Synthesis of Driving-Point Impedances
with Active RC Networks

By 1. W. SANDBERG

(Manuscript received December 4, 1959)

A general method s presented for synthesizing driving-point impedances
using RC networks and active elements. The procedure realizes any real
rational driving-point function and leads to rather simple structures. Only
one aclive device, a negative-impedance converter, is required. The synthesis
of biquadratic impedance functions is considered in detazil.

I. INTRODUCTION

It is often desirable to avoid the use of magnetic elements in synthesis
procedures, since resistors and capacitors are more nearly ideal elements
and are usually cheaper, lighter and smaller. This is especially true in
control systems in which, typically, exacting performance is required at
very low frequencies. The rapid development of the transistor has pro-
vided the network synthesist with an efficient low-cost active element
and has stimulated considerable interest in active RC' network theory
during the past decade."****

The present paper considers the active RC synthesis of driving-point
impedances. Transfer functions are not treated directly, but are covered
at least in principle, since it is always possible, and indeed sometimes
convenient, to reduce the synthesis of transfer functions to the synthesis
of two-terminal impedances.

It is now well known that any driving-point impedance function ex-
pressible as a real rational fraction in the complex frequency variable
can by synthesized as an active EC network requiring only one ideal
active element. Two proofs of this result are already in the literature.®”*
The present paper provides a third proof, although its main objective is
to present a new and more practical realization network. The synthesis
" * Another proposed proof® is in fact concerned only with those impedance

functions which are positive on some section of the negative-real axis of the
complex frequency plane.
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technique is similar to that used in the author’s first proof,® and con-
siderably simpler than those used in the later paper by Kinariwala.?

Like the technique previously presented by the author,”* the present
technique yields the values of the required network elements explicitly
and directly, without the solution of simultaneous equations. The gen-
eral procedure yields networks that contain more capacitors than the
absolute minimum required; in return for this, however, it yields struc-
tures which, unlike those of Kinariwala, do not need balanced amplifiers
or complex resistance networks. {

An alternative procedure applicable to a wide class of biquadratic
impedance functions is also described. This procedure leads to structures
requiring only two capacitors.

The synthesis techniques presented in this paper are based on net-
works employing a type of impedance converter that is a generalization
of the negative-impedance converter. The converter concept is intro-
duced in a general way in order to properly orient the reader.

II. THE IDEAL IMPEDANCE CONVERTER

Consider a two-port network terminated by an impedance Z.(s) as
shown in Fig. 1. The input impedance at port 1 is
TuohnZr (s)
1+ hnZr(s)’

where the hybrid parameters are functions of the complex frequency
variable defined by

Zy(s) = hn — (1)

By = hyly + hyBs

(2)
I, = haly + hoks.
I I,
[ e |
+ +
E, Ex Z1(s)
8__ -

Tig. 1 — Two-port network.

* The particular configuration inveolved is essentially the one mentioned in
Section 3.2 of this paper.

t A more practical procedure in Ref. 7 treats a restricted class of driving-point
functions and employs a passive RC two-port network terminated by a negative
BC impedance. Other restricted realization techniques are presented in Ref. 8.
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For the ideal impedance converter we require that for every Zr(s)
Zi(s) = K(s)Z(s), (3)

where K(s) is a predetermined fixed function of the complex frequency
variable. In order that (1) and (3) be compatible,

hiy = h = 0,

I((S) = —h;ghm . (4)

An ideal impedance converter, therefore, is a two-port network with
a hybrid parameter matrix of the form

0 hlg
: (5)
}2-21 0

It follows that the impedance at port 2 with the termination Zr(s)
connected to port 1 is

Z(s)
K(s) '

A “controlled-source’ representation of the unbalanced ideal impedance
converter is given in Fig. 2.

The negative-impedance conveter (hpha = 1) has been heavily ex-
ploited as a synthesis tool in active RC network theory. The synthesis
techniques presented in this paper are based on networks employing a
more general type of converter characterized by

Za(s) = (6)

0 1
Zs ! (7)
7 0

where Z;/Z, is the ratio of two RC driving-point impedances. This hy-
brid parameter matrix can be realized with either of the idealized ecir-

I[ +/“\L_ Iz
'? N e
(hiz-1Ez
E, 10 Yo+, E;
e . <2'

Fig. 2—Representation of the ideal impedance converter.
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Fig. 3 — Idealized realization of the required converter.

o2

Fig. 4 — Alternate idealized realization of the converter.

cuits shown in Figs. 3 and 4.* The smaller rectangles enclose ‘“‘infinite
gain” current amplifiers. The realization of Fig. 3 is a modification of
Larky’s idealized current-inversion negative-impedance converter.” The
larger rectangle in Fig, 4 encloses Linvill’s well-known idealized voltage-
inversion negative-impedance converter.” Hence, (7) can be realized
with Linvill’s negative-impedance converter and two RC driving-point
impedances.

A controlled-source representation of (7) is given in Fig. 5. Transistor
realizations are discussed in the Appendix.

1,

Fig. 5 — Representation of (7).

* Many other realizations are possible.
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Fig. 6 — Realization one-port.

III. SYNTHESIS OF DRIVING-POINT IMPEDANCES

The driving-point impedance of the one-port network shown in Fig,.
6 is*

Zy— 7
Z(s) = é_:——__ é: (8)
Zy  Z

The impedanece function that is to be synthesized is a real rational
fraction in the complex frequency variable

_ P(s)
Q(s)"

The synthesis consists of identifying each of the four parameters Z, ,
Zy , Zyand Z, with a two-terminal RC impedance function. The presence
of negative signs in (8) suggests an approach similar to techniques
previously proposed for the synthesis of transfer functions.®:#

Assume that the presceribed function Z(s) is positive on at least one
section of the negative-real axis of the complex frequency plane. Sup-
pose we write

Z(s) (9)

P(s)

Z(s) == ———— | (10)

where

* This expression can be readily obtained by applying Blackman’s equation™
to the network that results when the converter is replaced by its controlled source
representation. The required return differences are computed with respect to the
quantity 1 4+ (Z3/Z,). A detailed study of Blackman’s equation led to the dis-
covery of the realization networks presented in this paper.
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0= < <o <ox,

and the number N is equal to the degree of the polynomial P(s) or of
the polynomial @(s), whichever is greater. The points —o; are chosen
to lie anywhere on the section or sections of the negative-real axis where
the function Z(s) is finite and positive.*

We replace both the numerator and denominator of the right-hand
side of (10) by their partial fraction expansions and group the resulting
terms to obtain

Py _ Py
Z(s)=%——§f (11)
Q@

where
Q1Q2 = ;LIJ[ (3 + sz')

and Py/Qy, Ps/Qy, Ps/Q:, and P,/Q» are each BC driving-point imped-
ances. The funection Z(s) is expressible in this form since:

(a) Each of the two partial fraction expansions possesses real residues
of like sign at any particular pole.

(b) All RC driving-point impedances are expressible in the form

M
ay
Rw+kz=;8+bk’

where R, , a; and b, are nonnegative.
Equation (11) is equivalent to

Py P
. @ Q
Z(s) = .
)= BT RQ Pt RQ (12)
% Q:
We identify the impedance parameters of (8) as follows:
P]_ P2
Z, = ! =2
e Q’
(13)
A £ __ P
' P+ RQY Py + RQ.

_ * The choice of the ¢:’s influences the spread of element values and the sensi-
tivity of the driving-point impedance to variations in the active and passive

elements.
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According to the qualifications appended to (11), the functions Z; and
Z, are RC driving-point impedances.

Consider the function Z; . The degree of the polynomial @, is at least
as great as the degree of P;. Note that, as the parameter R assumes
nonnegative real values that increase from zero to infinity, the poles of
Z, move from the zeros of P to the zeros of @, . Recall that the ratio of
polynomials P,/Q, is an RC driving-point impedance. Consequently, it
is always possible to find a finite value of the parameter R for which the
poles and zeros of Z; interlace properly.

A similar argument shows that Z, also can always be made an RC
driving-point impedance. Note that Z(s) need not be a positive-real
function.

31 An Example
Let

s+s+1
st4+ 5+ 27
This function is positive on the entire negative-real axis. We choose
o1 = 1,and ¢» = 2. From (12),

Z(s) = (14)

s+2_ 3
_ s+1 s+2
28 = AT R +3+ R Rt it2R (15)
s+ 1 s+ 2
Employing (13),
1 3
Zy =1 m, Zy = m,
(16)
7 — s+ 2 7. — 3
' s+ R)+3+ R’ * T Rs+ 4+ 2R’

The set of impedances is realizable for B = 1. Choose B = 1 so that

_1 3
2’ s+ 67

The corresponding network is shown in Fig. 7.

Note that Z; and Z, can be scaled by the same constant without af-
fecting the impedance Z(s). In a practical design, this degree of freedom
would be utilized in order to optimize some figure of merit such as the
sensitivity function. The choice of the ¢.’s would be similarly influenced.

Z (17)
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_ 3(s+1)

hay = (s+2)2
Fig. 7 — Realization of (14).

3.2 An Allernate Realization
The class of functions treated in this section can also be synthesized

with the network given in Fig. 8. The input impedance of this structure

18

(18)

By employing arguments similar to those already discussed, it can be
shown that the value of a nonnegative real parameter R can be chosen
to ensure that the following set of impedances is realizable :*

74 = P3+RQI, 7 — P4+RQ2’
Ql Q2 (]9)
Zo= 11 g - P
Py + RQ,’ ° Pi+ RQ.
i 25 (o] 1
M| |z, (2
Z‘ 0
Z(s) EZZ]

Fig. 8 — Alternate realization one-port.

* A realizable set of impedances can also be obtained in other ways.
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This circuit has the disadvantage of requiring a “floating” two-port
active network.

3.3 Restrictions on Z(s)

The methods of synthesis presented in the previous sections are not
applicable to functions that are nonpositive on the entire negative-real
axis. This is a significant theoretical restriction, since positive-real func-
tions, for example, need not possess the required property. In particular,
all reactance functions must be excluded.

The difficulty mentioned above can be circumvented in several ways
by modifications of the synthesis technique. Suppose that the presceribed
impedance Z(s) is nonpositive on the entire negative-real axis. The
function

211}
S+ bn

must, however, be positive on one section of the negative-real axis. It can
therefore be synthesized by the previously discussed procedure. The
impedance Z(s) is obtained by connecting an RC impedance ao/(s + bo)
in series with the resulting network. An alternative procedure on an
admittance basis also applies, the network being modified at the input
terminals by the parallel connection of an RC impedance

Z'(s) = Z(s) — a >0, bh=0 (20)

Cu+% du>0, co = 0.

Both methods usually necessitate a larger number of passive com-
ponents than would be required for the synthesis of —Z(s). For this
reason it may be more desirable to employ a negative-impedance con-
verter terminated by —Z(s).

3.4 Sufliciency of One Active Element or One Negative-Impedance Converler

Since the realization of the converter requires only one active element
or only one Linvill-type negative-impedance converter, the preceding
discussion constitutes a proof of

Theorem: Any driving-point impedance function, expressible as a real
rational fraction in the complex frequency variable, can be synthesized with
a nelwork containing only resistors, capacilors and either a single ideal ac-
live element or a single ideal negative-impedance converter.

Note that it is theoretically possible to synthesize impedance func-
tions which approach infinity as any integral power of the frequency
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variable. Obviously, these functions can be realized by actual networks
only over the frequency band where the active two-port is essentially
characterized by the controlled-source model of Fig. 5.*

IV. BIQUADRATIC SYNTHESIS

The synthesis of biquadratic impedance functions merits special at-
tention. The network associated with a function of this type, previously
considered as an example, requires a total of four capacitors (two in the
converter). Two of the capacitors can be eliminated by employing an
alternative technique based on the network of Fig. 6 with Z; and Z, re-
placed by resistors R, and R,. The structure becomes an impedance
converter imbedded in a simple resistance network.

IFrom (8),
Zy _ RZ — Ry)
8 o S U 2
7. Ri(Z — R) (21)
The biquadratic function Z(s) is given by
7(s) = (s — a)(s — 2) (22)

(s—p)(s—p2)°
It is required that R, and R» be chosen so that Z; and Z, are RC imped-
ances. Assume that each of the impedances Z; and Z, is to be realizable
as a resistor in series with a parallel combination of a resistor and capaci-
tor as shown in Fig. 9. This structure is sufficient to realize the most
general first-degree RC' impedance function. The ratio of these two fune-
tions is given by

Zy _ (s + o) (s + )

Z B G )G a)’ (23)
where, from (21) and (22),
_ R.,(1 —Ry) ,
I
[ —— I ———
AN

Fig. 9 — Structural form of Z; or Z, .

* It must be remembered that this model will ordinarily be inadequate for
stability analyses. For this purpose it must be modified to be valid in the fre-
qufiancy ruinge where the significant active and passive parasitic parameters are
influential
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Four possibilities exist for the pole-zero pattern of Zs/Z, as shown in
Fig. 10. The zeros in Fig. 10(a) and the poles in Fig. 10(b) may occur
with multiplicity two.

Assume tentatively that Z(s) has complex conjugate poles and zeros.
The function Z(s)[—» £ ¢ < =], where s = ¢ + ju, is nonnegative
and approaches unity at both extremes of the argument. Since the funec-
tion is the ratio of two second-degree polynomials in ¢, only two points

Jw
(@) ——6—6—x—1—
(b) —o & -
(c) —e——6—x 7
(d) —x—o—x—-»

Fig. 10 — Permissible pole-zero patterns for Z3/Z, .

of intersection with a horizontal line are possible. When such an inter-
section oceurs, the intersecting points will be separated by an extremum
of the function. Hence, if Z(s) exhibits at least one extremum on the
negative-real axis, the parameters R, and R, can be chosen to provide a
pole-zero pattern for Zs/Z, of the type shown in Figs. 10(a) or (b).
Since, for both type (a) and type (b), (1 — Ri1) and (1 — R;) have the
same sign, the impedances Z; and Z; would be realizable.

Jw jw

N D
PN,

@) (b)

Fig. 11 — Construction of the extremum points of Z (o).

Consider the pole-zero diagram for Z(s). It can easily be shown that
the circle passing through the poles and zeros [Fig. 11(a)] will intersect
the real axis at the two points where Z(o) has an extremum. Conse-
quently, any open-circuit or short-circuit stable biquadratic impedance
function with complex conjugate poles and zeros can be synthesized.
Two permissible limiting cases exist when the zeros or poles or both the
zeros and poles occur with multiplicity two on the real axis. Another
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permissible case occurs when the zeros are at infinity and the complex
conjugate poles are in the left-half plane.

Suppose that Z(s) has distinet real zeros and complex conjugate
poles. It can easily be shown that the circle centered on the real axis at

_ 0’,,2 + OJ;! — 2129 _ .

a = m P2 = 0p £ Ju, (25)
and passing through the poles [Fig. 11(b)] will intersect the real axis at
the two points where Z(o) has an extremum. The circle must pass be-
tween the zeros. It follows from (25) that the center of the circle will lie
to the left of the zeros if the poles lie to the left of the point midway
between the zeros. This will result in an extremum of Z(¢) located to
the left of the poles in a region where the function is positive. It follows
directly that the synthesis can be accomplished for any biquadratic
impedance function with left-half plane complex conjugate poles and
real zeros, where the poles are located to the left of the point midway
between the zeros.*

The steps in the biquadratic synthesis procedure are: (a) choose R,
and R, so that Z; and Z, are realizable, and (b) from (21), identify Z;
and Z,. The permissible values of R; and R. can be determined by
inspection of Z(o).

It should be noted that this procedure is not limited to the two broad
classes of functions considered above. The synthesis can obviously be
accomplished if step (a) can be carried out. Hence the applicability of
the procedure can be determined by inspection of Z(¢).

41 An Example

Let
2 —3s+ 2
s+s+1°
It is evident from the graph of Z(¢) for this case (Iig. 12) that the
choice Ry = 4, R, = 06 is acceptable. From (21) and (26),

Zy, 6Z—4 95 +3s+3%

Zy, 472 —6 1084 $s+ ¢

_ 9 s+ (s +2)
10(s+ 4)(s+ 1)

Two possibilities exist for the pair of impedances Z; and Z, :

Z(s) = (26)

(27)

* Bi(cilua,dratic admittance functions with distinet negative-real poles can be
realized with a negative-impedance converter as the difference of two RC ad-
mittances. For this reason, such functions are not considered in detail here,
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9 (s +2) Z4—(S+%)

SR VR Rk =)
or

, _ 9 (s+2) _(s+1)

%=1 (s+ 1)’ Zy s+ 1" (29)

4.2 Synthesis on the Basts of the Network Shown in Fig. 8

The synthesis technique presented in this section can be extended to
apply to the network of Fig. 8 by comparing (8) and (18) and identify-
ing

Z7 = % Za ) Zg = Zq y
* (30)
Za = R1 s Z;, — Ro .

V. CONCLUSION

A general method of synthesizing driving-point impedances has been
presented. An impedance converter is required that can be realized by
modifying Larky’s current-inversion negative-impedance converter. An
alternate realization employs Linvill’s voltage-inversion negative-im-
pedance converter and two RC impedances. This realization leads to
the result that any driving-point impedance function, expressible as a
real rational fraction in the complex frequency variable, can be syn-
thesized as a network containing resistors, capacitors and a single nega-

7
6
5
g2-30+2
T2+0+1
4
(o) \
3 /,
21—
1
0
-6 -3 -4 -3 -2 -1 0 1 -

Fig. 12 — Graph of Z(s) for a biquadratic function.
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tive-impedance converter. The technique does not require the synthesis
of two-port RC or n-port balanced resistor networks, and leads to the
direct determination of the required two-terminal RC' elements.

The synthesis of biquadratic impedance functions has been given
special attention, resulting in structures employing the minimum number
of capacitors and a moderate number of resistors. The procedure is
applicable to a wide class of functions including, in particular, all open-
circuit or short-circuit stable impedances with complex conjugate poles
and zeros.
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APPENDIX

Transistor Circuil Analysis
An approximate model for the transistor in the range where its pa-
rameters are essentially independent of frequency is shown in Fig. 13

ole

I 2
- N -
(© '\é\e’“ _ (©)

T

(b)

Fig. 13 — Approximate low-frequency transistor model.

The collector resistance is assumed to be infinite, an approximation
which is often reasonable —especially for drift transistors. In terms of this
model, the hybrid parameters of the impedance converter circuits of
Tig. 14 are

Fig. 14(a):

By = n(l — ai)(Zs + Z4) ~0

Z4(432t¥1+ 1) +Z;4 (1 — al)ﬁ -
;!-12 = 1, hgg = 0,

é_ (1 —'al) (1+T1+Za) (31)
;121 — Z4 l511.‘5‘2 Z4 Ngji

1 Zs+ (1 —-al):|—24,
1 — 1 _—
+ a1 [ + Zy
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(c) (d)

Fig. 14 — Transistor realizations of the converter.

where
Te o
'r—n,+1_a ﬂﬁl—a'
Tig. 14(b):
hyn = —— —Tl(l - ﬂl)(za + Z4) ~0
b il — 1 =)+ Zs+ Zs)
by =1, her = 0,
Ly L [1 + Za_"‘fl(l_—il_)_] (32)
hn[ = 24 alBE Z.1 I é
‘ 1—(1_.22[1+TI+Z3] Zy
a3 Z
Fig. 14(¢):

hu = (1 - C!l)?‘l 20,

h'l‘.! = 1) h"ZE = 01
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_cuaz%— (1 — ) |:1+(1— 2)Z3+T2]~Za (33)

hﬂlk =~ .
2 - 7
1 _;_(1_012)é$r2 ¢
Zy

Fig. 14(d):

hu

Fi1a

hin

Zy + (1 — a)(Zy + ra)
a;aan, - (1 — G!l) J{ + (1 - a?)(z‘l + T?)]

= 1, ]igg = 0,
Z T (34)
l - <2 —_—
44 + ( ) (1 + Z4) 7

Zo+ (1 — a)(ra+ Z0) | Zi
ajay — (1 - ﬂl) 7

= —(1 —_ at])'i"l
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