linear Theory

The equations of (46) for two types of centers, when written for the
steady state and linearized by neglect of the quadratic terms, give con-

1 The excitations involving trapping levels only, which may occur for large
concentrations of centers (presumably with concomitant impurity-band conduec-

tion), are here neglected.
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centration increments that are proportional, and solving for As/Am and
Ap/Am provides the thermal-equilibrium trapping ratios. These and the
corresponding lifetime 7, are thus given by

_ Va1 — parvas
.rfi - - )
Vaalzs — VasVao
_ Vava — Vala
TP - ]
Vaalss — VaaViae
-1
T = —(vu + vt + vity) (59)

—(szlfaa - Vza!’az)
1’11(1’221’33 - V23V32) + Vu(”zsvm - Vmi':sa) + Vla(l’mv:;z - l'ezl's])’

in terms of which, with the thermal-equilibrium diffusivity Dy from
(31), the diffusion length can be expressed and the diffusion-length life-
time evaluated. These results apply also for two-level centers if equilib-
riums »;; are defined in accordance with (57).

The case of single-level centers of one type lends itself to more detailed
analysis. Results from the linearized equations for, say, acceptor centers
only, for which r, is zero, are:

Vinli — Vipl
Vinl + Vgn1 + Vgpl

Tp()(ml - ’ﬁn) - ’Fnuﬁu
70 — My + ng + m) + 7ao(po + 1)

_ I *(Tp1 — Tin1)
(ou* + No)Tept + PoTem

1 - TH/TP ]
Tn = (1 - Tn)fm = _(VEI + V22)/A1

= (Vl'pl + Vopl + l‘a'rll)/'Al

_ Tnn(’flu + po + Pl) + Tpﬂ(ﬂn + nl)

N* + no + Do (GO)
(9* + po)Tin + MoTip
Ju* + no + po

Tp = Tm = _”EE/AI

= (thl + Vgn1 + Vapl)/Al

_ (9 — g + Mo + M) + Ta0(po + p1)
E]ll* + Mo + Po

(9* 4+ no)rim + PoTim
M* + no + m ’

T'n = —Vzl/Vze =
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The »;; and release frequencies are equilibrium values; 7.0 and 750, given
by
o = (Cad)™ = (1 = %/ 7en = (1 + P1/P0) " Ta
and (61)
0 = (O™ = Gho/T) 7 = (14 m/m) 7,

are the respective limiting lifetimest in strongly extrinsic p- and n-type
materials (in which they are also 7., and 740); Ar, given by

Ay = vyves — Vis¥ar = VinlVgpl + viavo + viptven
= Cnl(jplml(ml* + Mo + p(l))

is always positive if neither C,; nor (' is zero; and 9,*, which will be
referred to as the “capture concentration,” is given variously by

SJ.Ll* = V!ull"tp]/C'ulelml = nfiﬂ;/(nn + 711)(1’0 + pl)

(62)

= N/ Vom = Poven/Vom = il g Top/ T Tim)}

= (I — 7o)/ (1 + aw) = 7o/ (1 + aw) (63)
= Ny (Fio/M1) (1 — 7/I1)

= Myao/ (1 + o)’

The different forms for these results are obtained by use of (51) for the
v, definitions of (50) for the capture and release frequencies, and
equilibrium relationships of (38), (41), (42) and (53). The middle term
of the second form for A; is the one that gives rise to 91,*, and it follows
from (53) that the first term is large or small compared with the third
according to whether p, is large or small compared with no. Capture
concentration 9,* large compared with ng + po is, as will be shown in
Section 3.2.1, the condition that capture frequencies predominate over
release frequencies. The volume rates of electron and hole transitions
at equilibrium (see Section 2.2.1.2), noren and poven , are equal to 9N *
times the corresponding release frequencies. The equations of (63) show
that 7, and 91, — 7y may be written in terms of 91,* and ayo . The concen-
tration 91,* is small if the centers are nearly all ionized or un-ionized; the
last form shows that its largest value is 197, , which it assumes for e = 1
or g/ = %, that is, for the Fermi level coincident with the energy level
of the centers. Entirely similar results, for which obvious notational
changes are required in some forms, hold for donor centers only.

t Conditions for these lifetimes are po 3> 9U* + o1 + pr*, o >> T* + 1 + m*.
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The diffusion length Ly and lifetime 7, corresponding to the electron
and hole lifetimes of (60), which are the Shockley-Read lifetimes, may
be evaluated from (31) or (35) and (60). These equations give

14(12 = Du’Tm = DuTu = Du[l - T'npo/(ﬂ-n + ’PU)]Tp
= ]\'T#n.l-lpﬁn_l(ﬂo‘ftm + Pu’rml) (64)
= aﬂ_l(apﬁDnTInl + G'JJODthpI);

where o, and o, are ep,ne and ep,po . Other forms may be written by
expressing 7,,; and 7, in terms of 7,0 and 7, by use of (61). The diffu-
sion-length lifetime for this case,

To = (Vunl + Vﬂpl)/("tul"ﬂpl + thl"ﬂnl)
[7p0(n0 + m) + Tao(po + PL)]/(’?-D + o) (65)
= (Notem + poren)/(no + Po),

is formally similar to the familiar common lifetime™ " for both electrons
and holes for the limiting case of 97; small, as inspection of (60) serves
to verify.t Thus, Ly and 7o are, for given 7,0 and 1,0 o1 741 and 7y,
independent of 91, . For given energy level and capture coefficients, =g
is proportional to 91, ", The true Ly and = apply, of course, in the linear
part of the small-signal range, in which no appreciable trap saturation
oceurs. With small-signal trap saturation, diffusion length and lifetime
that are usually considerably larger apply in the saturation range.
These are evaluated in Section 3.1.2.

It can be shown that the electron and hole lifetimes of (60) are sub-
stantially equal to 7o if

[ v — ”am| = I V:m[/”ll - Vyplffpﬂl * K (1 + E)(Vgul + Vum) (66)

holds, in which e is the smaller of (9,* + 7o) /po and (9L* 4+ po) /10, as
given by the respective conditions | 7, — ro |[/re K land | 7, — 7o [/70 K
1. For extrinsic material, ¢ may usually be neglected; including it pro-
vides an appreciably weaker condition only if 97,;* is larger than the
equilibrium majority-carrier concentration. The condition of (66) may
be severe: It is essentially 9,* small compared with the equilibrium
minority-carrier coneentration for the minority- to majority-carrier re-
lease frequency ratio of order unity or larger in extrinsic material, that
is, for the minority-carrier trapping range defined in Section 2.2.1.2.

31,32

1 This formal similarity holds for any number M of kinds of centers, o being
given by [ZM, (nurip + pormi) 7Y/ (ne 4 po), as may be shown from the first
form for (,, of (71) and the observation that, if two or more different kinds of
centers are present, then &,, is the sum of similar terms for each kind.
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General conditions for the validity of this linear analysis may be for-
mulated as eonditions for the neglect of the quadratic terms. For this
purpose, assume uniform concentrations and volume-generation rate.

Then (46) and (51) yield
dAn/dt = Ag — vemAn + vemdi + Culdndi = 0

and (67)
dAp/dt = Ag — vimAp — vymAi — CpApAi = 0

for acceptor centers only in the steady state and no direct recombination.
The conditions may be derived in a self-consistent manner by first ob-
taining, with the neutrality condition, the concentrations from the
linearized forms of (67). These concentrations, namely

An = (thl + Vgpl + 1"1.1111)Agl/Al ’
An = (Vgn]_ —_ Vgp]_)Ag/A]_ y (68)
AP = (le -+ Vgn1 + Vgpl) Ag/Al 3

are then substituted in (67), so that conditions for negligible quadratic
terms may be obtained as restrictions on (positive) Ag and, by use of
(68), as corresponding restrictions on the concentrations. It will suffice
to give the former restrictions, which for the neglect of C,1AnAn and
C 1 ApA7i are, respectively,

Ag/ A K vint/Coi(vir — vim) = (0 — fi0)/ (Venr — Vep1)
and (69)
Ag/Aa K A/ Co(vin — vip1) (i1 + Vo1 + Vop1)

for vmi > v If vem > vear, the restriction for neglect of one of the
quadratic terms turns out to be that of (69) for the other one, but with
subseripts n and p interchanged — an interchange that does not affect
A, . This distinction arises because the signs of the approximate linear
terms in A7 depend on the sign of v — v . It is easily shown thatt
for this quantity zero, or the case of “critical recombination,” A7 is
identically zero and (67) are linear for all Ag. For trapping without
recombination, (68) does not apply because A is zero, but the conditions
may properly be written as the restrictions on the concentrations ob-
tained by use of these equations. For example, for electron trapping
with ', zero, the condition An < ng + n, results, which may be a se-
vere condition for p-type material.

+ A solution is excluded that does not admit thermal equilibrium, for which
Ag or Afi is zero for certain negative values of An and Ap or Ap and Ag, respectively.
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2 Nonlinear Theory

For added carrier concentrations resulting from arbitrary injection
levels, steady-state lifetime functions 7, and 7, may be evaluated from
®w . For acceptor centers only and no direct recombination, ®,, is given
by

Ry = Cou[n(d — 1) — mi)
. . (70)
= Cpulpi — pu(94 — 2)],
which results in

2
np — ni

rln + m) + rolp + m)

@“(97-1 — i) + (no + nn + (pu + ;01)(911 — 1) A_ﬁ:
TPU(S.LI - ﬁ') - TriDﬁ' T (71)

Al — A/90) + (e + m — po — PLAR/I + ne + Po
TPﬂ(m! - n) - Tnl]n

= An/t, = Ap/7,.

(—Rm =

Eliminating # by means of the second equation of (70) and the use of (61)
results in the first formt for ®,, of (71). This familiar form® furnishes
7, OF 7, in terms of An or Ap alone if one of these concentrations is elimi-
nated by solving the second equation of (70) written with 7 replaced by
p — n; and An or Ap may at the same time be related to, say, the
generation rate Ag = ®.. for steady-state photoconductivity. The algebra
involves radicals. A better procedure for such analysis employs the
second or the third form for @,, ; these result from (70) by elimination
of n and p with the neutrality condition. Then An and Ap are, with ®,, ,
written in term of % or A as independent parameter in accordance withf

Tpo(ﬂo + 131) + T..o(n + Po + jl‘h)
Tp0(My — fl) — Tl

and (72)

Tw(po + 1) + 7p0( — A + ng + m)

T;nu(')ll - H) - T,;l}n

An =

Ap = Am =

]

so that the lifetime functions are given by

T If two or more different kinds of centers are present, then ®,, is the sum of
similar terms for each kind. For the corresponding lifetimes in terms of An and
Ap, see Okada.*s

1 Note that Az has the sign of the denominator, which is proportional to v —
vip1 for Asi small.
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_ Tpu(‘?lo + ﬂi) =+ Tr.u(?i + Do + Pl)
(1 — 2/9) + (no + mu — po — POAR/Tu + no + Po

and (73)

Tao(po + p1) + (T — 1+ no + my)
n(l — 7/9) + (no + m — po — P1)AR/IG + no + po

The functions reduce to the Shockley-Read lifetimes of (60) for the
equilibrium value 7 of 7, as may be verified by use of (41) and (42).
The range of 7 is from 7, to the limiting large- qlgnal value given by
AfTy = 71p0/(7u0 + 7o), for which the denominator in (72) vanishes,
and for which r, and r, both equal™ 7.0 + 750 -

The trapping ratio r, corresponding to the lifetime functions of (73)
is given by

-1 _ (3 — 7+ n + ) + Twlp + m)

Tpﬂ(ml - 'ﬁ;) - Tni],ﬁ'

]:1 i TN + T0AD :| Ap
7ol — 7+ ng + ) + rw(pe + p) ] AR (74)

Tp0 *(no + m) + T (po + p)
_ + Tp0mo( T + no + n 4 po + P1) A,
An [rpo(90 — ) — Tuont]?

Tp =

n

If

which is obtained from (72) by differentiating with respect to Am. The
equilibrium value of 7, , which is that of A7i/Ap, is the r, given in (60},
while the limiting large-signal value is zero, as may be expected. By
means of (72) and (74), the steady-state continuity equation, (30), may
be written (for acceptor centers only), with A as independent variable
and the components of grad A% as dependent variables. The second or
third form for r. ' of (74), with Ap/A# given by (72), lends itself to
this purpose; note that dAn/dA7 and dAp/dAi equal r b= 1and 1,7
respectively.
The lifetime function™ for | A% | < An ~ Ap = Am,

Tpo(no + n + Ap) + Tno(Pn + m + AP) (75)
nm + po + Ap

may be derived most directly from the first form for ® of (71). By solv-
ing the second equation of (70) for A, the condition | An| < An
~ Ap may be written as

Tn ™~ Tp ™

Vgnl + Vgp1 > i Vinl — thlE _ { Vgnl/nl} - Vup1/Po l ml*- (76)

A =
Pt e T Cpn” Cu T Cm G F O
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Equilibrium release probabilities are here employed. Equation (76) with
Ap set equal to zero is the condition that A7 be relatively small for all
Ap. Since this condition is (66) with e set equal to zero, it subsumes the
condition for equilibrium lifetimes substantially =y, to which it is usually
equivalent.

It is readily shown from (75) that, witht Ap << ne + o (and equilib-
rium lifetimes 7q), the lifetimes are substantially =, if Ap is small com-
pared with (v, + »,;)/(Cui + Cp1). This condition and the one of
(66) may be severe conditions under essentially the same circumstances.
That is, in the minority-carrier trapping range defined in Section 2.2.1.2,
lifetimes are 7o for 9,* small compared with minority-carrier concentra-
tion ng or pe ; and then, consistent also with the condition of Section
3.1.1 for the neglect of C,;AnA% or C, ApAn suitably specialized, for Ap
small compared with ny 4+ 2, or py 4+ p1. If the condition on Ap is not
met, then, with the condition on 9,* (75) gives a lifetime that increases
rapidly with injection level at low injection levels.f But such observed
behavior with extrinsic material, as these considerations indicate, can-
not usually be properly analyzed by use of (75). The steady-state life-
times in the small-signal range generally either result primarily from
recombination or majority-carrier trapping and are both 7, and sub-
stantially constant, or else have distinet equilibrium values given by (60)
with dependences on (small-signal) injection level obtainable by
the general procedure described. It will be shown that, in the latter case,
substantially constant apparent diffusion-length lifetimes given by .,
for n-type material or 7., for p-type generally apply in the small-signal
range above a certain injection level. Thus, unless trap concentration
is quite small, (75) has significant application in the former case only
to the transition from 7, to the lifetime 7.0 4+ 7,0 for the large-signal
range.

Noneconstant small-signal lifetime functions are associated with deep
traps in the minority-carrier trapping range. Such traps will be saturated
(in the steady state) even in the presence of a concentration of mobile
minority carriers that is relatively quite small. From (67), by equating
dAn/dt and dAp/dt (which are zero also in the immediate context), A%
may be written as

An = (1'“.1A71 —_ l’gp]Ap)/(V‘ml -+ Vgp1 =+ Cnlﬂ?l + CplAp), (77)

T The more general condition without this restriction includes 7o ~ 7,0 + 750
for large values of Ap.

1 As a result of saturation of centers available for minority-carrier capture,
this lifetime increases essentially linearly in the small-signal range from the
equilibrium value 7,0(n0 + 71)/po or ru(pe + p1)/ne and asymptotically to the
large-signal value 7,0 or 7, .
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in which the concentration-dependent contributions to the release fre-
quencies are exhibited separately. Suppose that the transitions in p-type
material are electron-dominated, so that v,,1 >> v, . For deep traps, as
defined in Section 2.2.1.2, n; < po (or p1 > ng) holds, which gives
ne + m < po + 1 and therefore implies €'y >>> Cy 0F 750 3>> Tao for the
present case. Then, for An > ng + 1, the denominator in (77) is
C,1An. Furthermore, vy = Ca(Tu — 1) 2> v = Cptio holds from
(53). Hence An ~ 91, — #ip followst for An large compared with ny + m
and not too small compared with Ap. If trap concentration is not too
large, small-signal saturation evidently occurs under the conditions as-
sumed. If it is large, then a large conductivity increase is associated with
the majority-carrier concentration corresponding to the saturated traps.
Nonconstant small-signal lifetime functions apply in either case, whether
saturation occurs in the small-signal range or not.

The lifetime functions in the saturation range approach the limiting
large-signal lifetime, 7.0 + 750, substantially equal to 75 . Though 7,0
is otherwise the minority-hole-capture-limited hole lifetime in strongly
extrinsic n-type material, in this case it is a lifetime limited by majority-
carrier capture. For small-signal saturation, A7 changes relatively
slightly from the small-signal saturation range to its limiting value,
(thl - thl)/(C,n + Cpl) = I — ’J’iu - 11,“5)‘(1/(1-,.(. —|— T,,u), for the ln.l'ge—
signal range. This circumstance might suggest that 7, applies over both
ranges. In general, it does not: The denominators in (73) are compara-
tively small (reducing, for example, to no + n for An = 9 — 7o) and
are sensitive to very small changes in As; a very small change in con-
centration of unsaturated traps can affect lifetimes appreciably. As will
be shown in Section 3.2.2, large-signal lifetime implies relatively large
inerease in conductivity. The equations of (67) for the steady state,
simplified for relatively small departure of A7 from 9 — 7y still (neces-
sarily) nonlinear, may be solved, in terms of An and for the saturation
range, for the lifetime functions =, = An/Ag and 7, = Ap/Ag. With
Yym1 3> vy + Tt , which will still apply in the present case even if 9
is of order po + pi1, it is found that 7, ~ 7,0/[1 + (po + T — 1)/ An]
holds for the saturation range, specified by An 3> ny + n; . Thus,

T ™ TFUAH/(p[) + N, — ’ﬁn),

proportional to An, holds for the saturation range of relatively small An.
An apparent diffusion-length lifetime, =, may be found by evaluating

t The equivalent condition Ap > 91, — # + noe + n, from (72) takes into ac-
count Ap > An. The small-signal saturation value of 3 — 7 may be appreciably

larger than no + a1, but its limiting large-signal value is small compared with
no + M if ml < (Vgnl/i"npl)(pﬂ + pl) holds.
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(D'/D)7, = (1 = r,)r, for small-signal saturation.t With », ' = 1 +
dAn/dA%, the expression 1 4 (ny 4+ n) (90 — )/An’ is found for
1 = 7 ; and dividing Ap ~ An + 9 — 7o by Ag gives

T~ [1 4+ (9 — #y)/An]r,
~ rpll + (9 — i) /An]/[L+ (po + 9 — i) /An].

It is easily seen that, for small 9 — %, of order ng + n, or less, the life-
time function for 7¢’ so obtained is 7,0An/po, as are 7, and r.. As may
be expected, this result is consistent with (75). Tor 91, — 7y >>> ng + ny,
however, the lifetime funetion gives = ~ 7,/(1 4+ 7m0/7p) for
(90 — 7i0)* 3> An® > (ng + n) (M, — ). The condition 9 < py + py
then gives 7 ~ 7., for small-signal saturation. If this inequality is
reversed, then 7y’ ~ 7. results, and saturation occurs with relatively
large increase in hole concentration.

From (60), the equilibrium electron, hole and diffusion-length life-
times are, for these cases, generally small compared with 7,,. They are
given by 7o ~ 7, ~ [(no + n1) /1ol = [(n0 + m) /(9 — Ap)]7ym and
o ~ [(9 — ) /plrpw = 74m If small-signal saturation ocecurs, for
which 7o is also small compared with r’ = 7,,;. The minority-carrier
and apparent diffusion-length lifetime functions inerease with injection
level, most rapidly as An becomes comparable with n, + n; and the
traps fill. These results clearly provide a simple model, based on a single
trapping level, for superlinearity,” *"***® the more-rapid-than-linear in-
crease of photoconductivity with injection level.] With small-signal satu-
ration, two superlinear ranges may oceur, the first as diffusion-length
lifetime increases from 7; to 7,, , and the second as it increases from
Tom to 7, in the large-signal range. With large-signal saturation result-
ing from large concentration of traps, only one superlinear range occurs,
since a nearly linear intermediate range is absent. Only one range oc-
curs also under the condition of (66) for small trap concentration. It is
evident, however, that with superlinearity this condition is generally
quite severe.

For the majority-carrier-dominated case of »ipm 3> vi (0 vpp 23> v4u1)
in p-type material, there can be no small-signal saturation. With small
trap concentration, lifetime 7o ~ (1 4+ p/po) 7w = 71u1 , Which is limited

T The second form follows since An/(no + n1) 3> (M — 7o)/ (po + i — 7o)
holds a fortiori.

I For small concentration of centers, Ap may exhibit a less-rapid-than-linear,
a linear, or a superlinear dependence on Ag, as Rittner! has shown using a lifetime
function tantamount to that of (75). From this equation, superlinearity results,
as may be expected, if r.o 4+ 7,0 exceeds 7, , 80 that the numerator increases more

rapidly with Ap than the denominator. See also Ridout,” Newman, Woodbury
and Tyler™ and Sandiford.?
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by minority-carrier capture and obtains over the entire small-signal
range, then changes in accordance with (75) to 7.0 + 750 In the large-
signal range. This change is o decrease to 1,0 3> 7, if the trapping level
is near the Fermi level or higher.

The steady-state fractions of ionized centers can be represented by
simple formal generalizations of the equilibrium relationships of (41)
and (56). In these equations, 7, and o are replaced by 7 and p and e
and (2] by

o = Can+ Copr _ u1 + An/(ne + m™*)
Cop + Cny ! 1+ Ap/(po + ?31*) ’
= Crap + Crama — 1+ Ap/(po + p*)
) Cun + Crape 1 + An/(ne + no*)’
as can readily be shownt by solving for the ionized fractions from (37)
and also from the corresponding two-level equations of Section 2.2.2.

(78)

3.2 Photoconductivity

A number of results for steady-state photoconductivity being implicit
in Section 3.1, the present section will deal principally with the transient
decay.

3.2.1 Linear Theory

For two types of centers in the linear small-signal case the time de-
rivatives of Am, A and Ap for photoconductive decay are given respec-
tively by (46) without Ag and the quadratic terms. The general solution
is aceordingly

3
Am = 2, A,
i=1
3
AR = er,,,-Aje*”f", (79)

3
A —pjt
Ap = ZITPJ'AJ'Q ",
=

in which the 4 are constants determined by the initial conditions, and
the 7,; and r,, are trapping ratios for the respective decay modes deter-
mined by

+ The equation given in the abstract of the paper of Sah and Shockley® re-
written in the present notation yields 2/(Jl — % — §) = ay and (T — A — PP =

as1, from which the ionized fractions for the two-level case here given follow as
solutions of simultaneous linear equations.
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(v + v;) + worn; + vigrp; = 0,
v + (1422 + Vj)?'nj + varp; = 0, (80)
v+ vara; 4 (vas Vj)?'pj =0,

with the decay constants »; being the roots of the equation obtained by
equating to zero the determinant of (80). The A ; are found in terms of
the trapping ratios and the initial concentrations Am; , An, and Ap, by
setting { equal to zero in (79) and solving. The solution so obtained ap-
plies as well to the two-level case, for which the »;; are defined in accord-
ance with (57). The decay constants v; , which are roots of a cubic, are
always real and (since the coefficients alternate in sign) positive, except
that one of them may be zero. Establishing these properties involves ex-
pressing the coefficients in terms of the capture and release frequencies
by means of (51) or (57) and making use of (53).

The constant term of the cubic and one decay constant are zero if there
is trapping only and no recombination. This case can occur essentially
in two ways: The two types of center may trap, respectively, the two
kinds of carriers, or they may both trap only one kind. If, say, the ac-
ceptor centers trap only electrons and the donor ecenters trap only holes,
then the v; are readily found to be zero, viyu + veur and v + vype .
The last two decay constants characterize the respective exponential in-
creases with time of A7 and Ap to new equilibrium concentrations after
injection that correspond to the zero decay constant. These equilibrium
concentrations are fractions of Am (which remains constant) equal to the
fractions of the time the electrons and the holes are trapped. Indeed,
since the two types of centers trap independently in this case, the solu-
tion consists of solutions written independently for each. But if, for ex-
ample, electrons only are trapped by both types of centers, then this in-
dependence does not obtain; electrons released from centers of one type
may be trapped by centers of the other type. With the convention here
employed, concentration of electrons trapped by donor centers may then
be written as negative Ap. The decay constantsare found to be zero and
Uvim + vour + venr + vonz £ [(vear + Yot — Vine — vona)® + 4]’1"]1’1112]%}1
with an equilibrium value after injection of total trapped electron concen-
tration equal to Ap/[1 4+ vgavons/ (Ven1¥ona + Penavgn1)]-

The general linear small-signal case for one type of center is readily
evaluated in detail. I'or acceptor centers only, the solution is given by
the first two equations of (79), all terms with 7 = 3 being omitted. The
trapping ratios are given by

i = —va/(vee + v;) = (v — vi)/ (i1 + vgu1 + Vo — ¥j)
= —(m + Vj)/”l;' = (Vj - Pzpl)/l’gpl ’ (81)
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and the »; are the roots of

v — i+ A =0, j=12 (82)
where v, is defined by
vo = — (v + ¥2) = vim T ¥ym + v + Vo (83)
and A, by (62). The decay constants are thus
vi= 3= 4wl G=12 (84)

with

1
3

v = (l"sﬂ - 4A!) = [(thl 'Jl- Vynl — Vipl — V,,p1)2 + 4!’,;,;11’,7]]1]%. (85)

The corresponding time constants r, = v and m» = w ' are also equal
respectively to »./A; and »/A;. Nonoscillatory decay is easily verified
for this case: The second form for », shows that the »; are real; and, since
v, < w,, the v; are positive.

A subease that provides some physieal interpretations is that of 9
sufficiently small so that capture frequencies are small compared with
release frequencies. As (62) and (83) show, the condition »,° 3> 4A, then
holds, and expansion of the radical in (85) gives

1™ Vx—l = TrJanﬂpl/(Tunl + Trrpl)
<<T2 ~ Va/Al ~ T0 - (86)

Thus, for this subcase, . is the steady-state lifetime o of (65). It is
large compared with 7, , the time constant for the adjustment of A7 to a
fixed fraction of Ap substantially equal to the equilibrium trapping ratio,
r, . This interpretation of 7, follows from solutions for the concentra-
tions: The last form for the r,; of (81) and r, from (60) give

Tar ~ 14 v/ vy
Pao ~ (Vi — vep1) /(P + Vo) ~ Tu'; (87)
and the result
An/Apy = [Favga/ (vam + vgn)]e” ™
+ [ = rvy/ (vom + Vgpt)]ff”rz.
AR/Apy = ra(—e T 4 @1, (88)
Ap/Apy = —[rwvum/ (v + vpm)]e™
+ [+ ravgn/ (v + vep)le
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holds for initial concentration A#; zero. Since r, is small, the mobile-
carrier concentrations are mostly in the second or lifetime decay mode
and differ only slightly. For this subease, if the initial trapping ratio is
r, rather than zero, then the first decay modes are not present and A7 is
rAp = ?',,Aplcf”"". The first decay modes do not occur either for “criti-
cal recombination,” with which A#s remains identically zero as a result
of equal capture frequencies v, and vy, or, for this subease, equal cap-
ture rates for An and Ap. For small 9, , the capture ratesare in all cases
substantially in the ratio vya/ven . In linear cases, they also decay in
the lifetime mode after this mode predominates. The release rates be-
have similarly, their ratio being equal to vym/vep1 , 01 to (ne/po) (Vin1/ves)
in accordance with (53).

The condition for neglect of the capture frequencies may be severe.
The approximate form of », applies if viu + v < vy + vym holds,
which implies that

N * << (vgm + Vﬂpl)/(”oﬂl/nﬂ + Fﬂ'lﬂ/p“)
= (ﬂui’ml + pol’tpl)/(l’ml + thl),

a condition which subsumes

(89)

I* K ng + m (90)

for neglect of vyuvi in A . The conditions of (89) and that for steady-
state lifetimes equal to 7o of (66) are the same for the minority-carrier
trapping range defined in Section 2.2.1.2, for which they are 91,* small
compared with the equilibrium minority-carrier concentration. The con-
dition »,” >> 44, is

K inng{”ﬂ + 'Pﬂ)il(”ﬂnl/l’ﬂpl + Vm»!/Vural + 2)
= %'h’ﬁ(”u + pu)_l(’fanl + Tgp1)2/1‘un17'pp1

if (89) holds, and it can be shown to be weaker than (89) in general if
the minority- to majority-carrier release frequency ratio exceeds a num-
her that is about three for extrinsic material and about six for intrinsie
material.t Equations (89) and (91) are both subsumed a fortior: by
M* << ni’/(ng + po), which is 9 < (ng + 7)) (po + 1)/ (no + Po).
The release frequencies may be neglected under the condition of (90)
but with ther inequality signs reversed. The solution is then simply]

An/Any = ¢ """ and Ap/Apy = ¢ T For 91,* large, (60) shows that
Wi Equation (91) gives a stronger or weaker condition according to whether
Rovgm/vom + Povgm/vym 18 smaller or larger than 3(noe + po).

1 This result easily follows directly from the differential equations. Or, note
that the radicand in (85) is (rem — vip)® .

(91)
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Tin and Ti are respectively the steady-state lifetimes r, and r, . The
condition v, 3> 44, is accordingly 2(7./7, + 15/7.) + % > 1 — namely,
that one of 7, or 7, be small compared with the other. If r, or 7, is the
smaller, then substantially all of An or Ap, respectively, is transformed
comparatively rapidly into positive or negative A%, after which a slower
recombinative decay of An and the concentration of the other mobile
carriers takes place as these carriers are captured.

The condition », 3> 44, implies 7, << 75, with 7; essentially a charac-
teristic time for trapping and 7. essentially a lifetime. This interpreta-
tion does not apply if » and 44, are comparable so that 7, and 7. do not
differ by much. For small 9%, and the majority-carrier trapping range,
for example, 7, ~ 72 may hold; (89) may apply, but not (91) (see foot-
note on previous page). The case of », ~ 4A, for 91 large, for which
Ti, T2, Tint, Tim1, T» and 7, are all substantially equal, is a case of re-
combination with but slight trapping.

The general trapping time and lifetime obtained from (84) and related
equations are

= = TuTen/[(F0*/pe + Drgm + (0*/m0 + 1)1y
T/ [(1 F+ po/I0*) e + (1 4 70/T6*) 7451
K1y = w/B = (* 4 n + p)~
[Rotan + Porem 4 N (T + Tom) /T
= (* + no + po)
00 * 4+ pod T+ (UF + o) Teml.

Comparison with (60) and (65) shows that this lifetime 7, is larger than
the steady-state lifetimes 7., 7, and 7 ; all are equal in the limit of 9%
small. For 97; large in intrinsic material, r» equals 27y . Furthermore,
these lifetimes all decrease monotonically to zero as 97; increases in-
definitely.

The decrease of 7 with increasing 9; may, however, proceed essen-
tially in two ranges, with approximate constancy of 7, in an intermediate
range.” From the first form for r, of (92), this intermediate range occurs
provided there are capture concentrations 9,* that are small compared
with no + o and also large compared with

(Vgnl + Vﬂﬂ])/(vﬂnl/nﬂ + Vﬂpl/'pﬂ) f

that is, if the strong inequality

© T  Tpt <<< (Mo/Po) Ty + (Po/T0) Tom (93)

(92)
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holds. It can hold for sufficiently strongly extrinsic material if the ma-
jority-carrier release time is not too small. For small 97, , 7, varies in-
versely with 97, , as (65) for 7y shows. For large 91; such that 90,* >
n + po, 72 varies similarly, equalling the value (norym + PoTopm)/
(no + po) of approximate constancy divided by ,*/(ny + po). With the
third or fourth form for 91,* of (63), this 7, reduces to 741 + 7¢m - Since
7, for large 9%,* is the harmonic mean of 74y and 74 , 71 18 the smaller
of these capture times and 7. the larger, as previously discussed for this
case. [t can be shown that, for the minority-carrier trapping range, the
inequalities that 97,* must satisfy for approximate constancy of 7. gen-
erally imply the condition v, 3> 44, on which the calculation is based.t
A similar situation has been shown to obtain with the inequality for the
case of negligible capture frequencies. But since this case involves a con-
dition for neglect of the capture frequencies that is usually severe in
the minority-carrier trapping range, it is the present case that would
usually apply in practice in this range.

3.2.2 Nonlinear Theory

Although the general problem of photoconductive decay is intractable
analytically, some special cases can be solved and certain techniques of
approximation are effective. From (46) and (51), general equations that
apply for centers of the acceptor type may be written as

dan/dt = Ag + vemdi — [rem — (Cn — Ci)AR|AR — CAn,
dAan/dt = (v — v — (Car + Cp) Afi)An
— (vt + vyt + ) AR — Cpudit’ (94)
= 1 — v — (Crr + Cpa) Afi]Ap
— (Vi1 F g1+ 1) AL+ Cadit,
dAp/dt = Ag — vgmAii — [ + (O — CARAp — CiAP,

in which equilibrium values of release frequencies are employed. Since
| A% | is bounded (by a concentration that cannot exceed 91;), it is clear
that, if the initial coneentration Ap, is sufficiently large, then the decay
proceeds with A#n after a short transient substantially equal to

("’tul - ?-’t,ul)/(cnl + Oﬂl)s

t One inequality is the reverse of that of (89); hence it is the condition for the
neglect of the release frequencies in v, . The other inequality is (90). It follows
that »,2 > 4A, is 90,* 3> 4(ne! + piDvgmrem/ Egn/no + vyp/po)?. This condi-
tion is weaker than the reverse of (89) under the same eircumstances that make
(91) a weaker condition than (89).
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for which the coefficient of An or Ap in dA7i/dt is zero. This value of An
corresponds to maximum (but not necessarily complete) saturation or
neutralization in the traps. Although direct recombination, characterized
by the quasi-hyperbolic decay law

Ap/Apy = (Cidpat + 1)7 (95)

predominates in principle for very large Ap; , it can frequently be neg-
lected.*™® The large-signal decay is then exponential with lifetime
(Cor 4+ Co) /(Corvipt + Cowia) = Tuo + 7y, the limiting large-signal
steady-state lifetime. With the limiting value of A, this result follows
from, say, the last equation of (94), in which neglect of the release rate
Yo A (I, — 7)) is consistent with Ap large.

Txamination in further detail of the large- and small-signal decay is
facilitated by the equation for negligible direct recombination,

oA ' dAn/dt + TAp 'dAp/dt
+ 14 [(po+ p)(1 = An/Ap) + (no + n) (1 — Ap/An)]/Tu
= (rwdnt ++ 108p ) Ag, (96)

which is readily obtained from (67) or (94) as a linear combination of
dAn/dt = d(Ap — A#n)/dt and dAp/dt that eliminates the quadratic
terms. For example, consistent with results for the linear case of small
N, , assuming in this equation the steady-state trapping ratio r, of (87)
and (so that An and Ap are proportional) a single decay time, this time
is given as the lifetime 72 ~ 7 of (86). If either An ~ Ap or M is suf-
ficiently large, then the term with brackets, which arises from the terms
involving release frequencies, may evidently be neglected. It is other-
wise plausible that release does not appreciably affect large mobile car-
rier concentrations, while capture predominates with large trap concen-
tration. For no volume generation, (96) may then be integrated, with the
result

(AnAp)’}(An/Ap)—%(cﬂl — Cp)/ (Cpy + Cp1) — A 6[7” (rng + 7p0)], (97)

in which A is a constant determined by the initial concentrations. It is
easily verified that, besides furnishing the large-signal lifetime, (97) is
consistent with the linear solution for large 9% , for which the release
frequencies may be neglected and the decay times are 7pu and 74 .
This equation is a first integral of (94) for a case of large 9, , one which
can accordingly be formulated as a first-order (rather than second-order)
nonlinear differential equation.
The condition under which (97) holds is, from (96),
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9, 3> | Aif(ne + m)/An — (po + p1)/Apl | . (98)

From (96) and (98), the large-signal lifetime 7.0 + 7,0 obtains if
An ~ Ap 3> Adi holds and Ap >> 9, | Ai(ne + ny — po — pi) | also.
With the Asn for An ~ Ap from (77), these conditions are respectively
that of (76) and

Ap + (vpm + )/ (Cia + Cii)
= Ap + ro(not+ po)/(To + 7o)
> ne + po — (vgm + ve)/(Cox + C1) |
= (no+ po) | 1 — 7o/ (70 + 700) | -

Since the left-hand sides of (76) and (99) are the same, comparison of
the right-hand sides will indicate which condition is the more restrictive
in any particular case.t The condition that corresponds to (99) obtained
from the lifetime for An ~ Ap of (75) is similar except that the constant
term on the left is replaced by ny + po . Setting Ap equal to zero in either
gives the condition that 7. + 7,0 apply for all Ap, which is that it
equal 7.

The deecay times associated with a small-amplitude pulse of added
carriers above a steady generation level Ag are readily evaluated. The
equations for dén/dt and dép/dt, linear in the concentration increments
én and &p that result from the pulse, may be obtained from (67). Written
with capture and release frequencies that are concentration-dependent,
they are formally the same as the linear small-signal ones for dAn/dt
and dAp/dt. For the release frequencies, the definitions of (50) apply;
for the capture frequencies, 7 in these definitions is replaced by %. The
condition »,” 3> 4A; of Section 3.2.1 generalized in this way is the condi-
tion for a lifetime 7. for én and ép equal to the generalized ratio »,/A;
and large compared with the corresponding time constant for trapping.
The lifetime 7, depends on the steady-state values of An, A% and Ap;
(72) gives An and Ap in terms of A%, and (71) relates An to Ag = R, .
It reduces to 7. of (92) for the linear small-signal case and to 7.0 4+ 7,0
for Ag large.

The approximation An ~ Ap applied to (94) gives the differential
equation

(99)

[1 4+ (no + po) 'Aplap -0
[1 + (TnO + TpO)Ttl—l(?lﬂ -+ Po)_]AP]Tn
t In the minority-carrier trapping range, for example, (76) and (99) may re-

quire approximately that Ap be large compared with trap concentration and with
equilibrium majority-earrier concentration, respectively.

dAp/dt + ,  (100)
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. 1,44 -
whose solution ™" may be written as

A—p |:1 + (H.ﬂ + pD)—lAp][(Tnlrl'rpD”"oll _ '37(”70) (10])
Apy L1 + (no + po)'Ap .

As may be expected, this solution is the integrated form that corresponds
to the lifetime of (75); the approximation results in the steady-state An
of (77), and the condition required is that of (76). Casual inspection of
(101) might suggest that mo and 7,0 + 7,0 apply respectively for Ap small
and large compared with n, + po . This conelusion is, of course, illusory:
For the minority-carrier trapping range, the exponent in (101) is large
and 7o applies only if Ap is restricted as explained in Section 3.1.2.

The limiting large-signal A7, Ap and lifetime for two kinds of centers
are easily evaluated from (46) and (51), and the extension to any num-
ber of kinds of centers is obvious. As may be expected, the values
(V_u,,,l —_ thl)/(Cﬂ]_ ‘I" C'pl) or (V[pz - Vm?)/(cnz + Cpg) of A?"i: or Ai) are
as if the acceptor or donor centers alone were present; and the lifetime
is the harmonic mean of lifetimes 7,0 4+ 7,0 for each kind of center, the
decay constant being the sum of the separate decay constants. This result
does not apply to the two-level case: From (57), An and Ap are found to
E(]U.ﬂl C‘,,lc,,gﬂl/(c,,l()’,,g + C,,;C,,l + 0;,1101,2) — ’flﬂ and C’,,lcpgﬂt/(C,,lC',,z
+ 07*20111 + Cplcpe) - f)o , with (1 + Cnl/cpl + szfcnz)/(om + C;ﬂ)m
as the large-signal lifetime.

General solutions for trapping only and no recombination can be ob-
tained without difficulty. For, say, electron trapping by acceptor centers,
Ap maintains its initial value Ap,, and the nonlinear equation for An
that results from replacing An by Ap; — An in the first equation of (94)
has the solution

1 — v t+ VPm1 — Vgn1 — CnlApi e—vlt

- - nl — Cn Apl
An = An, vt Vi = Yo ! 102)
1 — — v+ v+ Vgnl + CHIAPI e—vlt (
Vi + vm + Vgn1 + CnlApl

for initial value Ap, , if direct recombination is neglected, T with
= [(vtnl — Vgn1 — ('Yrilzkpl)2 + 41}‘"1”5"1]5’
Ans = %Cnl_l(w — Vinl — Vynl + CnlAP:).

(103)

The concentration Ans is the new equilibrium concentration which An

T The general form of this solution is not changed if direct recombination is
included.
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approaches asymptotically after injection. For Ap; large, these equations
give

An = [A]h — (1 - m) (9 — 7h) :I
A’pl
(104)

_(1 + ml - ﬁf[) ({—(‘,,1Ap1t) )
Apl

Thus, A = Ap; — An rapidly increases to the limiting value
(1 — (no + n)/Ap) (9 — h6) ~ T — 7io = vur/Chr s

which corresponds to substantially all traps charged. For Ap, small, the
equations give

AH/API = ["’anl/(”!nl + ”qﬂl)] [T+ (vea/vgm) e_(’ml +v,,,.1r] ’ (105)

which may be obtained also by suitable specialization of results for the
general linear small-signal case. According to (105), Anr/Ap, decreases
from unity to ruu/(7wa + 74u), the fraction of the time electrons are
free, while An/Ap; increases to 7,/ (T + 74 ), the fraction of the time
electrons are trapped. An effect of slight recombination on An would in
all cases be a comparatively slow decay from a value approximately
equal to the equilibrium value An, for trapping only.

It is sometimes relevant to deal with a model involving centers that
provide nonrecombinative trapping in conjunction with other centers,
of a suitably idealized type, that provide only recombination that can be
specified simply in terms of a constant lifetime. Such centers would in
general be present in comparatively small concentration, so that the
amplitude of their trapping transient is negligible. Furthermore, this
transient would be comparatively brief, so that steady-state lifetime
applies after negligible time.

With certain restrictions, the idealized centers may be centers that
function in the recombination range or in the majority-carrier trapping
range.T The A#n or Ap for these centers obtained by setting dAn/dl or
dAp/dt equal to zero results in a contribution to both dAn/dt and dAp/dt
that is the negative of a steady-state recombination rate similar to that
of the first form for ®.. of (71). With subscripts 3" employed to denote the
recombination centers, this recombination rate may be written as
vesAn/ (1 4+ vpus/veps) + vewsdp/(1 4 vypa/vyu3), in which the release
frequencies are concentration-dependent. If now ;.3 >> »,,3 holds in p-

1 For the minority-carrier trapping range, the lifetime function (r.o 4+ 7,0)Ap/
(no + po) would apply for An ~ Ap < no + po, as can be shown by use of (100).
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type material, it may be a consequence of the condition vys > vimg for
hole trapping; or, with vy < #ms, it may imply the recombination
range. In either case, from (53) the small signal recombination rate is
substantially ».sAn provided An is not too small because of strong elec-
tron trapping in the trapping centers. Lifetime 7, is then 7.3 ~ 7.
While the large-signal lifetime differs in principle, the assumed inequality
implies 7o ~ 7.0 3> 70 if the energy level of the recombination centers
is not too far from the Fermi level towards the valence band. In general,
Vops > Vous gives a small-signal recombination rate equal to

Coads(podAn + modp) /(o + ps)

and thus a lifetime that cannot properly be associated with either An
or Ap alone. In intrinsic material, for example, it is An + Ap with which
a lifetime may be associated.

These considerations suggest the formal representation of “linear re-
combination” by ineluding in dAm/at or in both dAn/dt and dAp/dt the
negative of a recombination rate v.sAn + v,Ap. This procedure is use-
ful in deriving results in forms that apply symmetrically without ref-
erence to conductivity type. For the p-type case here discussed, »,3 and
v equal v and (no/Po) ves . The one that corresponds to the majority
carrier can usually be set equal to zero for sufficiently strong extrinsic
material.

3.2.3 Negative Pholoconductivity

Under certain conditions, optical generation with excitations involving
trapping levels will cause a decrease in conductivity below the thermal-
equilibrium value.”™ This negative photoconductivity will be con-
sidered for a simple model — that of two typesof centers, of which one
gives trapping and the other only recombination. For traps of the ac-
ceptor type, (94) gives dAn/dt and dAp/dt, except that suitable genera-
tion and recombination terms must be included. I'rom Section 2.2.3,
generation terms are respectively Ag, and Agy ; and, from Section 3.2.2,
the linear recombination term — (v.3An + »;Ap) may be included in
hoth equations. For simplicity, direct recombination and the quadratic
terms will be neglected, and the concentrations evaluated for the steady
state. The result is

— (Vmul - Vnﬁ)Agn + (vinl + szl + "’na)Agp (106)
A1 + (Vn:l + VpS)(Vgnl + Vﬂpl) + VaaVipl + Vp:b"lnl’

with A; defined by (62); a similar expression for An is obtainable by

Ap
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interchanging subscripts 7 and p, a transformation that does not change
the denominator.

This result verifies the conclusion that Ap may be negative as a result
of excitations from the traps to the conduction band in conjunction with
recombination, and similarly for An, with excitations from the valence
band to the traps. As a simple case, consider p-type material with vy
zero. If there is also trapping only of electrons and excitation only of
electrons from traps to the conduction band, then C,, and Ag, are zero,
whence An is zero and Ap is — Ag,/ vy , With Ag, equal to Ag,; from (58).
Recombination, in this case, produces negative Ap, which compensates
the reduction by the excitation of the concentration of (negatively)
charged traps, and the effect tends to be enhanced with deep traps of
small capture cross section.

3.2.4 Further Theory with an Application to Experiment

Ilustrative application will be made to observations of Hornbeck and
Haynes on electron trapping in p-type silicon.™ In this work, techniques
were devised to measure the various time constants in the deeay of pho-
toconductivity, which, for certain samples, covered a range of about 107
in relative value. Evidence for two trapping levels was found, and elec-
tron capture cross sections and energy levels were estimated from the
data, the model employed being that of two types of traps that capture
only electrons, a lifetime being associated with recombination in cen-
ters of another type. The samplet for which there is most detailed in-
formation exhibited a 20-microsecond photoconductive decay, attributed
to recombination, for sufficiently high injection levels; a decay of time
constant about 10 milliseconds, attributed to decay in comparatively
shallow traps that were initially filled in concentration of 2 X 10*¥ em ™ *;
and decay in deep traps that were initially filled in concentration of
10" em ™ whose time constant varied from 1 second for the traps nearly
full to 260 seconds for the traps nearly empty. Both types of traps are
“deep” traps, as defined in Section 2.2.1.2. The present theory will he
used to ealculate the upper limits for the hole-capture cross sections im-
plied by this model, and it will be shown how the conclusions are modi-
fied if an alternative model is assumed.

In outline, the general procedure here employed involves first assign-
ing trial values to the energy levels of the traps, and then caleulating
expressions for decay constants from the equations, suitably linearized
for particular ranges. These decay constants are roots of algebraic equa-

1 Data and results for sample 223B are given in the text and various figures of
the Hornbeck and Haynes paper.®
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tions and, assuming them well separated, may be obtained as the
magnitudes of ratios of suceessive coefficients. The coefficients are homo-
geneous expressions in capture and release frequencies (and also “con-
straint frequencies,” if multiple-level traps are involved) — that of the
highest power being unity, followed by linear, quadratic and higher-
order forms for the successively lower powers. With assumed trapping
levels and known equilibrium concentrations of carriers and unoceupied
traps, the coefficients provide corresponding homogeneous forms in the
capture coefficients. These coefficients remain to be found from observed
decay constants. To each product of capture coefficients that oceurs, a
number of products of frequencies generally contribute, but, for the par-
ticular semiconductor material and trapping model, these usually differ
by orders of magnitude and a single one predominates. With this con-
siderable simplification, decay constants can be expressed in terms of the
frequencies so that physical mechanisms involved can often be readily
identified. If a sufficient number of distinet decay constants are known
from experiment, the energies of the trapping levels may also be deter-
mined. The consistency of the assumed trapping model may then be
checked:; the energies found should clearly not differ from those assumed
by so much that the particular simplified expressions employed for the
decay constants do not apply.

Consistent. with the notation here employed, the deep traps may be
assumed to be of the donor type and the shallower traps of the acceptor
type. Trial values of the energy levels will be taken as 0.23 ev below the
Fermi level & in intrinsic material and at 8. These levels are approxi-
mately 0.78 ev below the conduction band for an energy gap of 1.10 ev
and at midgap, substantially in accord with the locations determined
by Hornbeck and Haynest The values™™ at 300°K of 1500 and 570 em’
volt™ sec ™ for the electron and hole mobilities and 1.73 X 10” em ™" for
n; give ng = 4.3 X 10" em* and m =41 X 10" em? for the 27-ohm-cm
p-type sample, with ny = py = 1.32 X 10" em™, n, = 2.8 X 10" cm ™
and p» = 6.1 X 10" em™.

For the two kinds of traps with recombination at the rate v,3an =
An/ty only in other centers of the idealized type discussed in Section
3.2.2, the outlined procedure applied to the equations written for the
linear small-signal range gives the longest decay time 7., as

Te — T3 + Tynl + Tyn2 + (Tyul/T!n])TH "l_ (Tyn?./'rln2)73 - (107)

o

The fourth and fifth terms represent recombination with multiple trap-

1 An energy gap of 1.10 ev at 300°K is employed rather than 1.00 ev as in Ref.
54. The trial values employed originated in a two-level analysis (which later
appeared inapplieable), the ny being that for 3 = 1.15 X 103, or Ho/I = 0.87.
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ping in the shallower and deep traps, respectively, and the latter pre-
dominates for the case under examination.t In (107), 7,,; and 7,,.» are,
of course, the “effective” equilibrium release times, and are not cor-
rectly interpreted as the physically proper ones,I namely (C.n;) " and
(C,igﬂu}_l.

An upper limit for the coefficient Cs for the capture of holes by oc-
cupied deep traps may be obtained by assuming recombination in deep
traps only and then calculating =, from the linear small-signal equations.
The result is

- Vinz + Vgpe — P+ VUPZ/C"z ~ Top (108)

VinaVgp2 pl}’ﬂqp‘!

in the simplified form obtained by the outlined procedure. The final ap-
proximation on the right§ applies with , = 10" em™ and r, = 260
seconds, provided merely that (', 3> 4 X 107*° em® seconds ™ holds. Then
(= 8 X 107" em® seconds™ follows, since po + ps is 4.7 X 10™ em™;
and the cross section for hole capture A, , obtained by dividing by
mean thermal velocity, is 8 X 107" ¢m®. Recombination in the deep
traps that gives 7, cannot account for the observed decay. It can be
shown|| that the decay time for the trapsnearly full would then be large
compared with r,,. = 260 seconds rather than 1 second. The actual

A s may thus be considered small compared with about 107 em®.

For an upper limit to C',; , recombination only in the shallower traps
is assumed. For this case, the rather lengthy general expression for 7
simplifies to give

Tw — Tgn2 + (Tan/Tln‘.!)[Ttnl(l + Tﬂpl/"’gnl)]- (109)

The contribution 7,,; is the time constant for the initial decay in the
deep traps, obtainable as the longest decay time from the equations
linearized for nearly full deep traps and nearly empty shallower ones.
This release time represents recombination of electrons in the shallower

T See footnote 20 of Ref. 54.

1 The r, of Ref. 54 should be identified as r4u1 and 742 . For the deep traps,
87, is accordingly (no + n.)~', which increases with the p-type conductivity and
is not a property of the traps alone. The formula employed for locating trapping
levels relative to a band edge holds if 7, in it is the physically proper release time,
With r, the “effective’ release time, it holds only if neis negligible compared with
ny or na . In Bquations (1) of Ref. 54, dn/dt lacks the term C,inoA,.

§ The equilibrium 7, of (60) and the lifetime 7. of (92) written for the deep
traps, for which 90* ~ 0.190, ~ 0.1, , also reduee to 7yp if Cya is not too small.

[FThe lifetime 7, of Section 3.2.2 evaluated for the deep traps nearly saturated
is, by use of l[)])l‘ll\l[lldtl()l]é for near-saturation of Section 3.1.2, found to be
gwen by 72~ (€ IMo)1An? /(th + ng)po 3> 1 for (un + n2)po> _\n!>> (no + na) Po.
The mequdllt\ on the right is equivalent to An 3> §; the one on the left is largely
consistent numerically with An < no¢ + n, for which the shallower traps are
substantially empty.
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traps without their recapture in the deep ones. The contribution (7gna/
T2 ) o1 TEpresents recombination in the shallower traps with multiple
trapping in the deep traps. The contribution with 7;5,1/7,. as a factor
represents recombination in the shallower traps with multiple trapping
involving both levels.T This contribution predominates since, as shown
in Section 3.1.2, the small-signal saturation of the shallower traps implies
om 3> 7,u1 - Theonly capture coefficient it contains is (', , which is found
to equal 2.5 X 107" em’ seconds ' for 7., = 260 seconds. The correspond-
ing hole-capture cross scetion A, is 2.4 X 107 em®. The actual cross
section is small compared with this value if recombination oceurs pri-
marily in centers of a third kind.

Recombination in the shallower traps can account for the observed
deep-trap decay. Indeed, as may be expected, if the equations are lin-
earized for small departures from a coneentration p, of unoccupied deep
traps, then a (longest) decay time

T4 = Tyn2 T (Tgnﬂ/'rlnﬂ)['rtﬂl(]- + Tnpl/fanl)]l(ﬁl/ﬁﬂ)

e (110)
= Tyma & (7, — 7o) (P1/D0)

results, which increases from r,.» to 7, as P, increases from zero to
and is of the same form as that employed by Hornbeck and Haynes™ to
fit their data.f The observed decay in the shallower traps can also be
accounted for through (. The equations for nearly full deep traps
and nearly empty shallower ones give 7,p(1 + Tua/7ym) ~ 7ym for
decay in the shallower traps as intermediate time constant, 7. for elec-
tron capture being the shortest and r,,. for the initial deep-trap decay
being the longest.§ The C,; obtained by setting 7,1 equal to 10~* second
is 3 per cent smaller than the value obtained from 7, and is thus in rather
fortuitously close agreement.

1f a model with this €,y is to account for experiment, then the assump-
tion that the shallower traps are two-level traps, which gave the ob-
served lifetime|| of 20 microseconds through recombination in the higher

+ The quantity in brackets in (109) can be shown, from (53), to be the 7o of (65)
for the shallower traps in the p-type material. Thus, =, itself may be said to entail
multiple trapping through (rgp/Tgn)7ia1, the major contribution to ro in the
minority-carrier trapping range,

t The interpretation differs, since .2 is an “effective’ release time. In the nota-
tion of Hornbeek and Haynes, $,/pois 1 — .

§ Note that 7, results also from assuming filled deep traps and negligible
An, or Ap ~ Py + An.

| For 33 microseconds, as given in Table I of Hornbeck and Haynes cal-
culated capture eross section for recombination would be smaller in proportion.
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level, seems necessary. Otherwise, a near-saturation lifetime much larger
even than r,, would obtain.f From (60), (65) and (66) written for the
higher level, the recombination lifetime will be 7o ~ 7,0 throughout the
small-signal range and with no small-signal saturation if py 3> Chang/
O = p*and po 2> O,/ Cps = (Ch37w0) " hold. The latter conditionf
is Aps > 1.2 X 10" em®. The coefficient C',3 and cross section 4, for
electron capture in the higher level are found to equal 2.5 X 10~° em®
second ™ and 2.3 X 107" em”.

For the further analysis on the hypothesis that this model applies,
the energy levels are properly treated as unknowns. The contribution
Tap1( Tem/ 7yn1) to the time constant for decay in the shallower traps equals
7o (Tine/ Tonz) = 7,(no + n2)/Po from the expression for 7, and will ac-
cordingly be small compared with 107° second for deep traps sufficiently
deep so that ne 4+ 12 < 4 X 10° em™* holds.§ Then 7, is 10 * second and,
with p; < po, Cp1 has the value already found. An additional datum is
available from experiment, namely the decay constant for the straggle
effect: With the shallower traps nearly filled, multiple trapping results
in an extended tail in the distribution of carriers from an injected pulse
that are caused to drift past a fixed detector, at which the decay with
time is measured. As shown in Section 3.4.3, the decay constant is the
“straggle constant” », , which is substantially v, + vgn + »ym for
Po > ng . Since v, 18 10* second ", the observed value, 2 X 10* second ',
is to be equated to vy ~ Cuny. With this result, the value for r;pn
and 9N, — 7 ~ 9 = 2 X 10” em™, the equation for 7, contains only
(', or ny and 7. as unknowns. It fixes, say, ni/(ne 4+ n2) and thus approxi-
mately the separation between the energy levels, but there are not suf-
ficient data with the model assumed to determine each level separately.
It appears, however, from measurements relating to deep traps in sam-
ples of various conductivities,|| that the location considered for these
traps is substantially correct. With the trial value 2.8 X 10° em™ of n.
the value obtained for C'; is 1.2 X 107" em® second ™, and the value for
nyis 1.7 X 10" em™®, corresponding to an energy level for the shallower
traps 0.007 ev above the trial location at the Fermi level in intrinsic ma-
terial. With .. = 1 second ™, the value obtained for C,. is 3.1 X 1077
em® second™ . The cross sections A,; = 1.1 X 107 em® and 4,. =

t With appropriate notational changes, the result in the footnote on page 577
for (recombinative) deep traps applies to the shallower traps.

1 This controls if the higher energy level is further than about 0.42 ev from the
conduetion band.

§ This condition holds by a factor of about 10? for the trial value of n. .

|| See Fig. 13 of Ref. 54.
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2.9 X 107" em® that result are half an order of magnitude smaller than
the ones calculated by Hornbeck and Haynes.{

It seems likely that the photoconductivity under illumination intense
enough to give the shorter decay times was quite appreciably offset as a
result of heating of the sample.} Significant error from this source seems
unlikely, however: The time constant for cooling was very probably com-
parable with the longer decay times, and measurements concerning these
were made with considerably less intense initial illumination.§ There
were presumably no pronounced effects of nonuniform generation in the
thickness of the sample, the generation rate at the dark surface being at
least 40 per cent of that at the illuminated surface, as caleulated from
the diffusion length for the shortest decay time. ||

Work has been done towards the identification of the impurities in sili-
con that oceasion these trapping effects.”® ™ It might be noted that the
energy levels suggest gold.”*” But there is evidence that gold gives a
single center with two (or possibly more) levels, and such a center can-
not account for the saturation of the shallower traps at a concentration
less than that of the deep traps. Consider the assumption that a two-level
model does apply, with shallow traps only partly filled in the experi-
ments. Then r,, applies for the decay at the shallower level and 7, =
1/C (3 — #y) for the time constant of 20 microseconds observed with
the spark source.y It follows that C,; is 4 X 10~ em® second™ for the 91
of 1.15 po and the negligible 7, that the trial levels give. But, with this
(.1 , the initial An immediately after the steady illumination that is shut

t Compared with the value from ten samples that they calculated in connection
with Table I of their paper, A4, is one order of magnitude smaller.

{ Perhaps this heating accounts for apparent concentrations of normally
cmpt_\;ltmps determined from Fig. 4 of Ref. 54, which are about 0.7 of the values
quoted.

§ Buck™ has found a positive temperature coefficient of resistance in 38 ohm-em
p-type and 350 ohm-cm n-type silicon of 0.8 per cent per °C at room temperature,
and has observed time constants for the cooling of the samples, similarly supported
by wire leads and of comparable size and geometry, of the order of 100 seconds.
The thermal time constant equals the heat eapacity divided by the thermal dis-
sipation constant, or power input per unit temperature elevation. For the sample
here considered, 0.2 em square and 2 em long, power input is 8.7 X 10~ watt for
10'* photons per em?second absorbed, since 1 microwatt corresponds to (5.1 X 10'%) A
photons per second of wavelength A, and effective A for the tungsten illumination
is about 9 X 10~% em. The dissipation constant for a temperature elevation of 1°C
with this power input in conjunction with the heat capacity of the sample of
0.14 joule per °C gives a thermal time constant of about 160 seconds. Haynes™
has estimated a temperature elevation of no more than a few degrees for the
more intense illuminations employed; heating of 3°C would decrease conductivity
by an amount comparable with the total photoconductivity of Fig. 4 of Ref. 54.

| This diffusion length is 0.17 ¢cm. In measurements on n-type silicon, a silicon
filter and a constant-temperature enclosure were used.

 Note that 7,u" and 740 = 1/C0 (I — Ay — Po) are the times for electron
capture at the shallower level respectively for filled and empty deep traps.
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off by the shutter is two orders of magnitude smaller than the apparent
saturation value 2 X 10” em ™ of A%, and thus appreciably smaller than
the initial value 6 X 10" em * of An estimated from the initial con-
ductivity change.t Also, the apparent saturation value of A7 is propor-
tional to Ag, which is not the fairly well-defined saturation observed.f
Moreover, the value of (',; gives a decay constant for the straggle effect,
evaluated as vy + o1, equal to 157 second ' and the same two orders
of magnitude smaller than that observed. Inconsistencies largely similar
result from the assumption of two-level trapping with recombination
entirely in other centers.

No evidence has, indeed, been found that the observed trapping
effects result through metallic impurities or through lattice defects pro-
duced either by mechanical deformation or by bombardment with high-
energy electrons.” ™™ Present indications are that the deep traps in
silicon are associated with the presence of oxygen as an impurity LT
but these traps, as well as the specific reactions instrumental in their
formation, have not yet been physically identified. Concentrations of the
traps and of certain donor centers due to oxygen™"™ have been found to
be correlated.§ Both traps™ and donors™***" are much more numerous
in crystals grown (from quartz crucibles) with rotation of the seed than
in those grown without, may be considerably increased in concentration
by comparatively prolonged heating at 450°C, and may be largely re-
moved quite rapidly by heating at temperatures above 500°C.|| Concen-
trations of the shallower traps do not exhibit this dependence. The cor-
relation is qualitative in that donor concentration is the more dependent
on heating at 450°C; appreciable trap concentration may oceur in an
untreated crystal grown with rotation, and may assume a value con-
siderably smaller than the donor concentration after heating at the lower
temperature.”* **4 It should further be noted that, while these observa-
tions have been mostly confined to n-type silicon (because the donors
tend to convert p-type to n-type), observations concerning the deep
and shallow traps which oceur in p-type silicon indicate that a common
mechanism is operative.”

T See Figs. 4 and 5 of Ref. 54.

i The steady-state equations give initial coneentrations An = 7o' (1 + 7o/
ran)Ag and A% = 7,,Ag. The apparent saturation value of A# is the sum of
these concentrations, since An is trapped rapidly, with time constant 7.,

§ Determinations of oxygen content from infrared absorption at 9 microns in
combination with resistivity measurements on crystals heat treated at 450°C and
1000°C have shown that formation of these donors is associated with oxygen -8

| There seems to be an indication that the trap concentration is increased by
water vapor but not by oxygen in the gaseous ambient.

9 Deep traps originally present have been largely removed by heating only 5
seconds at 700°C and subsequently have been introduced in a concentration larger
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3.3 The Photomagneloelectric Effect

The steady-state effect with trapping will be analyzed on the basis of
the general theory of Sections 2.1.1 and 2.1.2. For the PME field along
an infinite slab to the faces of whieh the applied magnetic field is parallel
and the y axis perpendicular, (28) and (32) give

E, =0 (I, — 0Iy,) = o (I, + 6eD'dAm/dy). (111)

The total short-circuit current, per unit width of slab along the magnetic
field is accordingly given by
Yo Yo
L= [ Ly = —oc [ D9 ay, (112)
—uq — 1o dy

and the field along the slab under the open-circuit condition is related to
I, as previously derived.i To evaluate the integral in (112), Am is first
found from the continuity equation

d(D'dam/dy)/dy — Am/Ty = 0, (113)

which follows from (30) and (36) ; the drift term is either zero or of order
§° for the short-circuit or open-circuit condition. Since, for the slab,
I,y = —I, = I, , boundary conditions are
£ — D'dAm/dy = suAn = suAp = smdm, Y = Yo,
(114)
D'dAm/dy = spedn = spAp = $upAm, Y= —1p,

in whieh £ is the surface rate of generation of electron-hole pairs by
strongly absorbed radiation and the right-hand members give surface
recombination rates. For the linear small-signal case, the velocity fune-
tions s, and s, (with second subseripts “1”” and ‘2" for the respective sur-
faces) are constants, with

Sm= (1 — 108, = (1 — rp)8p (115)
the surface recombination velocity for Am.

The increase in conductance of the slab is given by

vo Yo
AG = ef (uarn + ppdp) dy = e(un + pp) f (re/Tm)Am dy.  (116)
—Yo

—¥o

The second form follows from An/7, = Ap/7, = Am/r, = R., with

than the original one by heating 16 hours at 470°C.7® It is not yet known whether
prolonged heating at 1000°C, which prevents appreciable subsequent introduction
of donors at the lower temperatures? £ .86 87 would similarly prevent the introdue-
tion of deep traps.

t See Ref. 11, Equation (39).
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Te = Aa’/c(,un + pp)Ag = (purn + nup"'ﬂ)/(»un + up) (117)

a lifetime function that determines the conductivity increase Ag for the
uniform volume generation rate Ag = ®, . For the linear small-signal
case, the lifetime funetions are constants and

AG = C(,Ll,, + F;))TcDD’(dATJ’L/dy) lg:iﬂya

(118)
= C(,Lln + I‘;J)Tc(ac — Smlm 1y=u° — Smodm 11,=_,,0)

follows by use of (113) and (114).

These results show how the theory previously given for the PME ef-
fect without trapping' is readily generalized to include trapping by writ-
ing equations in terms of Am and the diffusivity D’, lifetime function
. and surface recombination function s, , and employing suitably gen-
eralized AG. Experiment may determine Dy’, 7., and s, . In accordance
with (115) and the results of Section 2.1.2, each of these gives rise, as
determined by the trapping ratios, to corresponding quantities for elec-
trons and for holes.

In its dependence on trapping and recombination in centers of a single
type, the PME effect is generally nonlinear if deep traps in the minority-
carrier trapping range are involved. Then trap saturation occurs in the
small-signal range, as described in Section 3.1.2, and the lifetime may
be nonuniform: From the illuminated surface into the slab, it may de-
erease from a saturation value to a much smaller linear small-signal
value, a transition value at a given depth being sharply dependent on
light intensity.

The influence on the PME effect of trapping as such may be investi-
gated by assuming traps that may be nonrecombinative in conjunction
with recombination on the dark surface, or with recombination in the
volume of the idealized type discussed in Section 3.2.2. With the latter
procedure, the linear recombination term (—v,3An — v;Ap) is included
in the continuity equation. For the linear small-signal case, 7, for the
traps is thus replaced by 7, = = [rn '+ (1 — r)va + (l — rp) vl
For p-type material, »,; is set equal to zero, and 73 = v, 'is introduced.
Then, for nonrecombinative electron traps of the acceptor type, r. =
vour/ (Vo 4 o), 70 = 0, D = [1L — pdl*/(no + po) (* + no)]Ds
and 7, = (1 4 vea/vym) 73 ave obtained by use of the first of (31) and
(60). If the traps are of the donor type, then r, = 0, 7, = —vua/vyuz,
Dy = [1 + 9%/ (no + po)]Do and 7, = 75 are obtained. Essentially the
same diffusion-length lifetime associated with Dy, namely

=1 + 9*(ne + p)lrs = Kersy,  j = 1,2, (119)
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results for both types of traps. Thus, minority-carrier trapping increases
the diffusion-length lifetime and hence decreases PME current. The ef-
fect is appreciable in cases for which the capture concentration 9t,;* is at
least comparable with the equilibrium concentration of majority car-
riers. T Similar analysis for nonrecombinative majority-carrier traps gives
a K, which is that of (119) modified by division by 1 4+ 9;*/n, for n-type
material or by 1 + 9;*/po for p-type. Thus, majority-carrier trapping de-
creases the diffusion-length lifetime and increases PME current, but
this increase is only that for a K, no smaller than (1 + po/ns)™" or
(1 + no/po) ", respectively.

Capture cross sections, concentrations and energy levels of traps may
be found from suitable PME and photoconductivity measurements at a
single temperature. Theory for trapping and recombination in traps of a
single type, which holds whatever the method be for determining diffu-
sion length L, and lifetime 7, will be considered first; while the PME
method has certain advantages, any one of a number of other methods
may also be employed. In view of the fundamental restriction of (53)
to which the four capture and release frequencies are subject, it will be
convenient to deal with the capture frequencies v, and v and the
capture concentration 90,* of (63) as independent parameters. To de-
termine these parameters, three quantities must be measured. Suppose,
for example, that from suitable linear small-signal measurements, o, 7.
and the lifetime 72 of (92) for decay of photoconduectivity are known.
Solving (60) and (92) for 71, 7em and M* gives§

Tinl = [(Tz - Tp)//(TQ - Ta}]Tu ’
Tipl = [(1"2 - Tn)/(‘i"‘z - Ta)]‘l"o, (120)
n* = ("0 + PO)(Tz - TG)/(T" + Tp — 72))

in which 7, is defined by
o = (motn + Po7p)/ (M0 + Po). (121)
Then, with

Tw = [(a + #p)ote — pa(n0 + Po) 0]/ (4aT0 — pppo), (122)

Tp = [#n(ﬂﬂ + pO)TU = (p + #p)’PoTc]/(#nno - pru),

t It ean be shown that, if different types of traps are present, the 91;* in (119)
is replaced by the sum of the respective eapture concentrations.

1 See, for example, van Roosbroeck and Buck,5¢

§ Note, from (60) and (92), that =» is larger than 7, , =, and 7, , and smaller
t-hii.ll Tn + Tp -
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subject tot w.he # pppo, which are obtained by solving the equations
defining 7o and 7., (35) and (117), 7wy, T and 90* can be found from
experiment. It should be noted that (117) does not represent an advan-
tageous method for determining 7. ; an indirect method will be given
that obviates the necessity of knowing the intensity of absorbed radia-
tion.

An additional independent datum is required to determine C., Cp1,
N, and 0y or pr . As (41), (42), (50) and (63) show, 7.0, 7m0, OF equi-
librium concentration of empty traps would serve.i Thus, a measure-
ment involving the saturation range is required in addition to those in
the linear small-signal range. It is, in fact, desirable that two such meas-
urements be made, for reasons that will be discussed. Suppose, for ex-
ample, that there is small-signal trap saturation in p-type material and
that the decay frequency €9y = 7,0  in the saturation range and 9 —
#ip are known in addition to 7, and = . It follows then, from the first
equation of (63), that 91* is vy, times a known constant:

W* = (Corrum)

O = 7p0 (I — 1) = (1L + p/po)Ca .
Eliminating 7o, + Poren from 73 of (92) by use of the third form for
1o of (65) results in an equation linear in 74y and 7., after 90,* has
been eliminated by use of (123). This linear equation and the one for
o may be solved for 7., and 7., , and, with (50), this solution gives
fio/M = (1 + m/ng) ™
. (po - ?lu)/(pu + ?lo) - 0;1100(?'2 - Tu)

pore/ (Po + M) — 7o
Cor = (0 — #i0) (124)
. (Pa - ﬂo)/(po + ’??-0) - C;n’Po(Ta - 1'0)
To — nu'r:z/(Po -’r ?ln) - C;,l{po + ﬂu)('rz - TO}TD,

Cp = C;:l - Tpﬂil(ml — 7o) /T

(123)

p ]

With trapping, the PME current-conductance ratio does not deter-
mine 7, but depends also on 7. (which differs from o because of trapping),
and direct determination of 7. requires knowledge of light intensity.

t With the denominator p.no — pppe equal to zero, 7o = 7. follows, and the
numerators are also zero.

i The neutrality condition would serve in cases of trapping by acceptors which
determine the (p-type) conductivity, for which 7ic = po — no holds; but 7, and
po — ne that differ phenomenologically must generally be considered to ob-
tain.
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This circumstance need not, however, really vitiate what in the no-
trapping case is a primary motivation for dealing with this ratio: What
is determined independently of light intensity is a relationship between
7o and 7., and a further relationship between these lifetimes will serve
to determine both. For 0;1 known, the relationship

C;)l = (Tlplm'l*)_l = (Tn + 7 — TE)/(FI) + ’H-n)(T;l - T”)Tn (125)

obtained from (120) is, with (122), linear in r, and readily solved for
this lifetime.

The PME method of the high-recombination-velocity dark surface
is best employed, since it generally provides better accuracy for the con-
ductance change than does the thick-slab method which it otherwise
subsumes as a limiting case. Optimum slab thickness is about one or
two diffusion lengths. For large dark-surface recombination veloeity, the
small-signal results for no trappingi give, for the present case,

Ie = — 6e2Ly( S, + coth 2¥,) ™
= —0(un + pp) " (Lo/7.) (coth ¥o)AG,

in which diffusion length Ly is (Doro)¥, Yo is yo/Io and Sy is s,ulo/Dy';
note that AG now involves 7, as a factor. Thus, 7, is given by

o= 2¥,coth Y, ,
* T /GG

(126)

(127)

where
9/(AG/Gy) = —2yo(pn + pp) Tee/0DAG (128)

is the dimensionless PME current-conductance ratio. In (127), 7, enters
also through Y, , and, with (125), both 7, and 7, may be found. Note
that apparent lifetime =, on the assumption of no trapping, obtained by
equating 9/(AG/G,) to 20/ (Dor2)*] coth [yo/ (Dor,)Y], is related to m
and 7, by 7, tanh’ [yo/ (Dorr)’] = (7./7) tanh® ¥y, and equals 7.*/ 1o only
for the thick slab, for which the hyperbolic tangents are unity.

If the model that applies is that of nonrecombinative traps with re-
combination in other centers, then (119) gives the lifetime 7 upon which
the linear small-signal I, for minority-carrier trapping depends. For
AG, (116) holds for the linear small-signal case, for which r./7, is
[(1 — r)un + (1 — rp)pp)/ (wn + pp). The solution for Am is readily
obtained by comparison with that for the corresponding no-trapping

t See Ref. 11, Section 3.42.
I See Ref. 11, Equation (50).
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case.t With the factor Lo’ /Dy’ replaced by 7., it is found that

_ Koe(pa + pp)ms€(cosh 2Y, — 1)

AG
S, sinh 2¥, + cosh 2¥,

(129)

is the linear small-signal AG for large dark-surface recombination ve-
locity, in which ¥, and S; are defined as above, but in terms of L, =
(Dy7o)’. The factor K¢ = (7./7n)(#m/73) iS 7./7a in general for p-type
material, for which 7,, is r3/(1 — r,); for n-type material, K¢ is 7./7p .
The expression that K; multiplies also depends on trapping, since Lo
does. Equations (60) and (117) give, for p-type material,}

Ko =14 (b+ 1)7'9*/no (electron trapping)

—1\—1 *
Ko = 1+ (A +07)79%/p (hole trapping).

L+ 9%/po

(130)

Tor hole and electron trapping, respectively, in n-type material, ny and
po in these equations are interchanged and b = u./u, replaced by its
reciprocal.

With I, for this model given by the first form of (126) with the re-
defined Lo,

9/(AG/GY) = (K./Kg) 2Y, coth Y, (131)

follows by use of (119), (128) and (129). Apparent lifetime r, is ac-
cordingly given by 7, tanh® y,/ (Dor)! = (K&'/K,)7s tanh® ¥y, and
equals (K4'/K.)7; for the thick slab. As trap concentration inereases,
diffusion length increases and a slab of any given thickness becomes a
“thin” slab, for which Y coth ¥4 ~ 1; and 9/(AG/G,) approaches a
constant value that is independent of the thickness. For example, if
the half-thickness yo is of order (Dors)!, then K, >> 1 or 9% 3> n + po
also gives small ¥, . From the expressions for K, and (130) for K it is
found that 9(AG/Gy) approaches 2(b 4+ 1)no/(no + ) for electron
trapping and 2(b + 1)po/b(no 4+ po) for hole trapping, regardless of
conductivity type. On the other hand, if the slab is so thick that Yo >
Dors91;*/(ny + po) holds, then the condition 9T;* >> no + po for large

t In Equation (44) of Ref. 11, Ap is replaced by Am; the Dg that appears ex-
plicitly originates from the boundary conditions and is replaced by Dy'; and S,
and S, are the velocities for Am multiplied by Lo/Dy’.

1 Note that K. and K are equal (for electron or hole trapping) in p-type ma-
terial for which g.no = pypo holds.
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trap concentration givesf /7, equal to K,/Ks or (b + 1)%no’/
(no + po)3t;* for electron trapping and (b + 1)%po/b*(na + po) for hole
trapping in p-type material, with similar results for n-type obtained as
in connection with (130)}.

With the aid of suitable saturation-range measurements, the cross
section, concentration and energy level of the nonrecombinative traps
are readily found. For traps of the acceptor type, Chn1, 9 and n; or p;
are to be determined, and these can easily be calculated from values from
experiment of 91, — 7y, saturation-range lifetime 73, lifetime 7, =
[Ca(ny + ny)]" for the traps nearly full, and any one of 7o, 7, or 9u*.
These last three quantities are not independent; from (107), lifetime 7.,
for the traps nearly empty is [I 4+ (9 — 70)/(ne + ni)]rs =
[1 4+ 9*/n7s . Measurement of g/ AG/Gy) serves to determine 7 : By
means of (119) and (130), K,/K,; may be written as (b + 1)m[no +
po — (po — bng)7s/70]" for electron trapping in p-type material, or as
an analogous expression for hole trapping in n-type, so that (131) in-
volves only 7o as unknown.

3.4 Transport of Injected Carriers

3.4.1 The Linear Differential Equations

The general differential equations of Sections 2.1 and 2.2 are here
specialized to the linear small-signal case of trapping (and recombina-
tion) in centers of a single type, for which certain specific transport
problems will be considered. I'rom (6) through (9) and (46), the linear
continuity equation for centers of the acceptor type is

aAm/at = D, div grad Ap + D, div grad An
—V,-grad Ap —V,-grad An + Ag — R

= dAp/at = Dy div grad Ap — D, div grad An
— vo-grad Ap + V,-grad A 4+ Ag 4 vuAp + vpAd,

(152)

the first form being that which applies for the linear case in general. The
diffusivity and velocity with minority-carrier subseripts of those defined
by

1 It has been shown by Amith®.08.9 that for minority-carrier trapping in the
thick slab, r3/7. is proportional to 91,72 for large JT; , if A is taken as unity. This
dependence obtains in the intermediate range in which 37;* is large compared
with minority-carrier concentration ne or po but small compared with pe or nq so
that the change in diffusion length may be neglected. For majority-carrier trap-
ping in general, r; and 7, are substantially equal in this range.
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D, = noDy/ (1o + po), D, = poDo/ (16 + po),

N . (133)
¥, = nevo/(ne — Do), V., = —pVo/ (1o — po)

are, in sufficiently strongly extrinsic material, substantially the minority-
carrier diffusivity and velocity, as are Dy and v, ; while those with ma-
jority-carrier subscripts are comparatively small. The linear equation

AN/t = vmAp + vadn (134)
holds for interactions with the traps. Eliminating As from (132) and

(134), substituting from (133) and making use of (51), (62) and (63)
results in

&Ap/att — Dy div grad(dAp/at) + ve-grad(dAp/at) + v.dAp/at
— wpDy div grad Ap + wvo-grad Ap 4+ AAp (135)
= dAg/dt + (1o — vip)Ag,
with », defined by (83), and », and », by
vp = [1 + 90*/ (o + po)l(vgur + vom) (136)
Vo = Yy + Vo + (vgur — Vep) ¥/ (0 — po).

The frequency », will be referred to as the “straggle constant”. It is readily
shown that the linear differential equations that An and A# satisty are
entirely similar to (135) except for suitable modifications of the right-
hand member; all the concentrations satisfy the same equation if there
is no volume generation. For An it suffices to replace »,;, where it occurs
explicitly by vu. , while for An only the generation term (v — vin)Ag
oceurs, dAg/ot being absent. It is also readily shown that linear re-
combination in other centers can be taken into account by adding
vus + v to the coefficient v, of dAn/at and dAp/dt and (v, — v dvas +
(v — vip1)vps to the coeflicient A; of An and Ap.

3.4.2 Steady-State Transport; Reverse Drift

A simple case that yields qualitative information of interest is that
of injection into a filament in the steady state with applied field. For
this case,

voDul*Ap/dx’ — vaudAp/de — AAp = 0 (137)

is to be solved for, say, Ap zero for distance @ along the filament nega-
tively or positively infinite and continuous at the origin at which there
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is carrier injection with zero injected total-current density. Equation
(137) is easily shown to be equivalent to (30) and (31) specialized for
no volume generation and acceptor centers only; v, and », are (— ) =
ve — wpm times Dy'/Dy and vy /ve , respectively, and 7, , from (60), is
(vo — wem)/Ar .

The solutions in the semi-infinite regions separated by the origin are
e 2* where r and r. are given hy

¢'" and ¢

(“) 3 [nan/voDo <= [(0/7uDe)” + 480/woDl'

T2
v.0o/vpDo
~ (—Al/l)‘,vo),

as obtained from (137). The case of recombination without appreciable
trapping” presents no unfamiliar features; the approximation given,
which is that for A; small, as may result from one of the capture coeffi-
cients small, will accordingly be considered. The magnitude of r; is thus
large compared with that of r, . With the condition vy > 0, which may
be assumed without loss of generality, ¢™* gives the familiar sharply
varying field-opposing solution to the left of the origin and €™ gives
the corresponding gradually varying field-aiding solution to the right,
provided », is positive; then, r; and r; are respectively positive and nega-
tive. But negative », can occur, for which an anomalous behavior ob-
tains, the field-opposing and field-aiding solutions then being respectively
the gradually and sharply varying exponentials ¢™* and ¢™*. For this
case, in the limit of no diffusion, added carrier concentration appears
only in the direction opposite to that of the ambipolar drift velocity,
that is, opposite to the direction of drift normally determined by con-
ductivity type.

This “reverse drift” associated with trapping may be understood in
terms of properties of the current density AI of added carriers. From
(19), added carriers drift in the direction of the total current density,
or the contribution to AI from drift has the sign of I if neAp — poAn
or Ap/An — po/n, is positive; that is, if injection results in proportion-
ately more holes than electrons than is the case at thermal equilibrium.
This behavior is, of course, that which normally occurs in n-type mate-
rial; with no trapping, Ap/An equals unity and added carriers drift
with or opposite to I according to whether the semiconductor is n-type
or p-type, with no drift in intrinsic material."”"* Thus, the normal be-
havior requires the conditions that Ap/An — pe/ne be positive in n-type
and negative in p-type. It is easily shown, by writing these conditions
by means of (60) for the steady-state value (1 — r,)™" of Ap/An, that

(138)
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both are tantamount in the steady state to the single condition, », > 0.
This condition clearly always holds for the majority-carrier trapping
range, while reverse drift results for sufficient minority-carrier trapping
in not too strongly extrinsic material. From (136), », > 0 gives

Po — Ny > (Vﬂn]_ — Vgpl)ml*/(yﬂnl + IJa;ﬂl) (139)

for p-type material, and a similar inequality for n-type is obtainable by
changing the sign of each side. Equating the two sides gives the condi-
tion for no drift, which, for no trapping, holds for intrinsic material.
From (54), the right-hand side of (139) may be written as
(no — m®)I*/(no + m*) = (p* — po)I*/(p* + po).

It reduces to 9,* for electron trapping without recombination, since
then vy, and m* are zero. For this case, since 91* equals ngv4n/vgn from
(63), reverse drift obtains if ng/po in p-type material exceeds 7sm/

(7t + 74m), the fraction of the time electrons are free. A similar result
holds for hole trapping in n-type material.

3.4.3 Drift of an Injected Pulse

The differential equation for drift with negligible diffusion and no
volume generation in one cartesian dimension with trapping by centers
of a single type is

' Ap/ott + vd*Ap/axot + vdAp/ot + wpdAp/dr + AAp = 0, (140)
from (135). For a pulse of carriers injected into a doubly infinite fila-

ment, a suitable technique of solution is that of the bilateral or two-

sided Laplace transform’* with respect to the distance variable, for

which the notations
FGs,U) = [ a0, U) dh = 2US(X, 0)) = [, 0) (141)

are here employed. Dimensionless independent variables

X =2z/L, U=t/r (142)
are introduced, and with distance and time units given byt
L = wr,
= (")
Vo= Al (v — ) — Al (143)

= 4“».2(1'4,.1 - Vapl)ﬂ(Po - ?10)_3
Avia + vi) (o — n0)/ (Yo — ve)90* — 1],

1 The second form for »* follows by use of (52), (62) and (63).
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subject to the restrictions »* % 0 and ng # po, the reduced equation
*Ap/aU* + 8°Ap/aXaU + ¢aAp/aU
+ 3¢ + ©)38p/3X + (' — & F 1)ap =0

results, where x and { are the parameters

(144)

k= (20 — v)7
= [vnn] + Vgp1 + (ﬂo + pﬂ)(ytrrl - Vl}ﬂ)/(nﬂ - Pﬁ)]”", (145)
Sb = YT = (Vlril + Vgni + Vipl + Vupl)‘r > 0.
Coefficient unity for the second term of (144) results from the definition
of L. The double sign in the last term of the equation results from the
necessity of defining a real (and positive) =, the upper and lower signs
applying respectively for positive and negative v
Laplace transformation of (144) gives
d*Ap/dU* + (s + O)dap/dU
+ B+ s+ 3 =& F DIdp = 0.
As has governed the choices of I, and r, the roots (—=Ny) and (=N 2) of
the associated quadratic reduce to

('Nl) s — 0t 1P — 4O, (47)

(146)

—N,

in which the double sign inside the radical here and in what follows
relates only to the sign of . Equation (146) holds for each of the trans-
formed concentrations, as does (140) for each of the original ones. Gen-
eral solutions are thus

ap =2 A,
=1

. (148)
AR = 2 A e
=1

From these solutions in conjunction with the Laplace transform of
a7/l obtained from (134), it is found that the r,; are given by

Tonj = _V‘.!]/(V‘.'E + Nf/T)
(v;..l - l’;m)/(ifuu + vym + Vogpl — Nj/T): J' = 1,2,

With »; replaced by N;/7, these are formally the same as the trapping
ratios for the decay of photoconductivity given in the first line of (81).1

(149)

[

t Other forms for the r,; obtainable through Laplace transformation of dAp/at
from (132) written for one dimension and no diffusion are not similarly related to
the forms of the second line of (81), though, for s = 0, the N;/r reduce to the »;
and all r,; to those for photoconduetivity.
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The A; are easily found in terms of the r,; and transforms Ap, and A7,
of the initial distributions. For no carriers trapped initially, the case
that will be considered, (147) to (149) give

‘41,-/3_;5; _ 1 _ .2 H g
(M) =36 - o6 - =1 50)
in which the parameter { is defined by

= (v — v)r = (v — 2vg) T (151)
Corresponding coefficients for the solution for An are (1 — run)4; and
(1 — ru)As, and these are similar to the ones for Ap if & in (150) is
replaced by

7= (vy — v — 2oa)7 = (vs — 2rp) 7. (152)

Solutions for an injected gaussian delta pulse are advantageously derived
as limiting forms as @ approaches zero of solutions for the gaussian initial
distribution whose transform is given by

A/ (®/L) = eirta”le ) = (153)

for @ carrier pairs injected per unit area of cross section. From (147)
through (153), Ap for this initial gaussian distribution is given by

AP = Ap/(®/L) = e N (cosh (3U[(s — ©)F £ 11} — (s — &)

(s — 0% £ 117 sinh (301(s — 0 = 1]), (154)

from which AN = E/((P/L) is obtained by replacing & by .
Certain inverse Laplace transforms that are needed are derived in
Appendix A, and Appendix B includes some details of their use in cal-

culation of the solutions from (154). Solutions for the initial delta pulse
at the origin are found to be

AP = Ap/"((p’/L) — {(? xxfg(ﬁ.,‘)vl
(s =0+ 3 = 0 vxT =)
2 Jo

+ Il /7T r ‘\ — _1 T ) =4 =4
AW =X gy LXKV - X1, (155)
AR/ (®/L) = 3(E — g)[e™ Y

}: WX(U - XH1IX(U - X)J;

B
=
Il

for AN = An/(®/L), £ in AP is replaced by 5. The modified Bessel
functions I, and 7, apply for the upper sign in (144) and (146), that is,
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for » real, while the Bessel functions Jy and J; apply for » imaginary.
The term in AP and AN with the delta function (U — X) =
vord(vet — x) represents a contribution that drifts at velocity v, . The
continuous distributions are confined to the interval 0 = o £ ud,
1[X(U — X)] = 1[z(vt — x)] being the step function that is respee-
tively zero and unity for negative and positive values of its argument.
Note that « and

3+ &) = wr,
(& —x)
3(n — )

3(E — 7?) = (V.'.u]. - l’tpl)’r

li

1 - - Vinl — Vipl) T,
( n0/Pa)” ( )T (156)

(Pﬂ/ﬂﬂ - 1)—1(th1 - Vep1)1',

are not restricted as to sign. For numerical computation of solutions
and further analytical study, it is well to transform (155) by eliminating
X in accordance with

X = Usin®10 = 1U(1 —cos ®), U>0, (157)
which gives
AP = W6 OBy (e — 0)]"8(r — ©)

+1
—J

A[0(r — e)]} (158)

+ 3k — «) .1;:. (10 sin 0) T2 (177 sin ©) tan 10]

AR = 3 = M6 = @) 1 (30 sin o)

Ae(x — 9)].

TFor AN, £in AP is replaced by n. The use of © as a variable implies
the step function of (155), while the step function of {158) simply re-
stricts © as defined by (157) to the interval 0 = 6 = 7.
Interpretation in deseriptive terms of cases of imaginary » requires fur-
ther analysis. Illustrative cases of minority-carrier trapping in strongly
extrinsic material, for which » is real and whose interpretation is com-
paratively straightforward, will be presented first. For strongly extrinsic
material, since the parameter £ or 4 for minority carriers is substantially
equal to k, the minority-carrier concentration does not include the term
with the Bessel function 7, . If, also, the trapping is nonrecombinative,
then ¢ = (v, + v)rand k = (v, — v,) 7 hold with »* = 4», , where
v, and v, are vy OF vy and vy OF ¥4 , respectively, and refer to the
minority carrier. Figs. 1 and 2 show distributions of mobile minority
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Fig. 1 — Continuous concentration distributions at different times of mobile
minority carriers from an injected delta pulse for drift with trapping. A strongly
extrinsic semiconductor and ¢ = 1, x = 0 are assumed. For nonrecombinative
trapping, these assumptions imply trapping time 7, and release time r, both equal
to twice the time unit 7. The pulse at the limit of the drift range is attenuated by
the factor e 1E™RU = iU,

carriers for this case. For Fig. 1, ¢ is unity and « zero, as for trapping
and release times equal,t and the continuous distributions are shown
for different times after injection at the origin of the neutral delta pulse.
These distributions are led by a delta pulse, which drifts at the ambi-
polar velocity vo . This remnant of the initial pulse is composed of un-
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Fig. 2 — Continuous concentration distributions of mobile minority carriers
from an injected delta pulse, for drift with trapping, all at time 107 and for re-
lease time respectively 4, 1 and | times trapping time. A strongly extrinsic semi-
conductor and nonrecombinative trapping are assumed; ¢ equals §, 1, §; « equals
—4,0,%; requals 7, 37 = 47, , 7, , respectively.

1 Fig. 1 applies more generally: The values of the parameters do not rule out
recombination, but imply merely » = v, = 2vim = 2[(gur/vin) (i — v for
minority electrons ind similar relations for minority holes.
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trapped carriers and is rapidly attenuated by the exponential factor,
which is ¢ * for the particular values of the parameters. The abrupt
fronts of the distributions for the shorter times result from most carriers
having been trapped only slightly — at least once, but not much more.
A relative maximumt appears in the case of the figure for times greater
than 2%r. For the longer times, the abrupt front disappears as a result
of multiple trapping. IFurthermore, there is a reduction of apparent
mobility: The maximum ultimately drifts at velocity 3uo, the fraction
of vy equal to the fraction of the time the carriers are free; this equality
will be shown to apply for nonrecombinative minority-carrier trapping
in strongly extrinsic material.’” This limiting behavior sets in rather
slowly, as the distribution for ¢ = 207 shows; its maximum occurs some-
what beyond the middle of the drift range.

Fig. 2 shows distributions all at time ¢ = 107 for release time respec-
tively 4, 1 and % times trapping time. The increasing areas under these
distributions are associated with decreasing fractions of carriers trapped;
it will be shown that, for nonrecombinative trapping, this trapped frac-
tion rapidly approaches the fraction of the time carriers are trapped.
The distributions have maxima appreciably beyond the respective values
for large U of one-fifth, one-half and four-fifths of the drift range, and
the distribution for the comparatively small release time still exhibits
a high abrupt front at the time 107.

The parameters on which the solutions depend have certain general
properties. From the first forms for « and { of (145) and the definitions
of rand ¥ of (143),

= (¢ 1 +4a0) 2 P x D)} (159)

follows. The inequality sign is associated with recombination, A; being
zero for nonrecombinative trapping. The parameter ¢ is real and never
negative. For » imaginary, so that the lower sign applies, a similar caleu-
lation gives

=14 G —4A)r7 21, ¥ <O0; (160)

the condition »," — 4A; = 0 implies real decay constants and holds from
(85). For » real, x is not restricted. T'or example, for nonrecombinative
trapping in strongly extrinsic material « is 3[(»,/ v)' — (v/v)"] and
ean be zero (as for Fig. 1) or have any positive or negative value. Thus,
¢ = 1 holds for » real and ¢ = 0 holds for » imaginary. With (151) and

t Expressions for dAN/dX = (U sin 0)7dAN /d6 from the Maclaurin’s ex-

pansions for the modified Bessel functions reduce, for f = 1and « = 9 = 0, to e}V
andi(l —30U2) etV at the origin and at the end of the drift range.
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(152), which define £ and 7, it is readily seen that £ ~ 9 ~ « holds under
the condition for the validity in general of the lifetime function 7, ~ 7,
of {(75); and that ¢ or 5 is approximately & for no >> po or pe >> 7o , respec-
tively. These properties are consistent with the easily verified relation-
ship,

nE — pon = (o — polk. (161)

Also, for nonrecombinative trapping, the parameters do not depend on
the capture coefficient and ¢ = (¢ = 1)} equals ¢ or g according to
whether electrons or holes are trapped.

Qualitative and physical distinctions are related principally to the
signs of ' and «. The general condition for real » is

(v + lei)(pu — ) /(v — vtpl) > 9%, (162)

from (143), and » is imaginary if the inequality is reversed. From (54),
the left-hand side may be written as (po + m*) (po — m)/(po — m*) =
{(p* 4+ no)(po — mo)/(p1* — mo). The condition x > 0 is, for p-type
material,

Po — Ty > (thl - yt.ul)(pﬂ + n‘U)/(”{jnl + Vupl);- (163)

from the first equation of (145); changing signs of both sides or reversing
the inequality gives x > 0 for n-type or « < 0 for p-type. From (54)
and (63), the right-hand side may be written as

(1 4 no/po) (po — m*)9u* _ (1 4 po/nma) (pr* — no) ™
ne + m* m* + po .

If recombinative trapping is excluded, then v is evidently real in the
limit of strongly extrinsic material. Note, for example, that as pe in-
creases indefinitely, v, approaches zero while v, approaches €, =
T. |, so that » approaches 20,1 (nd) Also, since v, inereases indefi-
nitely and »,. approaches C,.ni, x becomes positively infinite. If »in
and », are equal for given po, then vy > win holds for all larger po .
Suppose first that these capture frequencies are equal for some po of the
n-type material. Then, as po decreases from a large value, « does like-
wise. With vy > v, (162) and (163) show that « decreases to zero
and becomes negative for v still real. Further decrease of py results in «
hecoming negatively infinite, since » approaches zero as py — no ap-
proaches (vpn — )90 */ (vou 4+ vim), following which « increases to
—1 with » imaginary. While » is not defined for intrinsic material, the
equations show that, in the approach to the intrinsic limit, » is imaginary
and « approaches 41, the sign being that of (vun — vi)/(e — Po).




598 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1960

It is evident from (162) and (163) that, for n-type material and v >
v — that is, in the majority-carrier trapping range — » is imaginary
and « positive, hence greater than unity. With inereasing no, vuy and
v,n ultimately approach equality, » approaches zero and x becomes
positively infinite. For p-type material and v,y > vy, or the minority-
carrier capture range, it is likewise evident that positive « implies real
v and that imaginary » implies « < —1. This latter case includes reverse
drift. From a result of Section 2.2.1.2, since vu, equals v, in n-type
material, v, equals v, in p-type. Decrease of py from the value for
Vgt = Vyp1 EIVES vy > vy, and, from (139), as po approaches ny , neg-
ative », occurs. In the limit of negatively infinite k, for which » is zero
(with vy # via), v is in general positive. Thus, the reverse-drift range
is in general the portion of the minority-carrier capture range of imag-
inary » that results if a certain infinite range of large negative values of
« is excluded. For nonrecombinative trapping, (139) and (162) both
yield | po — o | < 9%, so that the two ranges coincide.

If the capture frequencies are equal for some po of the p-type material,
the initial decrease of « as py decreases from a large value still obtains;
but the p, for equal capture frequencies is approached for » still real
and « positive, and « again becomes positively infinite as » approaches
zero. Imaginary » results with further decrease of py so that vy > v
results, x decreasing from large positive values to unity and then from
—1 to large negative values, the majority-carrier trapping and minority-
carrier capture ranges, respectively, being realized (for hole-capture
frequency the larger) in p- and n-type material. It is easily shown, as
hefore, that the reverse-drift range applies, with recombination, for a
finite range of negative values of « less than —1 in this minority-carrier
capture range of imaginary ». Increase of ny, beyond the value for nega-
tively infinite « given (as before) by ne — po = (vep1 — ven1) / (Vi1 + Pim1)
results in real », with which « ranges from large negative values and be-
comes positively infinite as the material becomes strongly n-type.

For nonrecombinative trapping, « for real » and strongly extrinsic
material is, as has been noted, a positive or negative constant. For elec-
tron trapping, for example, » is 20, (m9t)? and « is 3[(m/90) —
(91,/ nl)i] in thelimit of large po ; « is positively infinite in the limit of large
no . As po deereases in the minority-carrier capture range of real », « be-
comes negatively infinite as ps — no approaches 91,*. With further de-
crease of po, k increases to — 1 in the minority-carrier capture range of
imaginary », which (for nonrecombinative trapping) is the reverse-drift
range. In the majority-carrier trapping range in general, » is imaginary
and « greater than unity.
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Maxima for large U of each of the continuous distributions for cases
of real » oceur substantially together. From (158), the 0 for a maximum
is found to be given byt tan © = —« ', which givest X/U = z/nd =
ML+ /(8 + 1)Y. For nonrecombinative traps, real » implies minority-
carrier trapping with positive », and (¢ 4+ 1)* equal to {. From (63),
(136) and (145), X/U accordingly reduces to »/(»: + »,), which is
[Tt — Mo/ (po — 1))/ (i1 + 7gm) for electron trapping or [rym —
Potop/ (mo — P0))/(7em + 7om) for hole trapping. Hence X /U, the factor
by which the apparent mobility is smaller than the magnitude of the
ambipolar pseudomobility,” is in general less than /(7. + 7,), the
fraction of the time minority carriers are free; but X /U is substantially
equal to this fraction®” under the condition | ne — po| 3> 9,*, obtained
by use of (63). As | ng — po | approaches 91,* in the nonrecombinative
case, X/U approaches zero. Recombination reduces the distance for a
maximum at given time, and thus reduces the apparent mobility, since,
for nonrecombinative traps with recombination of lifetime 73 in other
centers, the distribution of the mobile carriers subject to trapping is
simply that for no recombination multiplied by the decay factor ¢
This factor applies because the carriers which arrive at 2 at whatever
time have drifted in the conduction band for time /v, .

The decay constant for the straggle effect™ is that of the limiting de-
cay of the tail of the distribution at fixed « after the maximum has passed.
It is given by the exponent in (158), and is accordingly », . This result
follows from (156), since, from (157), x << vt implies cos 6 ~ 1. Real
y and hence positive », obtain in this connection. By use of (63), it is
easily shown that », for strongly extrinsic material is substantially vy.1 +
vom Plus either ven , for no 3> po, or vy, for po 3> ne .

Integrals of the solutions of (158) over the drift range are evaluated
in Appendix C. These integrals give

ot U
F, = @“fn Apdx=jn AP dX

= ¢ "E( = 1) Fsinh 3 = 1) + cosh 1(«* == 1)U,
(164)

. vot U N
fo=o0" [ aide = f AN dX
Jo 0

= (}_HU(E — )+ 1)_5 sinh a}(_:.-"' + I)EU

t Use is made of the approximations Io(z) ~ Ii(z) ~ (2Zwz)%e* for 1z| large.
The distributions for large U7 are substantially proportional and gaussian in
shape. For nonrecombinative minority-carrier trapping, they are as if the excess
majority carriers were subject only to drift and diffusion with diffusivity veL/4{3.

1 Note that, for the maximum, © —=/2 has the sign of «, so that cos © has the
opposite sign.
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as mobile and trapped fractions at given time of carriers initially in-
jected. For

vyt "
F,,E(P_lf Ande =F, — F,,
0

£in F, is replaced by . Equation (159) serves to verify that, with re-
combination, ', , F, and F, all approach zero as U increases indefinitely.
For nonrecombinative electron trapping, £ = { = (¢ =+ 1)} gives F, = 1,
as may be expected, and 7, = £(1 — n/0)(1 — ¢ ). Thus, from (145)
and (152), the trapped fraction approaches 7.1/ (o1 + 74m), the frac-
tion of the time electrons are trapped, with time constant Tgu7mi/
(7tm + 74u1); the mobile fraction approaches the fraction of the time
electrons are free. For hole trapping, entirely similar results apply. All
of these results evidently apply for » imaginary as well as real.

In Fig. 3 are shown continuous minority-carrier distributions for
imaginary », in particular, for nonrecombinative trapping of minority
carriers in the reverse-drift range and also of majority earriers. In the
former case, an attenuated delta pulse of untrapped mobile carriers,
which drifts at velocity v, leads a continuous distribution of minority
carriers that crowds towards the origin as its maximum excursions
above and below the axis both increase with time. The distribution of
added minority carriers is negative over part of the drift range after a
certain time.t In accordance with (164), it approaches a net positive
delta pulse at the origin of strength @, the initial strength, times the
free-time fraction. In the case of majority-carrier trapping, the pulse of
untrapped carriers inereases in strength as it drifts at velocity vy . This
augmentation is appreciable with appreciable ecuilibrium minority-
carrier concentration; it is negligible in strongly extrinsic material. The
pulse leads a largely or entirely negative continuous distribution of mi-
nority carriers, which crowds towards the pulse as its excursion below
the axis increases with time.} This distribution approaches a negative
delta pulse, which, with the minority carriers of the augmented pulse,
gives a net pulse of strength @®. The corresponding distributions of mo-
bile and trapped majority carriers approach net pulses of strengths
equal to @ times the free- and trapped-time fractions, respectively.

These results exhibit, with due allowance for the neglect of diffusion,

t Negative concentrations of the trapped and majority carriers also oceur.
For this case, n — « is positive for p-type material, and, if it is not too large,
negative An first appears (as for the case of the figure) at the end of the drift
range for times greater than 2(yn — «)7, since An equals 167U (5 — « —3U)
for © = =. With sufficiently large n — «, negative An first appears within the range.

t The majority carriers are similarly distributed: For the case of the figure,
(negative) dimensionless majority-carrier concentration AP or AN is AN or
AP for X = U = 5 and 1#AN or HAP for X = U = 10.
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Fig. 3 — Continuous concentration distributions at different times of mobile
minority earriers from an injected delta pulse, for drift with minority-carrier
trapping in the reverse-drift range and for drift with majority-carrier trapping.
Equilibrium majority-carrier concentration is taken as 2n; for both ecases, and
nonrecombinative trapping is assumed, with ,/7. large compared with the equi-
librium ratio of majority-carrier coneentration excess to eoncentration of the
(mobile) carriers that are subject to trapping. For minority-carrier trapping, a
strong inequality for reverse drift accordingly holds, with 7, > 37, = 47, ¢ = §,

« = —7%, and attenuation of the pulse by the factor ¢ V. For majority-carrier
trapping, , 3 7, = 7, ¢ = 4, « = } hold, and the pulse is augmented by the
factor ei”, For both ecases, £ = —y = % or n = —f = £ holds for eleetrons or

holes trapped, so that the coeflicients for the minority carriers of the terms in
Ju for the two cases are respectively § and —3.

the essential behavior that would be realized in practice. In each case,
the initial neutral pulse of mobile ecarriers will appear essentially as a
diffuse pulse of trapped and mobile carriers in substantially the propor-
tions that obtain for the steady state. Minority-carrier trapping in the
reverse-drift range does not give largely unidirectional drift, while ma-
jority-carrier trapping results essentially in drift at the ambipolar ve-
locity vy . Increase of applied field, however, makes for the idealized
behavior shown in the figure—in particular, for continuous distributions
that are negative over increased actual distanece at given time. Numerieal
estimate of the effect of diffusion in the reverse-drift case shows that
negative added-carrier concentrations can oecur over appreciable dis-
tances under conditions that ean be realized in practice for reasonable
values of trapping time.f

t For Fig. 3, Yryu1 3> 7 = 4700 holds for p-type material, and if = is 1078 second,
then I, = ryr is about 0.4 em for py = 2n; and eleetron and hole mobilities of 1500
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A simple descriptive interpretation of the crowding of the distributions
towards the origin in the case of reverse drift is that the drift of added
carriers, initially in the direction of v , is largely in the opposite direction,
the direction of drift of majority carriers, after some trapping has taken
place. For more detailed general interpretations, consider the current
density AI of added carriers of (19), which is given under the present
assumptions by

Al = o0 T(®/L) (AP — poAN)

_ eUD((P/L)[e—iU(f+KuoBG) {[%U(‘JT _ e)]—la(ﬂ' -_ e) (165)
L
_%Jl

from (8), (158) and (161). With (158), this result shows that the Bessel
funetions of order zero are associated with carriers that neutralize the
charge of trapped carriers or with the trapped carriers themselves, while
those of order one are associated with the drift of, in effect, carrier pairs.
The direction of drift of a mobile-carrier distribution considered in its
entirety depends on the sign of the net A7, or Al integrated over the
drift range. By use of (161) and (164),

(U sin @) tan 1 © 1[0(7 — 9)1};

u
jﬂ ATAX = Eunpos I(®/L) (noF'y — polla)

= evo(®/L) (e ") [k(i* = 1) sinh £(«* = 1)U (166)

+ cosh 3(«* + )

results. For nonrecombinative electron trapping, this integral reduces to
evo(®/L), the initial AI, timest (1 + &/{) = »/(vta + vym) in the
limit for U infinite, from (136), (145) and (159). As may be expected,
the limiting integral has the sign of », or the opposite sign according to
whether », is positive or negative. That the distributions ultimately
crowd towards the origin in the case of reverse drift is established on a
more quantitative basis by this result.

and 570 cm? volt? second™! (as for silicon?7 at 300°K) and for an applied field
of 100 volt em™!, which is reasonable for a filament of resistivity at least a few
hundred ohm-em and of area of eross section about 10~2 cm or less. The correspond-
ing diffusion distance (D)} for ¢ = 10r is 0.054 cm, an order of magnitude smaller
than the approximate distance 2L of 0.8 cm over which negative added-carrier
concentrations oceur, This difference is greater for larger 7(n .

1 For real », which implies positive », and p-type material, this factor is the
limiting value of X/U for the maximum of the mobile-electron distribution.
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It follows from (165) and is otherwise evident that A7 is zero at the
origin.t Also, for imaginary », the Bessel function with the minus sign
applies and A within the drift range is negative for positive v, if U is
not, too large. Hence, in the case of reverse drift, the mobile-carrier dis-
tributions become steeper even for small times.f This conclusion is con-
sistent with the increase with U of the exponential factor for given small
0, for which 5 (¢ + « cos 8) ~ »,7 is negative, and also with the decreasc
with inereasing © of this factor for given U, which results because of
k¥ < —1. With electron trapping, An becomes small for sufficiently large
U at some 0. But, with £ > 7, since Ap ~ An is still positive at this 6,
ATl is still negative, from (165), I being negative for positive », . Thus,
An becomes negative. As An becomes increasingly negative, electrons
tend to be released from traps and As in turn becomes small [as a zero
of Jo(3U sin 0) is approached]; but AT is still negative. Thus, A7 be-
comes negative too. To the right of the location at which An equals
(pa/no — 1)An < 0, which is the condition A = 0 (for negative An,
Ap and An), Al is positive and the concentrations tend to increase alge-
hraically. A progressive increase with time of the maximum excursion
of An below the axis is associated with the presence of a (time-depend-
ent) location at which A7 changes sign.

In the case of majority-carrier trapping, the exponential factor for
given U increases with 6 because of ¥ > 1; and { — & being negative,§
this factor is smaller or greater than unity respectively for © small or
O ~ . Thus, as U increases, the econtinuous minority-carrier distribu-
tion, which is negative for all © and U, crowds towards the pulse, which
drifts at velocity v, and both increase in amplitude. For electron trap-
ping in general, A7i > 0 holds at (and near) the pulse. If the material
is sufficiently strongly n-type, this A7 is largely compensated entirely by
negative An. The pulse, in effect, removes electrons from the semicon-
ductor and transfers them to traps, and its strength remains substanti-
ally constant; the continuous contribution to AJ is negligible because of
large 7. In less strongly n-type material, however, neutrality is main-
tained at the pulse in part by negative Ap and correspondingly more
negative An, which makes for less trapping for given pulse strength.
But holes removed from the semiconductor drift at veloeity », and thus
(with an equal number of electrons) cause a progressive increase in the
strength of the pulse; a A7 obtains that does not depend explicitly on
ny . The AT of the pulse likewise increases indefinitely. The net or inte-

t Thus, at the origin, An/Ap maintains the value no/po .

1 Note also that (158) gives, for small U > 0, AP or AN at the origin equal to
£ — xorg — x times (1 — »,t), which inereases with ¢ in the case of reverse drift.

§ Note that (159) may be written as (¢ + #)(f — &) = —1 for nonrecombinative
trapping and imaginary ».
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grated A, however, increases to a limiting value, as given by the factor
vo/ (v + vym), which is greater than unity in the present case. The
largest excursions of the continuous mobile-carrier distributions below
the axis occur, of course, at the pulse, at which there is a discontinuity
in Al with change of sign.

In cases of real v, the exponential factor is less than unity and de-
creases as U increases.t With the monotonically increasing modified
Bessel functions and Al everywhere in the direction of vy, the continu-
ous distributions, and, from (165), Al as well, ultimately possess
relative maxima that drift in this direction with a ecommon velocity.
While the maxima occur substantially together, the distribution of the
trapped minority carriers lags, consistent with the Bessel function of
order zero dominating that of order one; the mobile minority-carrier
distribution ultimately results entirely from carriers released from traps.

The case of “ecritical trapping,” the borderline case between cases of
real and imaginary », is one whose analysis furnishes further qualitative
insight. For it, » as defined in (143) is zero with v41 # v, and the
condition is the equality corresponding to (162). The previous notation
ean be used for this case by choosing the time unit 7 arbitrarily and
noting that (144) through (154) then all apply if the terms with the
double signs are omitted wherever they occur. A caleulation essentially
similar to that given in Appendix B provides the solution, which, for
the initial delta pulse of @ carrier pairs per unit area at the origin, is

Ap = (@/L)fexp [—3(¢ — 0)U]-8(U — X)
+ 3(& — «) exp [xX — 3(¢ + ) UI-UX(U — X) ]}
= ®f exp [— 3 (v + vem) (1 + (no + po) /)] -8 (vt — 2) (167)
+ [Py + vem) /00 exp [— (wu*) ™
“(Poves + novp)r — /3 (7 + Te)]- (o — 2]},
Af = 3(@/L)(¢ — n) exp kX — 3(x + HUI-1X(U — X)]
= ®l(po — m0) (vem + vem) /0Iu*] exp [— (0690*) ™
(poven + nevp)r — 3 (T + )]z (vt — 2)].
I'or An, £ is replaced by 75 in the first expression for Ap, or no and p, as

t In these cases, ¢ + « has the sign of », and is positive, from (156), and (159)
may be written for nonrecombinative trapping as (f + «)(f — x) =1
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well as subseripts n and p are interchanged in the second. The concen-
tration increments in terms of the dimensionless quantities are, of course,
actually independent of 7. In the second expressions, quantities involved
have been written in forms that apply under the condition for eritical
trapping. It follows readily from these equations that the mobile and
trapped fractions are similar to those of (164) except that («* 4 1)} is
replaced by «; they are independent of r. For nonrecombinative trapping,
the mobile and trapped fractions of carriers respectively approach, as
before, the free- and trapped-time fractions, sinee « equals {( —¢).T

As the second expression for An shows, eritical trapping is a case of
minority-carrier trapping. The continuous distributions are proportional
and are equal to products of exponential decays with distance and with
time. The amplitudes of the distributions at the origin are larger and
the decay with distance is sharper the smaller is vy . The time decay
results from recombination, with which neither 7., nor r,, is infinite.
For nonrecombinative trapping, the condition of critical trapping is the
same as that of zero drift, and exponential distributions are established
progressively over the variable range »¢ that otherwise do not change
with time. It is well to note that the general case of zero v, is a case of
imaginary », with »* equal to (—44,). Furthermore, for trapping in
intrinsic material, for which », is not defined, it can be shown that the
distributions are all identically zero except at the origin. As may be
expected for this case of no diffusion, the initial pulse results simply in
pulses for the concentration inerements that change as trapping and
recombination proceed.
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APPENDIX A

Derivation of Two-Sided Laplace Transforms

The transforms
ﬂﬂ?ﬂﬁ—XWmmw}zwilﬂﬂ—wilm
and (168)
e {f(X) + fx T8 - Xﬂ)-%j;;[(ﬁ? - XWJf(e)ds}
= F[—(s" = 1)}

entail restrictions on f(X) and on the transform variable s for conver-
gence of the integrals. In accordance with the definition of (141), the
first transform is

ff“m?MKAWmmwﬁ
— o0 by 0

) B
= [Cse [ e = anas

; ) ; (169)
= [T e =m0 [T 108 - 8 dnas

0 B 0

8
® Jo 2 anvhy e
+ [T [ o0 - ge™ anas

as obtained by changing the order of integration and changing from
variable 8 to —@ in the contribution from the range of negative 8. The
first of the integrals with respect to N isT

@ J()

I = )™ ax
;] 0

= [Ta 7 W) ew bG48 (170)

= (& + D) exp[—(5 = 1)*3l.

For convergence with the upper function and sign, s is taken as (real

t Watson,® p. 416, Equation (2).
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and) negative; for convergence with the lower function and sign, the
real part of s is to be less than —1. The second is a Gegenbauer integral:
With

A= —fcos ¢,
zsiny = (i) 8,
zcosy = —1isB, (171)

z=i(s* £ 1),

cot ¢ = —(;) s,

'BJu 2 2y41  —sh
[N — B)le™ dr
La 1o

the result

(172)

8 f Jo(z sin ¢ sin ) ¢ “****¥ sin ¢ do
0

= 2(s* & 1) P sinh [(s* == 1)¥8]

follows.t By substituting from (170) and (172) in (169), the first trans-
form of (168) is established. The second transform is established through

g {~fx f,“ (8 = XHNf'(8) dﬁ}

= '[mf(?\) exp [(s* 2= 1)\l dn (173)

= F[—(s* = 1)1

The original expression reduces to the form on the left upon integrating
by parts for f(8) such that I,(8)f(B) or Jo(B)f(B) is zero for 8§ = .
The result then follows by application of the first transform and another
integration by parts, which entails f(\) exp [(s* £ 1)*\] equal to zero
for positively and negatively infinite X, a condition that subsumes the
preceding one.

T Watson® p. 379, Equation (1).
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APPENDIX B
Solutions for Drift of an Injected Pulse

The dimensionless Encentration AP = Ap/(®/L) is the inverse
Laplace transform of AP given by (154). It may be evaluated by use of

¢l exp (a% — 2Us) = datatexp [— (X — 30U)Y/4d’] (174)

and the similar formula obtained by replacing U by its negative in con-
junction with (168) and certain elementary rules. Equations (168) and
(174) give

(s = 1) Vexp [0f(sS £ 1) + UGS = Y

= ir 't ‘; (8 — X exp [ — (8 — 3U)*/4a] dB,
X <0
Clexp [@'(s" = 1) + 1U(s" + 1) (175)

= tr g {exp [— (X — 10)"/4d"] £ [X pg — x*)™

i - X9 e - 68 — 40) /40 da}.
The exponents that oceur in (154) may be transformed in accordance
with
a8 — JU(s 4+ ) +30ls — 0" = 1J
=d(WF1) — i+ U+ (2’ — 3U)(s — k) (176)
+ (s — 0 £ 1] + 3Ul(s — 0" = 1)

and the similar identity that holds with minus signs before the radicals.
Consideration of the transformations that change the exponent in the
transforms of (175) to that given by (176) shows that the inverse trans-
forms or solutions sought contain exp (& F1) — 2k + U + xX]
as factor, in which exp («X) results from replacing s by s — «. They con-
tain also X + 2’ — 31U in place of X in (175), because of the term
(2a’« — 1U)(s — «) in (176). The solutions are obtained by straight-
forward application of these results to (154); corresponding to the s in
the factor s — ¢ of the second terms, there are contributions obtained
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by differentiating with respect to X the expressions that originate from
the first equation of (175). The solutions are:

AP = 3 a fexp [@*(¢ F 1) — 3(f + ) U + «X]}
-(exx) [—(X + 2a’% — U)*/4a’] — 3(t — )

L - & 4 2 - 0

+2ak—tU Jo
“fexp [— (B8 + $U)*/4d”] — exp [—(8 — 3U)*/4a’]} dB
] o0

2 X+2a2x—{U

(177)
+ (6 — (X + 2a°% — 30U

Do — o+ 2t - 30Ty

(X + 2a° — 3U — B) exp [— (8 + 3U)*/40a”]

— (X + 2a°% — YU + B) exp [— (B — 1U)*/4a’]} (I,B).
Replacing £ by 4 in (177) gives the solutions for AN, and those for AN

are accordingly
AN = 3ra™ (g — E)lexp [a* (& F 1) — 3¢ + U + «X]}

f Ioyig — (x + 20 - 104 (178)

X+42a2x—4U -Iu
lexp [— (8 + $U)*/4a’] — exp [— (B — 3U)*/4a”]} dp.

The corresponding limiting solutions of (155) involve the step-funetion
factor as result of the requirement that, for contributions in the limit
of zero a, the gaussian factors in the integrands of (177) and (178) be
centered at values within the range of integration.

APPENDIX C

Inlegrals Over the Drift Range

Consider first evaluation of /7, , which may be written as
P, =3¢ —nUlexp (=1 )]

. (179)
[ lexp (=307 cos @)1 1 G sin 6) sin 0 do
0 Jo
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from (157) and (158). The transformations

1
zsiny = (%fg) ,
2

(iU
B o0y = (i%xU)’ (180)
z = i3 £ 1)U,
cot ¥ = (z’;)

result in the single form,

Pa =1 (s = DUlew (U [ fexp GzeosOosyll

-Jo(z sin O sin ¢) sin O dO;

—1

the Gegenbauer’s integral{ reduces to (21r/z)*J iy(z) = 227 sin 2, and,
with the definitions of #, the respective expressions for F, of (164) follow.

The contribution to F, from the Bessel function of order zero is clearly
[(£ — «)/(£ — m)]F, , while the contribution from the delta pulse at the
limit of the drift range is exp[}(x — {) U]. The contribution

+4{exp [-3(¢ + ©) U}

M = O e I (U = 2D an

= 31U [exp (—3;U)] f lexp ( —3«kU cos ©)]
’ (182)

Il(‘Usm 0)(1 — cos ©) dO

= (29) 10 towp (—350)

-fr lexp (iz cos © cos ¢)]J1(z sin © sin ) (1 — cos 8) d6,
0

the last form for which follows from (180), remains to be evaluated. A
method due to Pollak™ involves first writing the integral in the last
form, to be denoted by g, in terms of
U = z cos ¢, UV = zsin . (183)
T Watson® p. 379, Iiquation (1).
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Then, the operator (1 — 70/d) applied to g replaces, in effect, 1 — cos
in the integrand by sin®0; it gives a Gegenbauer integralt which reduces
to (2n/2)} sin @ Jy(2) = 202%(z7 sinz — cos 2). Since this is
—ilexp(—zU)]a(g exp 7U)/dU,

J =9 |q—o exp (—7U) + 420 [exp (—7u)]

w o, ) (184)
f z (7 sinz — cos z) exp (7U) du
0

follows, in which z is (u* 4+ U*)". The integral in this equation may be
evaluated by writing sin z and cos z in terms of exponentials and intro-
ducing U + (U’ + 0*)*and u — (U* + ©*)! as variables of integration.
It is found to equal

Yilexp (W)’ + 0 + w(uw® + 01 exp [i(W + 0
+ [+ U — wut + 0N exp [—i(u 4+ 0] — 0 cos V.

With g | U equal to 20 (1 — cos V) from an integral of Sonine,} g is
thus found in terms of U and U and, by use of (180), in terms of «
and U. The respective expressions for ¥, of (164) then follow.
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