The Design of Radar Signals‘ Having
Both High Range Resolution and
High Velocity Resolution

By J. R. KLAUDER
(Manuseript received April 5, 1960)

Radar systems that yield stmultaneous information regarding the range
and velocity of a target would be useful in certain applications. A discussion
1s presented of some fundamental limitations on simultancous range-velocity
determination in terms of ambiguity diagrams, with the aid of a quantum
mechanical analog to the Wigner distribution function. A sequence of sig-
nals s found in which the signals yield both range and velocity information
with increasing accuracy. However, this desired property is not accompanied
by a waveform suitable for maximum operating efficiency.

I. INTRODUCTION

The very large power requirements of present-day radars clearly de-
mand full utilization of the potential of existing equipment. Unfortu-
nately, an efficient equipment use does not always lead directly to a sig-
nal possessing desired high resolution characteristics. The *Chirp”
scheme, which employs linear frequency modulation and is discussed in
detail in the accompanying paper,' represents one method by which the
desirable high resolution properties may be secured with an optimum
equipment utilization. However, in Section 3.5 of the accompanying
paper it was pointed out that the Chirp scheme, like ordinary radar
techniques, possesses an inherent ambiguity in a simultaneous deter-
mination of both the range and velocity of a moving target. Ambiguity
diagrams,? which are representations of joint response functions in both
time and Doppler frequency, provide a pictorial representation of the
uncertainty in determining range (time) and velocity (Doppler fre-
quency). Fig. 1, (which is a duplicate of Fig. 38 of the accompanying
paper) schematically illustrates the ambiguity diagrams corresponding
to three different transmitted signals: (a) a long constant-frequency sig-
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Fig. 1 — (a) Schematic ambiguity diagram for a long econstant-frequency radar
signal; the more shaded portions denote regions of greater signal response with
time, ¢, and for variously moving targets with Doppler frequeney, ». (b) Schematic
ambiguity diagram for a short constant-frequency radar signal; improved time
resolution is secured at the expense of some discrimination against moving targets.
(¢) Schematic ambiguity diagram for a typical Chirp signal; an approaching target
with a positive Doppler shift has a response attentuated in amplitude and shifted
to an earlier time.
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nal, (b) a very short constant-frequency signal and (¢) a Chirp signal
with linear frequency modulation.

For certain applications it may be desirable to transmit a signal whose
ambiguity function is highly peaked only about the point ¢ = » = 0.
If such a signal exists, it would permit a high resolution in both range
and velocity simultaneously. In Section I of this paper some proper-
ties of ambiguity functions are discussed with the aid of quantum me-
chanical analogs, and one interesting general property is discussed in
detail: If a requirement of rotational invariance is imposed on ambiguity
functions (a concept made precise in Section II) a sequence of signals
is obtained for which the peaking of the ambiguity function is steadily
inereased. While the signals in this class achieve the desired behavior
in the ambiguity function, the transmitter waveforms are not uniform
in amplitude and, therefore, cannot be transmitted with the same effi-
ciency as the uniform amplitude Chirp signal. The notation used in
the following analysis is the same as that in the accompanying paper.

II. SOME GENERAL PROPERTIES OF AMBIGUITY DIAGRAMS

Tor convenience in the analysis, only a single target, which gives rise
to a Doppler shift » = yfgr/c is studied, where v is the target velocity,
fre is the radio-frequency carrier and ¢ is the velocity of light. If the
spectrum of an arbitrary complex transmitted signal is denoted by &(f)
then the received signal becomes &(f — »). Only receiving networks that
optimize the signal-to-noise ratio will be discussed. For an arbitrary
complex signal ¢(t), this optimum filter is the so-called matched filter for
that signal. If &(f) denotes the Fourier transform of the signal e(¢), then
the matched filter ¥,,(f) may be defined' as é*(f). With a matched filter
in the receiver, the response spectrum is determined by &*(f)e(f — »).
The Fourier transform determines the time response:

o0

x(ty) = [ Das = e df, (1)

which is written as a two-parameter function. This is the expression given
by Woodward,? and can be used perfectly well to specify the ambiguity
diagrams. However, for the analogy to be drawn to single-particle non-
relativistic quantum mechanics, it is convenient to develop an alter-
nate expression for the ambiguity funetion amplitude.

Suppose that the transmitter spectrum, &(f), is concentrated about
some high rF frequency, so that

&) = &(f — far), (2a)
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where &(f) is a spectrum centered about zero frequency. It follows from
(2a) that

e(t) = 8 /rrt, (2b)

Therefore, &(f) represents the generalized envelope of the transmitted
signal. If (2a) is substituted into (1), one readily finds that

x(ty) = iRt f T g (_r + 5) g (f - é) U df,  (3a)

—o0

or, when expressed in terms of &(t),

X(t,V) — 82ri(fRF+P,’2)tf &* (T _ ;) g (T + Ez) ezrivr d‘T. (3b)

Let the carrier in the presence of a Doppler shift be taken as fee + »/2.
With this choice of carrier,

p(t,ﬂ) = f_“" &* ('r — tz) & (T + té) e dr (4)

is defined to be the complex two-parameter response envelope. For con-
venience, the Doppler angular frequency € = 2m» has been introduced
in (4). It is the absolute value of p(t,Q), which represents the detected
output. The remaining analysis uses the definition made in (4); it isalso
the form studied by Gabor? and Ville.*

No loss of generality is made by assuming the transmitted signal car-

ries unit energy:

f:]e(_t) Pat = f_:[f;(t) 2 = f_:|§(f) Faf=1.  (5)

With this normalization, it follows from (4) that
5(00) = f_i L&) [P dr = 1. ©)
This result represents a constraint that requires a portion of the “am-
biguity” to remain in the vicinity of the point { = @ = 0. By a straight-

forward integration using (4) and (5), the following result may be
established:

%,f_w f_: | p(£,2) |*dt d2 = 1. o

[This result applies equally well to a similar integration involving
x(t,»).] The interpretation given to (7) is as follows: There is, quali-
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tatively speaking, a total ambiguity equal to “one”, which must be
distributed throughout the ¢,Q plane. The approximately equal amounts
of shaded area in Fig. 1 are intended to be a reflection of this constraint.
This result seems to preclude any simple solution to achieve simultane-
ously an arbitrarily high resolution in both range and velocity.

Another observation worth making about the three diagrams in Fig. 1
is that it appears they could be obtained from one another by a ‘rota-
tion’” about the origin of the ¢,2 plane. It will be demonstrated below that
this is a general result. That is, for every ambiguity diagram defined by
p(t,2) there exists another signal that generates another diagram differ-
ing from the first only by a rotation about { = @ = 0. The use of the
word “rotation’ needs some explanation here. Actually, the rotation can
proceed along arbitrary elliptical contours. However, for convenience,
it is assumed that the scales of time and Doppler frequency have been
chosen so that the rotation is nearly circular.

The rotation theorem, as well as others like it, is most readily estab-
lished by using methods common in the study of quantum mechanics.
One of the reasons for choosing the form of (4) in preference to that of
(1) was to facilitate the comparison with a quantity studied previously
in quantum mechanics. Only a brief sketch is presented here of the com-
parison used to obtain most of the remaining results of this seetion.

The quantity of interest in quantum mechanies is the so-called Wig-
ner® distribution function defined by

Plgp) = %f_: y* (q — g) —ivelty, (q + ) (8)

Here, h = 2r#i is Planck’s constant and y(y) represents the Schrédinger
wave function for a single particle in one dimension. Of more direct
interest is the characteristic function for this distribution, i.e. its double
Fourier transformation:

p(yx) = f P(gp)e’ ™" dq dp,

o= o Yo

If this result is compared with (4), one notes an exact functional equiva-
lence, with ¢ playing the role of y and Q playing the role of «/#. Equation
(9) is perhaps easier than (8) to study, and has been treated in some de-
tail by Bass,® Moyal” and Groenewold further references may be found
in these works. The relative simplicity of (9) stems from its simple repre-
sentation in the quantum mechanieal Hilbert space:

(9)
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P(y;") — (‘I,,ei(xq+up)fh‘1,) . (10)

Here ¥ denotes an arbitrary normalized vector and q and p are the usual
operators satisfying qp — pq = /. Numerous additional relations may
be found, especially in the work of Moyal.

The necessary signal transformation to generate a rotated ambiguity
diagram will not be derived; the result will be stated without proof.
Suppose that &(¢) is an envelope which generates a particular ambiguity
function p(t,22) according to (4). The modified envelope, &(t), must be
chosen so that its ambiguity function is defined by

pe(ty) = p (t cos 6 + 5 sin 6, » cos #— +i sin 8) . (11)

Here, v represents the ratio of the “angular frequency’ axis to the
“time” axis of the ellipse of rotation and & represents the “angle’” of
rotation. When v &= 1, rotation is along nearly circular orbits. The solu-
tion for &(f) is given by

&(1) = f” U(ﬂ,f;@)ﬁ(‘r) dr, (12)

where the kernel U(t,r;0) is expressed as follows:

Ultr) = /‘/;_ exp { iy £+ TE) cot & — 7 cse 9:| (13)
" 27i sin @ 2 '

Equation (13) follows from the properties of the well-known harmonic
oscillator problem, and is just one of the relations readily obtained with
the techniques of quantum mechanics.

The particular relations expressed in (12) and (13) are perhaps not
as interesting as an additional result that ean be derived from them.
In the discussion of the ambiguities present in the interpretation of the
diagrams in Fig. 1 it seemed that the resolution was relatively good in
one direction but was poor in the perpendicular direction. It is just such
a variation with direction that is not wanted in attempting to achieve
a signal whose ambiguity function is concentrated about the point { =
2 = 0. Tor elarity, assume again that the ¢ and @ axes have already been
scaled for the specific system under study. Then, to secure (as nearly
as possible) an ambiguity diagram concentrated about the origin, it
appears desirable to seek a rotational invariance of the ambiguity function;
ie., pa(,Q) = p(4,2). It is a simple matter to demonstrate that p(f,2) =
o(t,Q) if and only if

go(l) = f_m Ullrd)a(s) dr = e ™M8(0), (14)
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where A represents a suitable constant. There are a denumerable number
of solutions to (14), a typical one being denoted by &.(t), where A, =
n =+ 4. These solutions, familiar as the eigenfunctions of the harmonie
oscillator, are defined by the following relation:

’Y} T |
g.(t) = \/TTQ_"H”(\/Y”G W (15)

where I ,(z) represents the nth Hermite polynomial defined, for example,
by
wer d' e
H.(z) = (=1)"%" — e . (16)
dz"

Figs. 2(a), 3(a), 4(a) and 5(a) show four curves of &,(f) for n = 0, 4, 10
and 26, respectively; each curve is symmetric about { = 0 and is only
shown for positive values of {. Note also a change in scale in the differ-
ent figures. In each example y was chosen equal to one.

It is a well-known fact that the functions &,(t) defined by (15) have
spectra, £,(f), which are specified by the very same functional form.f
Consequently, Iligs. 2(a) through 5(a) also represent the frequency spec-
tra for the same n values. One can see from these four figures that, as »
increases, both the pulse width and bandwidth increase. The pulse-width-
bandwidth produect increases as (n 4+ 3)? as n is increased. One may
hope, therefore, that the ambiguity function becomes more nearly con-
centrated about the origin as n increases. The normalization condition
(7) must still be satisfied, but, for large n, the remaining “‘ambiguity”
is thinly spread out over a large region of the £, plane.
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Fig. 2 — (a) Envelope of the transmitted signal when the parameter n = 0; in
this case the curve is gaussian. (b) Envelope of the ‘“‘rotationally invariant”
matched-filter response when n = 0; here the curve is also gaussian.

T See Pair 702 in the tables of Campbell and Foster.?
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Fig. 3 — Envelope of (a) transmitted signal and (b) matched-filter response
when n = 4.

This interpretation may be verified in detail by evaluating the am-
biguity funetion p,(¢,2) when &(¢) is given by &.(f). In this calculation
it is advantageous to employ the result that p.(f,Q) will, by construction,
be rotationally symmetrie. Hence, it suffices to study the cross section
of the ambiguity diagram when @ = 0; the complete contour may be
reconstructed by rotation about the point t = £ = 0. It is an interesting
fact that the kernel U(t,7;8) can be rapidly converted into a generating
function for the various response signals p,(£,0). The details of such a
caleulation are essentially present in the work of Moyal.” Either from
the generating function or by a direct use of the definition for p(z,)
one finds the zero Doppler response to be
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Fig. 4 — Envelope of (a) transmitted signal and (b) matched-filter response
when n = 10.

pn(g’o) = i’ L. (ﬁ)e—'jﬂh’ (17)
n! 2
where L,(z) represents the nth Laguerre polynomial defined by
z d" n —z
L.(2) = ¢ — ("¢7). (18)
dz"

The output signal p,.(¢,0) is illustrated in Figs. 2(b), 3(b), 4(b) and 5(b)
for n = 0, 4, 10 and 26, respectively. Since these functions are clearly
symmetric only positive ¢ values have been included (note the change
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Fig. 5 — Envelope of (a) transmitted signal and (b) matched-filter response
when n = 26.

of scale in the different figures). Again, these curves were obtained
assuming v = 1. In order to illustrate the rotationally invariant charac-
ter of these signals, Fig. 6 shows a cut-away of a three-dimensional pro-
jected view of the complete ambiguity amplitude p({,2) corresponding
to the case n = 10.

Fig. 6 illustrates the tendency of the ambiguity function to peak about
the origin of the ¢, plane. Furthermore, it demonstrates that a narrow
peak is achieved only when the remaining “ambiguity” is spread out
over a relatively large domain of the £,Q plane.

If input and response envelopes (8,(f) and p.(£,2)) with higher values
of n are considered, the ambiguity function becomes more sharply peaked
and more spread out. A study of the behavior of the zero Doppler re-
sponse for large values of n shows that
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Fig. 6 — Cut-away of three-dimensional projected view of complete ambiguity
nmplltude p(t,2) when n = 10.

pu(t,0) ~ Jo(v/2yn 1), (19)

where J, is the zeroth-order Bessel function. This asymptotic form is
valid when ¢ is greater than+/n but not so large that ¢ becomes com -
parable with n itself. Equation (19) illustrates that, as n increases, the
form of the response does not markedly change, only the scale changes.
While the “rotationally invariant” response signals discussed here
possess a narrow 3-db pulse width, they are endowed with long oscilla-
tory tails, which fall off approximately as t~ ! This rate of fall-off is to
be compared with the rate of fall-off of the Chirp si
~' which follows from (19) of the accompanying paper. Therefore, in
securing an ambiguity function highly peaked about the origin a penalty
must be paid in the rate of fall-off of the time “side lobes.” Nevertheless,
as the parameter n increases there is a change of scale and the side lobes
are pulled inward. Consequently, at least in principle, a signal &,(¢)
could be chosen that maintained side-lobe levels below an arbitrary
level outside a prescribed ellipse in the {,2 plane. It is interesting to
speculate whether there exists some signal envelope &(f) that could be
efficiently transmitted in addition to having a highly peaked ambiguity
funetion. Unfortunately, this question remains unanswered.
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